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We address the classic problem of interval estimation of a binomial
proportion. The Wald interval p̂ ± zα/2n

−1/2(p̂(1 − p̂))1/2 is currently in
near universal use. We first show that the coverage properties of the Wald
interval are persistently poor and defy virtually all conventional wisdom. We
then proceed to a theoretical comparison of the standard interval and four
additional alternative intervals by asymptotic expansions of their coverage
probabilities and expected lengths.

The four additional interval methods we study in detail are the score-test
interval (Wilson), the likelihood-ratio-test interval, a Jeffreys prior Bayesian
interval and an interval suggested by Agresti and Coull. The asymptotic
expansions for coverage show that the first three of these alternative methods
have coverages that fluctuate about the nominal value, while the Agresti–
Coull interval has a somewhat larger and more nearly conservative coverage
function. For the five interval methods we also investigate asymptotically
their average coverage relative to distributions for p supported within (0,1).
In terms of expected length, asymptotic expansions show that the Agresti–
Coull interval is always the longest of these. The remaining three are rather
comparable and are shorter than the Wald interval except for p near 0 or 1.

These analytical calculations support and complement the findings and
the recommendations in Brown, Cai and DasGupta (Statist. Sci. (2001) 16
101–133).

1. Introduction. In this article we consider a very basic but very important
problem of statistical practice, namely, interval estimation of the probability of
success in a binomial distribution. There is an interval in virtually universal use.
This is the Wald interval p̂ ± κn−1/2(p̂(1 − p̂))1/2, where p̂ =X/n is the sample
proportion of successes, and κ is the 100(1 − α/2)th percentile of the standard
normal distribution.

The problem has an extensive literature, and the questionable performance of
the standard Wald interval has been sporadically remarked on. Simultaneously,
there has also been work suggesting alternative confidence intervals. For example,
alternative intervals have been suggested that use a continuity correction as well
as intervals that actually guarantee a minimum 1 − α coverage probability for all
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values of the parameter p. In spite of all this literature, there is still a widespread
misconception that the problems of the Wald interval are serious only when p is
near 0 or 1, or when the sample size n is rather small. Various widely used texts
in statistics provide testimonial to this misconception. Nearly universally, they
recommend the Wald interval when npq is larger than 5 or 10. Inspired by two
interesting articles, Santner (1998) and Agresti and Coull (1998), Brown, Cai and
DasGupta (2001) (henceforth BCD) recently showed that the performance of this
standard interval is far more erratic and inadequate than is appreciated. Virtually
all of the conventional wisdom and popular prescriptions are misplaced. The Wald
interval is sufficiently poor in this problem that it should not be trusted unless npq
is quite large.

We have recently become aware of Schader and Schmid (1990). That paper
contains plots very similar to some in BCD, clearly notes the deficiency of the
standard interval and makes an alternative proposal which, however, differs from
those in BCD.

BCD do a fairly comprehensive examination of several natural alternative
confidence intervals for p, and after extensive numerical analysis recommend the
score interval of Wilson (1927) or the Jeffreys prior interval for small n, and
an interval suggested in Agresti and Coull (1998) for larger n. The principal
goal of this article is to present a set of theoretical calculations that reinforce
those findings and recommendations. We also investigate the likelihood-ratio-test
intervals, which were not treated in detail in BCD. We show that the coverage
probability of the standard interval not only exhibits oscillation, but also has a
pronounced systematic bias. We also show that the alternative intervals do better
in these regards. These theoretical calculations hopefully enable us to get some
closure on this obviously important problem.

In Section 2, we give a few examples to illustrate the extent to which
conventional wisdom fails in this problem. Additional examples may be seen in
BCD. In Section 3, first we introduce the standard interval and the four alternative
confidence intervals. The rest of Section 3 deals with Edgeworth expansions for
the coverage probabilities of the standard interval and the alternative intervals.
Due to the lattice nature of the binomial distribution, the Edgeworth expansions
here contain certain oscillation terms that typically do not arise for continuous
populations. We then show that although one term Edgeworth expansions do
not approximate the coverage probabilities with adequate accuracy, the two term
expansion provides truly good accuracy at modest sample sizes. The derivations of
the two term Edgeworth expansions are somewhat technical, especially so for the
Bayesian and likelihood intervals. They are derived separately in an appendix.

In Section 4, we use the two term Edgeworth expansions as an analytical tool to
compare and rank the various intervals with regard to their coverage probabilities.
The two term expansions show that the interval suggested in Agresti and Coull
(1998) has the greatest coverage among the five methods we concentrate on. They
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also show that the Wilson, likelihood and the Jeffreys prior interval are pretty
consistently comparable. See especially Figure 6.

These Edgeworth expansions are organized to display two types of effects. The
principal part of the expansion involves a smooth description of the general value
of the coverage. The remainder of the expansion contains oscillating terms related
to the effect of discreteness in the binomial distribution. From our perspective, the
smooth terms are the more important. Consider any smooth (prior) distribution
for p supported within (0,1). We show that the integrated coverage from the
oscillatory terms is of a lower order than that from the smooth terms. Examination
of only the smooth terms thus yields a realistic asymptotic comparison of the
overall coverage of the interval methods. The notion of looking at such a smoothed
evaluation of coverage properties is heuristically related to the concept of a “very
weak expansion” as suggested in a different context in Woodroofe (1986). Figure 6
contains a comparison based only on these nonoscillating terms.

A closer scrutiny of the complete expansions also shows other features of
interest. For instance, from these expansions one can see how the choice of the
level α can also affect the relative performance of the various interval methods.
One can also see that the absolute magnitude of the oscillations in expected
coverage for the standard method are significantly bigger than those from the other
methods. Figure 8 displays this effect and thus shows another respect in which the
standard method is inferior to its competitors.

As in any interval estimation problem, coverage is only part of the assessment
of a confidence interval. Parsimony, naturally measured by expected length, is
another important criterion. In Section 5, we derive two term expansions for
the expected lengths of the standard and the alternative confidence intervals.
The coefficients in the second term are different for different intervals, giving
us a basis for comparison of their expected lengths. We then also provide an
integrated version of the expansions, the integration being with respect to the
uniform distribution for p on (0,1). From these expansions one sees that the
Agresti–Coull interval is always the longest, the Wilson and the standard interval
have identical two term expansions for integrated length, and the Jeffreys prior
interval is always the shortest. The likelihood ratio interval is slightly longer than
the Jeffreys interval. Similar results for other one parameter exponential families
are presented in Brown, Cai and DasGupta (2000).

As we mentioned before, these asymptotic expansions of both the coverage
probabilities and the expected lengths reflect the reports in BCD with rather
remarkable accuracy. Because of these theoretical calculations, we feel assured and
comfortable in recommending strongly that the standard interval for this problem
should not be used and the suggested alternatives are far better and safer to use.

2. Coverage properties of the standard interval. Although the standard
interval is in near universal use the following instructive examples will show
that its coverage probabilities are unacceptably erratic and poor. These illustrative
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examples are given to show that there really is a serious problem here that
deserves to be fully understood by statisticians at large. Specifically, the poor
coverage probability is not just for p near the boundaries, and the erratic behavior
persists for large and even very large sample sizes. There is therefore a real need
for a thorough investigation of alternative confidence intervals in this important
problem. Additional examples may be seen in BCD, Santner (1998), Agresti and
Coull (1998) and other references cited there.

EXAMPLE 1. Consider p = 0.5. Conventional wisdom might suggest that all
will be well if n is above 20. Figure 1 plots the coverage probability of the nominal
95% standard interval with p = 0.5 and n= 10 to 100. At n= 97, the coverage is
still only about 0.933; in addition, the coverage probability does not at all get
steadily closer to the nominal confidence level as n increases. At n = 17, the
coverage probability is 0.951, but at the much larger value n = 40, the coverage
is only 0.919. The oscillations in this case are related to the discreteness of the
binomial distribution. A careful look at the coverage probability shows that it
requires n≥ 194 to guarantee that the coverage probability stays at 0.94 or above
when p = 0.5.

Table 1 lists the smallest n after which the coverage stays at 0.93 or above for
selected values of p for the standard interval and three alternative intervals. ns, nJ,

FIG. 1. Coverage probability of the standard interval for p = 0.5 and n= 10–100.
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TABLE 1
Smallest n after which the coverage stays at 0.93 or above. The numbers in italic are the

corresponding values of npq

p 0.01 0.025 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ns 2757 1005 526 286 141 118 89 82 56 64 54 71
nspq 27.3 24.5 25.0 25.7 18.0 18.9 16.7 17.2 12.7 15.4 13.4 17.8
nJ 956 384 134 47 62 32 36 25 29 22 22 32

nJpq 9.5 9.4 6.4 4.2 7.9 5.1 6.8 5.2 6.6 5.3 5.4 8
nW 407 42 111 36 24 41 13 31 18 7 13 32

nWpq 4.0 1.0 5.3 3.2 3.1 6.6 2.4 6.5 4.1 1.7 3.2 8
nAC 1 5 10 11 8 4 1 1 10 1 1 32

nACpq 0.01 0.1 0.5 1.0 1.0 0.6 0.2 0.2 2.3 0.2 0.2 8

nW and nAC denote the smallest n required for the standard interval, the equal-
tailed Jeffreys prior interval, the Wilson interval and the Agresti–Coull interval,
respectively. See Section 3.2 for the definition of these alternative intervals.
When p is quite small, it takes thousands of observations for the nominal 95%
standard interval to ensure that the coverage probability is at least 0.93.

In certain practical applications, it is common to have a small p. For example,
the defective proportions in industrial quality control problems are often very
small. Table 1 shows that even if p is not small, the required sample sizes needed
to guarantee approximate validity (i.e., 93% coverage) of the standard interval are
much larger than the usual recommendations in popular textbooks. Many of those
textbooks express requirements in terms of npq . The numbers in italic in Table 1
give the corresponding values of npq needed to guarantee 93% coverage. For the
standard interval these numbers can be as large as 27.3 and are never smaller than
12.7. For a minimum coverage of 94% the corresponding minimum and maximum
values of npq are for ns: 44.4, 78.8; for nJ: 12.9, 37.8; for nW: 12.4, 34.6; for nAC:
0.01, 23.5.

From Table 1, one may think that the Agresti–Coull interval is the obvious
interval of choice. However, we will see in Section 5 that it tends to be longer
than the other intervals, and so may not be the most desirable.

EXAMPLE 2. This example emphasizes that the standard interval can be
grossly inadequate. It demonstrates that there is a systematic bias in the coverage
probability of the standard interval. Figure 2 shows the exact coverage probability
of the nominal 99% standard interval with n = 30. It is striking that in this case
the coverage is always smaller than 0.99. In fact on the average the coverage is
only 0.914. Our evaluations show that for all n up to 45, the coverage of the 99%
standard interval is always below the nominal level for all 0 < p < 1, although
certain values of p are of course luckier than others.
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FIG. 2. Coverage of the nominal 99% standard interval for n= 30 and 0 < p < 1.

2.1. The reason for the bias. Example 2 indicated that there is a systematic
negative bias in the coverage probability of the standard interval. The bias is due
mainly to the fact that the standard interval has the “wrong” center. The standard
interval is centered at p̂ =X/n. Although p̂ is the MLE and an unbiased estimate
of p, as the center of a confidence interval it causes a systematic negative bias in
the coverage. As we will see in Section 3.5, by simply recentering the interval at
p̃ = (X + κ2/2)/(n+ κ2), one can increase the coverage significantly for p away
from 0 or 1 and eliminate the systematic bias.

The standard interval is based on the fact that

Wn ≡ n1/2(p̂− p)√
p̂q̂

L	⇒N(0,1).

However, even for quite large values of n, the actual distribution of Wn is
significantly nonnormal. Thus the very premise on which the standard interval
is based is seriously flawed for moderate and even quite large values of n. For
instance, asymptotically, Wn has bias 0, variance 1, skewness 0 and kurtosis 3.
For moderate n, however, the deviations of the bias, variance, skewness and
kurtosis of Wn from their respective asymptotic values are often significant and
cause a nonnegligible negative bias in the coverage probability of the standard
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FIG. 3. Bias in the distribution of Wn with p = 0.25. Vertical axis is E(Wn).

confidence interval. Figure 3 plots the very noticeable bias in the distribution of Wn

(conditional on p̂ �= 0 or 1) for n= 20 to 200 and fixed p = 0.25.
We can analytically demonstrate the bias in the distribution of Wn by standard

expansions. Denote Zn = n1/2(p̂ − p)/
√
pq . Then simple algebra yields

Wn ≡ λ(Zn)= Zn√
1 + (1 − 2p)Zn/

√
npq −Z2

n/n
.

A standard Taylor expansion and formulas for central moments of the binomial
distribution then yield an approximation to the bias:

EWn =Eλ(Zn)= p − 1/2√
npq

(
1 + 7

2n
+ 9(p− 1/2)2

2npq

)
+ o(n−3/2).(2.1)

It can be seen from (2.1) that Wn has negative bias for p < 0.5 and positive bias for
p > 0.5. Therefore, ignoring the oscillation effect, one can expect to increase the
coverage probability by shifting the center of the standard interval towards 1/2.
This observation is confirmed in Section 3.5.

Besides the bias, the variance, skewness and kurtosis of Wn often deviate
significantly from their respective asymptotic values. See Table 2 below; especially
note the high kurtosis values.
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TABLE 2
Variance, skewness and kurtosis of Wn for p = 0.25

n 20 30 40 50 60 70 80 90 100 150 200

Variance 1.36 1.28 1.19 1.14 1.11 1.09 1.08 1.07 1.06 1.04 1.03
Skewness −0.78 −0.80 −0.61 −0.48 −0.40 −0.35 −0.32 −0.29 −0.27 −0.21 −0.18
Kurtosis 4.41 5.28 4.66 4.03 3.70 3.53 3.43 3.36 3.31 3.19 3.13

2.2. The reason for the oscillation. It is evident from Examples 1 and 2 that
the actual coverage probability of the standard interval for p can differ significantly
from the nominal confidence level at realistic and even larger than realistic sample
sizes. The error, of course, comes from two sources: discreteness and skewness
in the underlying distribution. For a two-sided interval, the rounding error due to
discreteness is asymptotically dominant. It is of the order n−1/2. And the error
due to skewness is secondary and is of the order n−1, but still important for even
moderately large n. Note that the situation is different for one-sided intervals.
There, the error caused by skewness can be larger than the rounding error. See
Hall (1982) for discussions on one-sided confidence intervals.

The oscillation in the coverage probability is caused by the discreteness of
the binomial distribution, more precisely the lattice structure of the binomial
distribution. The cumulative distribution function contains jumps at integer points
and the Edgeworth expansions for the distribution function contain terms that do
not appear, typically, in the continuous case [e.g., under the Cramer conditions;
see Esseen (1945)].

Let us try to understand at a more intuitive level why the coverage probability
oscillates so significantly. By a straightforward calculation, one can show that the
coverage probability Pn,p(p ∈ CIs) equals Pn,p(�n,p ≤ X ≤ un,p), where �n,p is
the smallest integer larger than or equal to

n(κ2 + 2np)− κn

√
κ2 + 4npq

2(κ2 + n)
,

and un,p is the largest integer smaller than or equal to

n(κ2 + 2np)+ κn

√
κ2 + 4npq

2(κ2 + n)
.

What happens is that a small change in n or p can cause �n,p and/or un,p to leap
to the next integer value. For example, take the case p = 0.5 and α = 0.05. When
n = 39, �n,p = 14 and un,p = 25; but when n = 40, �n,p leaps to 15 while un,p
remains 25. Thus the set of favorable values of X loses the point X = 14 even
though n has increased from 39 to 40. This causes n= 40 to be an unlucky choice
of n. This also happens when n is kept fixed and p changes slightly, and we then
begin to see unlucky values of p.
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3. Alternative intervals and Edgeworth expansions. The preceding discus-
sion demonstrates that the coverage of the standard confidence interval is unde-
sirably unpredictable and poor. Due to the obvious methodological importance of
the problem, then, we face the undeniable need for alternative intervals. Such al-
ternative intervals would have to be demonstrably better. In addition, it would be
desirable to be able to recommend one or two specific alternative intervals for
practical use. The theoretical calculations in the rest of this paper address these
two important goals.

Three things are of importance here. First, there will have to be an evaluation of
the coverage probability of any suggested alternative interval. Second, the intervals
have to be assessed for parsimony in terms of their length. And, third, we wish to
keep in mind the formal simplicity of any recommended alternative interval. For
many uses, simplicity may well be a dominant factor because the problem is a
basic one and a computationally clumsy procedure seems not likely to survive the
test of time in such a basic problem.

3.1. Preview. In BCD a number of alternative confidence intervals for a
binomial proportion are presented. First, we will present a subset of those intervals
with a brief motivation. The coverage properties of these intervals will then be
studied by deriving the corresponding Edgeworth expansions of their coverage
probabilities. We will see that one term expansions, although simple, are not
adequately accurate to address the problem on a serious basis. Therefore we
will be compelled to proceed to two term expansions. The two term expansions,
rather surprisingly, will be remarkably accurate even for modest sample sizes.
Furthermore, comparative examination of the two term Edgeworth expansions will
provide a lot of useful information about the alternative intervals. For example, we
can see from the two term expansions why the standard interval is so bad and
how the alternatives compare among themselves. We will also see in the two term
expansions some subtle features of the problem itself, for example, how the choice
of α can affect the performance of the confidence intervals. We should mention
that other types of asymptotic expansions besides an Edgeworth expansion can
also be used; see, for example, Pierce and Peters (1992). But in this problem,
Edgeworth expansions seem to be the most appropriate one because they capture
the oscillations very effectively, while the other methods do not.

Next, parsimony of the alternative intervals will be studied by an appropriate
expansion of their expected lengths. These are also two term expansions.
Moreover, just like the Edgeworth expansions of the coverage probabilities, the
expansions for expected length are remarkably accurate at moderate sample sizes,
and are directly useful to rank the intervals in terms of parsimony. Together, the
Edgeworth expansions for the coverage probabilities and the expansions for the
expected lengths give us the tools to make an overall comparative assessment of
the suggested alternative intervals.
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3.2. Alternative intervals. Besides the standard interval, we will concentrate
on the following intervals.

1. The Wilson interval. This interval is formed by inverting the CLT approxima-
tion to the family of equal-tailed tests of H0: p = p0. Hence, one accepts H0
based on the CLT approximation if and only if p0 is in this interval. Denote
X̃ =X+ κ2/2 and ñ= n+ κ2. Let p̃ = X̃/ñ and q̃ = 1 − p̃. The Wilson inter-
val has the form

CIW = p̃± κn1/2

n+ κ2

(
p̂q̂ + κ2

4n

)1/2

.(3.1)

2. The Agresti–Coull interval. This interval has the same simple form as the
standard interval CIs, but with a different center, p̃, and a modified value for n.
The interval is defined as

CIAC = p̃± κ(p̃q̃)1/2ñ−1/2.(3.2)

Again, for the case when α = 0.05, if we use the value 2 instead of 1.96 for κ ,
this interval is the “add 2 successes and 2 failures” interval in Agresti and Coull
(1998). For this reason, we will call it the Agresti–Coull interval.

3. The likelihood ratio interval. This interval is constructed by inversion of
the likelihood ratio test which accepts the null hypothesis H0: p = p0 if
−2 log(�n) ≤ κ2, where �n is the likelihood ratio

�n = L(p0)

supp L(p)
= pX0 (1 − p0)

n−X

(X/n)X(1 −X/n)n−X
,

and L denotes the likelihood function. See Rao (1973).
4. The equal-tailed Jeffreys interval. Historically, Bayes procedures under nonin-

formative priors have a track record of good frequentist properties. See, for ex-
ample, Wasserman (1991). In this problem the Jeffreys prior is Beta(1/2,1/2);
see Berger (1985). The 100(1 − α)% equal-tailed Jeffreys prior interval is thus
given by

CIJ = [Bα/2,X+1/2,n−X+1/2,B1−α/2,X+1/2,n−X+1/2],(3.3)

where B(α;m1,m2) denotes the α quantile of a Beta(m1,m2) distribution.

REMARK. The so-called exact interval, namely the Clopper–Pearson interval
[Clopper and Pearson (1934)], is excessively conservative and inefficient. A much
better procedure is to use the interval implied by use of the mid-P value resulting
from the exact binomial test. It is interesting that this mid-P interval has a formal
connection to the Jeffreys interval introduced above; see BCD.
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We should also add that intervals resulting from use of other “normalizing”
or “stabilizing” transformations also deserve consideration. In the binomial case,
these transformations would be the logit or the arcsine transformation. BCD
examined these intervals also, and it was concluded that they do not measure up to
the Wilson, Jeffreys or the likelihood ratio interval; they are simply way too long.

3.3. One term Edgeworth expansion. Edgeworth expansions are a popular tool
for studying complicated probabilistic quantities. See Bhattacharya and Ranga Rao
(1976), Barndorff-Nielsen and Cox (1989) and Hall (1992) for more details on
Edgeworth expansions.

Denote by CI a generic confidence interval for p. The coverage probability of
CI is defined as

C(p,n)≡ Pp(p ∈ CI)=
n∑

x=0

I (p, x)

(
n

x

)
px(1 − p)n−x,

where I (p, x) is the indicator function that equals to 1 if the interval contains p
when X = x and equals 0 if it does not contain p.

Define

h(x)= x − x−(3.4)

where x− is the largest integer less than or equal to x. So h(x) is just the fractional
part of x. The function h is a periodic function of period 1. Let

g(p, z)= g(p, z, n)= h
(
np+ z(npq)1/2)(3.5)

[we suppress in (3.5) and later the dependence of g on n]. Theorem 23.1 in
Bhattacharya and Rao (1976) yields that

P

(
n1/2(p̂ − p)

(pq)1/2
≤ z

)

="(z)+
[(

1

2
− g(p, z)

)
+ 1

6
(1 − 2p)(1 − z2)

]
φ(z)(npq)−1/2

+O(n−1)

(3.6)

where (1/2 − g(p, z)) takes values in [−1/2,1/2] and represents the rounding
error, and (1/6)(1 − 2p)(1 − z2) represents the skewness error. For the two-sided
confidence intervals under consideration, the rounding error is dominant and the
skewness error is reduced to O(n−1), as we shall see in (3.7) below.

From (3.6) we have a one-term Edgeworth approximation of the coverage
probability of the confidence interval CIs. Let �s and us be defined as functions
of p (and n and κ) by

{p ∈ CIs} ≡
{
�s ≤ n1/2(p̂ − p)

(pq)1/2 ≤ us

}
.
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See (A.7) in the Appendix for the exact expressions for �s and us. Correspondingly,
the bounds �AC, uAC, etc. are defined similarly.

Suppose np+ �s(npq)
1/2 is not an integer; then the coverage probability of CIs

satisfies

Pp(p ∈ CIs)= (1 − α)+ [g(p, �s)− g(p,us)]φ(κ)(npq)−1/2 +O(n−1)(3.7)

The second term in (3.7), due to rounding error, is the principal contributor to
the oscillation phenomenon. This oscillation term is of the order of n−1/2. Since
|g(p, �s) − g(p,us)| ≤ 1, this term is bounded by φ(κ)(npq)−1/2. Although the
O(n−1/2) oscillation term can be calculated precisely when p is known, it is clear
from the expressions of g, �s and us, the oscillation term is unpredictable when p

is unknown. This O(n−1/2) term can be significant even for large n, especially
when p is close to 0 or 1.

REMARK. In the case that np + �s(npq)
1/2 is an integer, then one needs to

add an additional term Pp(X = np + �s(npq)
1/2)= φ(κ)(npq)−1/2 +O(n−1) to

(3.7) and gets

Pp(p ∈ CIs)= (1 − α)+ [g(p, �s)− g(p,us)+ 1]φ(κ)(npq)−1/2

+O(n−1).
(3.8)

The same applies to the two-term expansion of the coverage probability of various
confidence intervals discussed in Sections 3.5 and 3.6.

Here we would like to point out that there is an error in Ghosh [(1979),
Theorem 1, page 895]. The oscillation terms were mistakenly omitted in the
expansion. This affects one statement Ghosh [(1979), page 895] made in the paper.
Because of this O(n−1/2) oscillation term, for any p and α, it is in fact not true that
for sufficiently large n, C(p,n) will always exceed 1 − α up to the order n−1/2.
So when p is unknown, there is no guarantee that the coverage probability of the
standard interval is larger than the nominal level up to the order n−1/2, no matter
how large n is.

3.4. One term expansion is not accurate enough. The one-term Edgeworth
expansion offers an approximation of the coverage probability and is useful
for finding the source of the oscillation. The approximation error of a one-
term Edgeworth expansion is O(n−1). In Figure 4, we plot the actual coverage
probability of the standard interval and the one-term Edgeworth approximation
for fixed n = 100 and variable p from 0.05 to 0.95. And in Table 3, we compare
numerically the coverage probability of the standard interval with the one-term
Edgeworth approximation for fixed p = 0.2 and some selected values of n from 20
to 200. It is clear that the one-term Edgeworth expansion captures most of the
oscillation effect in the true coverage probability. However, it contains a systematic
bias. The reason is that the next term in the Edgeworth expansion, which is of
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FIG. 4. Comparison between the actual coverage probability (solid ) and one-term Edgeworth
expansion (dotted ) with n= 100 and α = 0.05.

the order n−1, is mostly nonoscillating and negative. This can be easily seen
from (3.12) in the next section.

Because the O(n−1) term is nonnegligible for moderate n, it is usually
necessary to look at the two-term Edgeworth expansion. In fact, as we shall see
later, several other confidence intervals which have much better performance than
the standard interval have almost identical one-term Edgeworth expansions as the
standard interval. In these cases, the second order term makes the difference. An
expansion of the coverage probability up to the n−1/2 term is just not adequately
accurate.

TABLE 3
A numerical comparison of coverage probability C(p,n) and one-term Edgeworth approximation

e1(p,n) for p = 0.2. The last row is the difference e1(p,n)−C(p,n)

n 20 30 40 50 60 70 80 90 100 150 200

C(p,n) 0.921 0.946 0.905 0.938 0.922 0.940 0.932 0.947 0.933 0.944 0.941
e1(p,n) 0.960 0.968 0.934 0.952 0.951 0.951 0.952 0.954 0.942 0.949 0.949
difference 0.039 0.021 0.029 0.015 0.028 0.010 0.020 0.007 0.009 0.005 0.008
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3.5. General two term Edgeworth expansion. For a unified treatment of CIs

and CIrs, to be defined below, it is convenient to define a general confidence
interval CI∗(β) as follows:

CI∗(β)= X + β

n+ 2β
± κn−1/2

(
X

n

n−X

n

)1/2

.(3.9)

The standard interval and the recentered interval are just special cases of CI∗(β)
with CIs = CI∗(0) and CIrs = CI∗(κ2/2).

The two term Edgeworth expansions are also given separately for the intervals
CIW and CIAC. The following general notation will be repeatedly used for the
ensuing Edgeworth expansions.

NOTATION. Denote, with g(p, ·) as in (3.5),

w(κ)=
(

1

9
− 1

36pq

)
κ5 +

(
7

36pq
− 11

18

)
κ3 +

(
1

6
− 1

6pq

)
κ,

Q21(�, u)= 1 − g(p, �)− g(p,u),(3.10)

Q22(�, u)= 1

2

[
−g2(p, �)− g2(p,u)+ g(p, �)+ g(p,u)− 1

3

]
.

THEOREM 1. Let 0 < p < 1 and 0 < α < 1. Suppose np + �∗(npq)1/2 is not
an integer. Then the coverage probability of the general confidence interval CI∗(β)
defined in (3.9) satisfies

P∗ = Pp
(
p ∈ CI ∗(β)

)
= (1 − α)+ [g(p, �∗)− g(p,u∗)]φ(κ)(npq)−1/2

+
{

2t2 − κt21 − (1 − 2p)
(
κ − κ3

3

)
t1(pq)

−1/2 +w(κ)

}
φ(κ)n−1

+
{[
(1 − 2p)

(
κ2

6
− 1

2

)
− (pq)1/2t1

]
Q21(�∗, u∗)+Q22(�∗, u∗)

}
× κφ(κ)(npq)−1

+O(n−3/2)

(3.11)

where

t1 = (κ2 − 2β)
(

1

2
− p

)
(pq)−1/2, t2 =

(
1

8pq
− 1

)
κ3 +

(
4 − 1

2pq

)
κβ

and the quantities �∗ and u∗ are described immediately above (3.7) and formally
defined in (A.5) in the Appendix.
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In particular, by setting β = 0, we have the two term expansion for the standard
interval:

Ps = Pp(p ∈ CIs)

= (1 − α)+ [g(p, �s)− g(p,us)]φ(κ)(npq)−1/2

+
{
−(1 − 2p)2

12pq
κ5 − 1

4pq
κ3 +w(κ)

}
φ(κ)n−1

+
{
−(1 − 2p)

(
κ2

3
+ 1

2

)
Q21(�s, us)+Q22(�s, us)

}
κφ(κ)(npq)−1

+O(n−3/2).

(3.12)

And by setting β = κ2/2, we have the two term expansion for the recentered
interval defined by CIrs = p̃ ± κ(p̂q̂)1/2n−1/2 with p̃ = (X + κ2/2)/(n+ κ2):

Prs = Pp(p ∈ CIrs)

= (1 − α)+ [
g(p, �rs)− g(p,urs)

]
φ(κ)(npq)−1/2

+
{(

2 − 1

4pq

)
κ3 +w(κ)

}
φ(κ)n−1

+
{
(1 − 2p)

(
κ2

6
− 1

2

)
Q21(�rs, urs)+Q22(�rs, urs)

}
κφ(κ)(npq)−1

+O(n−3/2).

(3.13)

REMARK. In (3.12)–(3.13), the first O(n−1) term is a key term. It is non-
oscillating and would cause systematic bias if it is omitted. The second O(n−1)

term represents oscillations from two sources: Q22, taking values between −1/6
and 1/12, contains oscillation caused purely by rounding error; Q21 oscillates
between −1 and 1 and the term with Q21 represents mixed effect of the
discreteness and skewness in the underlying distribution.

The two-term Edgeworth expansion for the coverage probability of the
confidence interval CIW is slightly simpler.

THEOREM 2. Let 0 < p < 1 and 0 < α < 1. Suppose np − κ(npq)1/2 is not
an integer. Then the coverage probability of the confidence interval CIW defined
in (3.1) satisfies

PW = Pp(p ∈ CIW)

= (1 − α)+ [g(p,−κ)− g(p, κ)]φ(κ)(npq)−1/2 +w(κ)φ(κ)n−1

+
{
(1 − 2p)

(
κ2

6
− 1

2

)
Q21(−κ, κ)+Q22(−κ, κ)

}
κφ(κ)(npq)−1

+O(n−3/2).

(3.14)

Similarly, the two-term Edgeworth expansion can be derived for the coverage
probability of the confidence interval CIAC.
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THEOREM 3. Let 0 <p < 1 and 0 < α < 1. Suppose np+�AC(npq)
1/2 is not

an integer. Then the coverage probability of the confidence interval CIAC defined
in (3.2) satisfies

PAC = Pp(p ∈ CIAC)

= (1 − α)+ [g(p, �AC)− g(p,uAC)]φ(κ)(npq)−1/2

+
[(

1

4pq
− 1

)
κ3 +w(κ)

]
φ(κ)n−1(3.15)

+
{
(1 − 2p)

(
κ2

6
− 1

2

)
Q21(�AC, uAC)+Q22(�AC, uAC)

}
κφ(κ)(npq)−1

+O(n−3/2)

where the quantities �AC and uAC are explicitly defined in (A.8) in the Appendix.

The derivation of these expansions is fairly technical and will be given in the
Appendix.

3.6. Two term expansions for the likelihood ratio and beta prior intervals.
Two-term expansions can be derived also for the likelihood ratio and Bayesian
intervals. The derivations in these cases, however, are more complex. Unlike the
other alternative intervals in Section 3.5, the limits of the likelihood ratio and
Bayesian intervals are not in closed form. So the expansion problem is really two
stage: first, an adequate expansion of the limits of the intervals themselves, and
then an expansion of the coverage probability.

First we state the two term expansion for the coverage of the likelihood ratio
interval.

THEOREM 4. Denote by CILR the likelihood ratio interval. Consider any fixed
0 < p < 1 and 0 < α < 1. Suppose np + �LR(npq)

1/2 is not an integer. Then the
coverage probability of CILR satisfies

PLR = Pp(p ∈ CILR)

= (1 − α)+ [g(p, �LR)− g(p,uLR)]φ(κ)(npq)−1/2

+
(

1

6
− 1

6pq

)
κφ(κ)n−1

+
{(

p − 1

2

)
Q21

(
�LR, uLR

)+Q22
(
�LR, uLR

)}
κφ(κ)(npq)−1

+O(n−3/2)

(3.16)

where the quantities �LR and uLR are defined in (A.11) in the Appendix.
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The next theorem gives the two term expansion for the coverage probability of
the Jeffreys prior interval. The expansion for general beta prior intervals is given
in the Appendix.

THEOREM 5. Consider any fixed 0 < p < 1 and 0 < α < 1. Suppose np +
�J(npq)

1/2 is not an integer; then the coverage probability of the Jeffreys prior
interval CIJ defined in (3.3) satisfies

PJ = Pp(p ∈ CIJ)

= (1 − α)+ [g(p, �J)− g(p,uJ)]φ(κ)(npq)−1/2 − 1

12pq
κφ(κ)n−1

+
[
(2p− 1)

3
Q21(�J, uJ)+Q22(�J, uJ)

]
κφ(κ)(npq)−1

+O(n−3/2)

(3.17)

where �J and uJ are defined as in (A.19) with a = b = 1/2.

Again, the proof is given in the Appendix.

4. Using the two term expansions. Edgeworth expansions are commonly
considered as asymptotic approximations. In our problem, the two term expansion
is remarkably accurate even for relatively small n. We will use the expansions for
the coverage probabilities to compare the performance of the confidence intervals.
We first discuss the accuracy of the two term Edgeworth expansion.

4.1. Accuracy of the two term expansions. The two-term Edgeworth expan-
sions approximate the true coverage probability of a binomial confidence interval
with an error of O(n−3/2). The approximation is very accurate, even for small to
moderate sample sizes.

Figure 5 shows the actual coverage probability of the nominal 95% Wilson
interval and the two-term Edgeworth approximation for n = 20. The maximum
error is only 0.0008 in the range of 0.2 ≤ p ≤ 0.8. The maximum error further is
reduced to 0.0002 in the same range of p when n increases to 40. The differences
are almost indistinguishable on the plot.

Similarly, the two-term Edgeworth approximation is accurate for other intervals.
For the standard interval, the maximum error is 0.0075 for n = 40 and 0.2 ≤
p ≤ 0.8. The maximum error decreases to 0.0022 in the same range of p when n

increases to 100. The maximum error is 0.0031 between the true coverage of CIAC

and its two-term Edgeworth approximation for n = 40 and 0.2 ≤ p ≤ 0.8 and the
error is reduced to 0.0006 for n= 100 in the same range of p. Larger values of n
are necessary for very good accuracy if p gets closer to 0 or 1.
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FIG. 5. Comparison between the true coverage probability of the Wilson interval (solid ) and
two-term Edgeworth expansion (dotted ) with n= 20 and 1 − α = 0.95.

4.2. Comparison of coverage properties. We will now use the two term
Edgeworth expansions presented in Sections 3.5 and 3.6 to compare the coverage
properties of the standard interval CIs, the Wilson interval CIW, the Agresti–Coull
interval CIAC, the likelihood ratio interval CILR, and the Jeffreys prior interval CIJ.
We will show how the nonoscillatory part of the second order term can be used to
explain the deficiency of the standard procedure and the much better performance
of competing ones such as Wilson’s procedure. Indeed, ignoring the O(n−3/2)

terms, directly from equations (3.12), (3.14)–(3.17) we have:

PAC − Ps =
{
(1 − 2p)2

12pq
κ5 +

(
1

2pq
− 1

)
κ3
}
φ(κ)n−1 + osci.,(4.1)

PAC − PW =
(

1

4pq
− 1

)
κ3φ(κ)n−1 + osci.,(4.2)

PAC − PLR =
{
−(1 − 2p)2

36pq
κ5 +

(
4

9pq
− 29

18

)
κ3
}
φ(κ)n−1 + osci.,(4.3)

PAC − PJ =
{
−(1 − 2p)2

36pq
κ5 +

(
4

9pq
− 29

18

)
κ3

+
(

1

6
− 1

12pq

)
κ

}
φ(κ)n−1 + osci.,(4.4)
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FIG. 6. Comparison of the nonoscillating terms. From top to bottom: the O(n−1) nonoscillating
terms of PAC, PW, PJ, PLR and Ps, with α = 0.05.

where Ps,PW,PAC, PLR and PJ are the coverage probabilities of CIs, CIW, CIAC,
CILR and CIJ, respectively. The most important things to notice in (4.1), (4.2),
(4.3) and (4.4) are the following.

In (4.1) and (4.2), trivially, the coefficient of the n−1 term is positive for all p
and all κ . Also in (4.3), the coefficient is positive for all p and all κ ≤ 3.95. In (4.4)
also, the same coefficient is positive for all p as long as κ ≤ 3.95.

The conclusion is that among these intervals CIAC has the largest coverage.
However, coverage is only a part of the story in interval estimation. In Section 5,
we will present the corresponding expansions for expected lengths of these
intervals and we will then appreciate better the reason for this apparent dominance
property of CIAC in coverage. It turns out that CIAC tends to be longer than these
competitors, and therefore not very surprisingly has larger coverage probabilities.

Expressions for Ps − PW, PJ − PW, etc., can be obtained from (4.1)–(4.4) in
an obvious way. Rather than explicitly reporting those expressions, we give a
simple plot that might help understand the comparisons a little better. In Figure 6,
the values of the nonoscillating n−1 terms are plotted as a function of p when
α = 0.05. The y-axis is n · (nonoscillating term). The curves correspond to PAC,
PW, PJ, PLR and Ps.
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FIG. 7. Comparison of the nonoscillating terms for different confidence levels. The top three curves
are the O(n−1) nonoscillating terms of PW, and the bottom three are those of Ps, with α = 0.2
(dotted ), α = 0.05 (solid ) and α = 0.01 (dashed ).

A serious negative bias in the coverage of the standard interval is transparent
from this plot. The Wilson interval CIW does significantly better than the standard
interval CIs, and especially so near the boundaries. However, CIW, CILR and
the Jeffreys interval CIJ are pretty comparable. On the other hand, the Agresti–
Coull interval CIAC has higher coverage probability than CIW (and likewise the
others), and again, the difference is the most noticeable near the boundaries. These
conclusions obtained from the two term Edgeworth expansions are very much
consistent with numerical reports on the exact coverage probabilities in BCD.

The individual performance of the intervals themselves also depends somewhat
on the value of α. Figure 7 plots the nonoscillating O(n−1) terms of PW and Ps

for α = 0.2, 0.05 and 0.01. Consider first the Wilson interval. While for α = 0.05
this nonoscillating term is always positive, for α = 0.2 this term is negative when
0.18 ≤ p ≤ 0.82; and for α = 0.01 the term is negative when p ≤ 0.11 or p ≥ 0.89.
Figure 7 displays that the nonoscillating coverage term for the Wilson interval at
α = 0.01 is extremely close to the nominal value for the entire range of p, whereas
for α = 0.05 this coverage term is noticeably conservative for values of p near 0
or 1. In addition, the nonoscillating term for α = 0.05 dominates that for α = 0.2,
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which implies that the Wilson interval is more conservative relative to (1 − α) for
α = 0.05 than for α = 0.2. This is also confirmed by exact coverage calculations.

Consider now the standard interval. The coefficient of the nonoscillating
O(n−1) term is significantly negative whenever p is not near 0.5 for all three
cases. This corresponds to the previously seen poor coverage of the standard
interval. More interestingly, the coefficient of this O(n−1) term is uniformly more
negative for α = 0.05 than for α = 0.01 and α = 0.2, indicating that overall the
nominal 95% interval is generally even more biased than the nominal 99% and
80% intervals. However, note that the oscillation terms are generally larger for
κ = 1.96 than for κ = 2.575 because of the presence of the multiplicative factor,
φ(κ), which occurs in all those terms. This accounts for the fact that when n= 30
there exist values of p for which the 95% interval has coverage over 95% but as
shown in Figure 2 there are no values of p for which coverage of the 99% interval
exceeds 99%.

4.3. Average coverage properties. The two term Edgeworth expansion de-
composes the coverage probability into five parts:

C(p,n) = (1 − α)+ “O(n−1/2) oscillation”

+ “O(n−1) bias” + “O(n−1) oscillation” +O(n−3/2).

We now present a theorem which shows that in an average sense the oscillatory
part is of a lower order than the bias part. This adds force to the argument we just
made in Section 4.2 that it is sensible to make a comparative evaluation of the
intervals through a study of their O(n−1) bias terms. In the theorem below, the
average is with respect to any smooth compactly supported prior. This is similar
to what is called “a very weak expansion” in Woodroofe (1986). We now state the
result.

THEOREM 6. Let f be any density function supported on a proper subinterval
[a, b] (0< a < b < 1) and satisfying the Lipschitz condition

|f (p1)− f (p2)| ≤M|p1 − p2| for all p1,p2 ∈ [a, b].
Then for all the confidence intervals under consideration (standard, recentered,
Wilson, Agresti–Coull, likelihood ratio and Jeffreys intervals), the integrated
oscillation with respect to the density f is asymptotically negligible. That is,∫

“O(n−1/2) oscillation” · f (p)dp =O(n−3/2)(4.5)

and ∫
“O(n−1) oscillation” · f (p)dp =O(n−3/2).(4.6)

Hence, ∫ {
C(p,n)− (1 − α)− “O(n−1) bias”

} · f (p)dp =O(n−3/2).(4.7)
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FIG. 8. Left panel: The density function f . Right panel: Integrated absolute oscillations with
respect to f ( from top to bottom) of Ps, PLR, PJ , PW and PAC, with n= 45 to 100 and α = 0.05.

4.4. Magnitude of the oscillations. It is also of interest to compare the amount
of oscillation in the coverage probability of the confidence intervals. We use the
integrated absolute oscillation (IAO) as an overall measure of oscillation for an
interval. For the intervals under consideration, the IAO with respect to a density
function f is defined as

IAO(f,n,α)=
∫ ∣∣C(p,n)− (1 − α)− “O(n−1) bias”

∣∣f (p)dp.
In Figure 8 we plot the integrated absolute oscillations with respect to a

Lipschitz density function f over p from 0.05 to 0.95 of the five intervals
for n from 45 to 100. [The O(n−1) bias term from the Edgeworth expansion
is not accurate for p very close to 0 or 1.] It is interesting to see that there
is a fairly clear ranking of the intervals in terms of amount of oscillation in
coverage probability. From largest to smallest, the order is the standard interval,
the likelihood ratio interval, the Jeffreys interval, the Wilson interval, and the
Agresti–Coull interval. The oscillation of the standard interval is much larger and
the amounts of oscillation of the other four intervals are comparable.

5. Expansion for expected length. The two term Edgeworth expansions
presented in Section 3 show that up to the order O(n−1), the Agresti–Coull
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interval dominates in coverage the standard, the Wilson, the likelihood ratio and
the Jeffreys prior intervals. However, in mutual comparison of different confidence
intervals, parsimony in length in addition to coverage is also always an important
issue. Therefore, for the above intervals, we will now provide an expansion for
their expected lengths correct up to the orderO(n−3/2). As we shall shortly see, the
expansion for length differs qualitatively from the two term Edgeworth expansion
for coverage probability in that the Edgeworth expansion includes terms involving
n−1/2 and n−1, whereas the expansion for length includes terms of order n−1/2

and n−3/2. The coefficient of the n−1/2 term is the same for all the intervals, but
the coefficient for the n−3/2 term differs. So, naturally, the coefficients of the n−3/2

term will be used as a basis for comparison of their lengths.

THEOREM 7. Let CI be a generic notation for any of the intervals CIs, CIW,
CIAC, CILR and CIJ. Then,

L(n,p)≡ En,p(length of CI)

= 2κ(pq)1/2n−1/2
(

1 − δ(κ,p)

8npq

)
+O(n−2),

(5.1)

where

δ(κ,p)= 1 for CIs(5.2)

= 1 + κ2(8pq − 1) for CIW(5.3)

= 1 + κ2(12pq − 2) for CIAC(5.4)

= 1 + κ2(26
9 pq − 2

9

)
for CILR(5.5)

= 1 + κ2(26
9 pq − 2

9

)+ 2
9 (17pq − 2) for CIJ.(5.6)

The expansion given in (5.1) is very accurate. For example, with α = 0.05, n= 40
and 0.1 ≤ p ≤ 0.9, the maximum error for the standard, the Wilson, the Agresti–
Coull, the likelihood ratio and the Jeffreys prior intervals is only 0.0013, 0.0014,
0.0035, 0.0003 and 0.0006, respectively.

The proof of Theorem 7 is given in the Appendix. It is interesting to compare
the coefficients δ(κ,p) of the n−3/2 term for the intervals in consideration. First,
let us point out that it can be proved directly from their definitions that CIAC
always contains CIW as a subinterval and hence is always longer than CIW.
It is therefore reassuring to see that for all κ > 0, and all 0 ≤ p ≤ 1, indeed
1 + κ2(8pq − 1) ≥ 1 + κ2(12pq − 2). For other pairs of intervals, the exact
comparison between the corresponding pair of coefficients δ(κ,p) depends on κ

and p.
Interestingly, for the case α = 0.05, that is, κ = 1.96, CIs is the shortest when

0 < p ≤ 0.084 or 0.916 ≤ p < 1, CILR is the shortest when 0.084 ≤ p ≤ 0.137
or 0.863 ≤ p ≤ 0.916, CIJ is the shortest when 0.137 ≤ p ≤ 0.201 or 0.799 ≤
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FIG. 9. Comparison of the expected lengths of the standard (solid ), the Wilson (dotted ), the
Agresti–Coull (dashed ), the likelihood ratio (− · −) and the Jeffreys (+) intervals for n = 25 and
α = 0.05.

p ≤ 0.863, and CIW is the shortest when 0.201 ≤ p ≤ 0.799. Thus CIW is the
shortest for the longest range of values of p. The comparison does not change
qualitatively for other values of α. See Figure 9 for the case of n = 25 and
α = 0.05. Of course, it is no surprise that the standard interval is the shortest when
p is near the boundaries. CIs is not really under consideration as a credible choice
because of its woefully poor coverage properties. So, among the four procedures
with acceptable coverage properties the Jeffreys and the likelihood ratio intervals
are the most parsimonious for small and large p, and the Wilson interval is the
most parsimonious otherwise.

In BCD integrated expected length is discussed as one of the criteria for the
performance of the intervals. It is shown, by examples, that the integrated expected
length increases in the order of CIJ, CIW and CIAC. This is also confirmed by
integrating (5.1) over p from 0 to 1.

COROLLARY 1.

(i)
∫ 1

0
En,p(length of CIs) dp = κπ

4
n−1/2 − κπ

4
n−3/2 +O(n−2);

(ii)
∫ 1

0
En,p(length of CIW) dp = κπ

4
n−1/2 − κπ

4
n−3/2 +O(n−2);
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(iii)
∫ 1

0
En,p(length of CIAC) dp = κπ

4
n−1/2 +

(
κ2

2
− 1

)
κπ

4
n−3/2 +O(n−2);

(iv)
∫ 1

0
En,p(length of CILR) dp = κπ

4
n−1/2 −

(
1 + 5κ2

36

)
κπ

4
n−3/2 +O(n−2);

(v)
∫ 1

0
En,p(length of CIJ) dp = κπ

4
n−1/2 −

(
37

36
+ 5κ2

36

)
κπ

4
n−3/2

+O(n−2).

Previously we saw that between the standard interval CIs and the Wilson interval
CIW the standard interval is shorter for p near the boundaries, and the Wilson
interval is shorter otherwise. Corollary 1 shows that up to the order n−2, the effects
exactly cancel and the integrated expected lengths of the two intervals are always
identical. This is not a priori obvious and we find it quite interesting. We also see
from Corollary 1 that the integrated expected length is always the smallest for CIJ

and always the largest for CIAC. So the ranking is always the same independent
of κ and that is what makes Corollary 1 additionally valuable.

Among the alternative intervals, CIW, CIAC, CILR and CIJ, the actual choice
has to necessarily involve some subjective judgment and we shall return to this
issue later. But first we point out another nice feature of the Wilson interval.

5.1. Length minimization under coverage constraint. The interval CIW, it
should be noted, has another natural property. Sometimes one imposes the rigid
constraint that a confidence interval must have at least 1 − α coverage probability
for all values of the parameter. If p has a prior density π(p) resulting in a marginal
pmf m(x) for X, then from Brown, Casella and Hwang (1995) one has that
the confidence set Cπ(x), that minimizes the expected volume Em{vol(Cπ(x))}
subject to the coverage constraint

Pp
(
p ∈ Cπ(x)

)≥ 1 − α,

is a set of the form {
p :

(
n

x

)
px(1 − p)n−x ≥ k(p)

m(x)

}

and k(p) is such that Pp(p ∈ Cπ(x)) ≥ 1 − α. Now if π(p) is uniform, then
m(x) is uniform too. Since the binomial distribution is unimodal with mode at
[(n+1)p], the integer part of (n+1)p, it follows that Cπ(x) is formed by inverting
inequalities of the form

[(n+ 1)p] − a(n,p)≤ x ≤ [(n+ 1)p] + b(n,p),
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where P ([(n+ 1)p] − a(n,p)≤X ≤ [(n+ 1)p] + b(n,p))≥ 1 − α. It turns out
that the set Cπ(x) that results is approximately{

p :
|x − np|√
np(1 − p)

≤ κ

}

which is the interval CIW. Note that the formulation here is a bit different from
what was done in Theorem 7. Blyth and Still (1983) have a somewhat related
discussion based on Sterne (1954) and Crow (1956). See Casella, Hwang and
Robert (1994) for further discussions on decision theoretic set estimation.

The above discussion can be made rigorous if one introduces the concept of
randomized confidence procedures. In general, such a procedure is described by
a measurable “inclusion” function ρ(· | ·), where ρ(p | p̂) denotes the probability
that the randomized set includes p when p̂ is observed. The coverage and expected
length of such a procedure are defined, respectively, as

P (p)=Ep

(
ρ(p | p̂))

and

L(p)≡ E(length at p of CI)= Ep

(∫
ρ(θ | p̂) dθ

)
.

For a nonrandomized interval CI∗ = CI∗(p̂) one of course has ρ∗(p | p̂) =
ICI∗(p̂)(p). [For further discussion of such procedures see Brown, Casella and
Hwang (1995) and references therein.]

The following theorem describes a near-optimality property of the Wilson
procedure. We believe that such a strong near-optimality conclusion is not shared
by any of the other procedures in our study. Theorem 8 below says that among
all procedures that are as good as the Wilson interval in coverage, all the shortest
ones are basically equivalent to the Wilson interval itself, because their inclusion
functions coincide with the inclusion function of the Wilson interval. There is
a minor qualification needed for this, which is carefully described in (5.11)
and (5.12) below.

THEOREM 8. Consider the Wilson interval whose nominal coverage is 1 − α.
Let α ≥ 0.015. For fixed n, let CW,n denote the collection of randomized confidence
procedures whose coverage satisfies

PCI(p)≥ PW(p) for all p ∈ (0,1).(5.7)

Let CI∗ be any procedure in CW,n whose average expected length is a minimum,
that is, ∫ 1

0
L∗(p)dp = min

CI∈CW,n

∫ 1

0
LCI(p)dp.(5.8)

(Such a confidence procedure exists.) Let {y} denote the integer for which −1/2 <
{y} − y ≤ 1/2. Then, for any ε > 0, there is an nε < ∞ such that for all n ≥ nε
and ε < p < 1 − ε, except possibly for a Lebesgue-null set of values of p,
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(a) if {np} − np = 0 or 1/2, then

ρ∗(p | p̂)= ρW(p | p̂) for all p̂;(5.9)

(b) otherwise, that is, if {np} − np �= 0 or 1/2,

ρ∗(p | p̂)= ρW(p | p̂),(5.10)

except possibly for the two points, p̂a = xa/n and p̂r = xr/n where the integers
xa and xr are defined respectively as

xa = xa(p,n)= arg max
x

{∣∣∣∣xn − p

∣∣∣∣ :ρW

(
p

∣∣∣∣xn
)

= 1, x = 0, . . . , n
}

(5.11)

and

xr = xr(p,n)= arg min
x

{∣∣∣∣xn − p

∣∣∣∣ :ρW

(
p

∣∣∣∣xn
)

= 0, x = 0, . . . , n
}
.(5.12)

REMARK. When 0 < |{np} − np|< 1/2, then xa and xr are uniquely defined
by (5.11) and (5.12) respectively.

6. Conclusions and summary. Interval estimation of a binomial proportion
is certainly one of the most basic problems of statistical practice. We show
that the standard method in universal use is riddled with problems; so much
so that it cannot be salvaged. This leads us to a search for better alternative
intervals. Following the empirical studies in BCD, in this article we provide the
theoretical foundation for choice of an alternative interval. Particularly important
is the fact that the theoretical calculations presented here are in remarkable
agreement with the extensive numerical reports presented in that companion
article. Ordinarily, Edgeworth expansions and indeed asymptotic expansions in
general are asymptotic approximations that may not accurately reflect the behavior
in moderate samples. However, here, both for coverage and expected length, the
two term expansions are remarkably accurate in moderate samples. The theoretical
results proved here therefore correctly reinforce the more numerical approach and
the recommendations in BCD.

To summarize, the conclusion is that the Agresti–Coull interval dominates
the other intervals in coverage, but is also longer on an average and is quite
conservative for p near 0 or 1. The Wilson, the likelihood ratio and the Jeffreys
prior interval are comparable in both coverage and length, although the Jeffreys
interval is a bit shorter on average. If we also take simplicity of presentation
and ease of computation into account, the Agresti–Coull interval, although a bit
too long, could be recommended for use in this problem. If simplicity is not a
paramount issue, either the Wilson, the likelihood ratio, or the Jeffreys interval
may be used, depending on taste.
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APPENDIX

The binomial distribution belongs to the family of lattice distributions. The
asymptotic expansion of the coverage probability contains oscillation terms that
do not appear, for example, in the expansion for a continuous distribution. The
algebra involved is somewhat tedious. We omit much of the messy algebra in our
proofs below.

LEMMA 1. Let X ∼ Bin(n,p) and p̂ = X/n. Define g(p, z) = g(p, z, n) as
in (3.5). Denote Zn = n1/2(p̂ − p)/(pq)1/2 and Fn(z)= P (Zn ≤ z). Then

Fn(z)="(z)+ 1
6 (1 − 2p)(1 − z2)φ(z)(npq)−1/2

+ (1
2 − g(p, z)

)
φ(z)(npq)−1/2

+ {
(4pq − 1)z5 + (7 − 22pq)z3 + (6pq − 6)z

}
φ(z)(72npq)−1

+ {1
6(1 − 2p)(z2 − 3)

(1
2 − g(p, z)

)
− [1

2g
2(p, z)− 1

2g(p, z)+ 1
12

]}
zφ(z)(npq)−1

+O(n−3/2).

(A.1)

If z= z(n) depends on n and can be written as

z= λ1 + λ2n
−1/2 + λ3n

−1 +O(n−3/2)

where λ1, λ2 and λ3 are constants, then

Fn(z)="(λ1)+ [
λ2(pq)

1/2 + 1
6 (1 − 2p)(1 − λ2

1)
]
φ(λ1)(npq)

−1/2

+ (1
2 − g(p, z)

)
φ(λ1)(npq)

−1/2

+ {
λ3 − 1

2λ1λ
2
2 + 1

6 (1 − 2p)(pq)−1/2λ1λ2(λ
2
1 − 3)

}
φ(λ1)n

−1

+ {
(4pq − 1)λ5

1 + (7 − 22pq)λ3
1 + (6pq − 6)λ1

}
φ(λ1)(72npq)−1

+ {[1
6 (1 − 2p)(λ2

1 − 3)− (pq)1/2λ2
](1

2 − g(p, z)
)

− [1
2g

2(p, z)− 1
2g(p, z)+ 1

12

]}
λ1φ(λ1)(npq)

−1

+O(n−3/2).

(A.2)

PROOF. The expansion (A.1) follows, after some algebra, directly from
Theorem 23.1 of Bhattacharya and Ranga Rao (1976). See also Esseen (1945).

If z= λ1 +λ2n
−1/2 +λ3n

−1 +O(n−3/2), we expand"(z) and φ(z) around λ1:

"(z)="(λ1)+ λ2φ(λ1)n
−1/2 + (

λ3 − 1
2λ1λ

2
2
)
φ(λ1)n

−1 +O(n−3/2),(A.3)

φ(z)= φ(λ1)− λ1λ2φ(λ1)n
−1/2 +O(n−1).(A.4)

Now (A.2) follows by plugging (A.3) and (A.4) into (A.1). �
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REMARK. In (A.2), the second O(n−1/2) and the third O(n−1) terms are
oscillation terms.

PROOF OF THEOREM 1. Denote

A = n3 + κ2(n+ 2β)2,

B = 2n3[np + β(2p− 1)] + κ2n(n+ 2β)2,

C = n3[np + β(2p − 1)]2.

A few lines of algebra yield

P∗ = Pp(p ∈ CI∗)= P
(
�∗ ≤ n1/2(p̂ − p)/(pq)1/2 ≤ u∗

)
where

(�∗, u∗)=
(
B ± √

B2 − 4AC

2A
− np

)
(npq)−1/2.(A.5)

The + sign goes with u∗ and the − sign with �∗. Expanding �∗ and u∗, one has

(�∗, u∗)= (κ2 − 2β)(1/2 − p)√
npq

±
{
κ + [(1/8 − pq)κ2 + (4pq − 1/2)β]κ

npq

}

+O(n−3/2).

(A.6)

Now Pp(p ∈ CI∗)= Fn(u∗)− Fn(�∗), and (3.12) follows from (A.2).
In the case of the standard interval, β = 0, and (A.5) yields

(�s, us)= (1/2 − p)κ2n1/2 ± κn(pq + κ2/(4n))1/2

(pq)1/2(n+ κ2)
.(A.7)

For the recentered interval CIrs, the quantities �rs and urs are obtained from (A.5)
with β = κ2/2. �

PROOF OF THEOREM 2. The Edgeworth expansion for Pp(p ∈ CIW) is
slightly simpler because

PW = Pp(p ∈ CIW)= P
(−κ ≤ n1/2(p̂ − p)/(pq)1/2 ≤ κ

)
.

And now (3.14) follows from (A.2). �

PROOF OF THEOREM 3. The proof is similar to the proof of Theorem 1.
Denote

A = n+ 2κ2,

B = 2pn2 + 4κ2pn+ (2p − 1)κ4,

C = p2n3 + κ2p(3p − 1)n2 + κ4(3p2 − 2p − 1
4

)
n− pqκ6.
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It follows from some simple algebra that

PAC = Pp(p ∈ CIAC)= P (�AC ≤ n1/2(p̂ − p)/(pq)1/2 ≤ uAC)

where

(�AC, uAC)=
(
B ± √

B2 − 4AC

2A
− np

)
(npq)−1/2.(A.8)

The + sign goes with uAC and the − sign with �AC. Expanding �AC and uAC, one
has

(�AC, uAC)= ±
{
κ +

(
1

8pq
− 1

2

)
κ3n−1

}
+O(n−3/2)(A.9)

with the + sign going with uAC and the − sign with �AC. Now PAC = Fn(uAC)−
Fn(�AC), and (3.15) follows from (A.2). �

Expansion for the likelihood ratio interval. PROOF OF THEOREM 4. Simple
calculation yields

�n =
(
p

p̂

)np̂(
q

q̂

)nq̂
.

Let z= √
n(p̂ − p)/

√
pq . Then it follows that −2 log�n ≤ κ2 is equivalent to

v(z)≡ p
(
1 + (np)−1/2q1/2z

)
log

(
1 + (np)−1/2q1/2z

)
+ q

(
1 − (nq)−1/2p1/2z

)
log

(
1 − (nq)−1/2p1/2z

)− κ2

2n
≤ 0.

(A.10)

It is easy to verify that v(·) is a convex function and so has at most two roots.
Denote by �LR and uLR the roots of the equation v(z)= 0. So

v(�LR)= v(uLR)= 0.(A.11)

We first approximate �LR and uLR. Note that the function b(t)= (1 + t) log(1 + t)

can be expanded into Taylor series as

b(t)= t + 1
2 t

2 − 1
6 t

3 + 1
12 t

4 +O(t5).(A.12)

Now applying (A.12) to (A.10), we have, after some simplification, that v(z)= 0
yields

z2 − 1
3 (1 − 2p)(pq)−1/2n−1/2z3 + 1

6 (1 − 3pq)(pq)−1n−1z4 − κ2

=O(n−3/2).
(A.13)

Let z = ±κ + b1n
−1/2 + b2n

−1. Plugging into (A.13) and solving for b1 and b2,
we have

b1 = 1

6
(1 − 2p)(pq)−1/2κ2, b2 = ∓ 1

72

(
1

pq
+ 2

)
κ3.
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So the roots of v(z)= 0 are

(�LR, uLR)= ±
{
κ − 1

72

(
1

pq
+ 2

)
κ3n−1

}
+ 1

6
(1 − 2p)(pq)−1/2κ2n−1/2

+O(n−3/2).

(A.14)

Hence,

Pp(p ∈ CILR)= P

(
�LR ≤ n1/2(p̂ − p)√

pq
≤ uLR

)
.

Now PLR = Fn(uLR) − Fn(�LR), and the Edgeworth expansion (3.16) follows
from (A.2). �

Expansion for Beta prior intervals. We will prove a more general result than
Theorem 5.

Let X ∼ Bin(n,p). Suppose p has a prior distribution Beta(a, b). Then a
100(1 − α)% equal-tailed Bayesian interval is given by

CIB = [pl,pu] = [Bα/2,X+a,n−X+b,B1−α/2,X+a,n−X+b].(A.15)

The following gives the two-term Edgeworth expansion of the coverage
probability of the interval (A.15).

THEOREM 9. For any fixed 0 < p < 1 and any 0 < α < 1, the coverage
probability of the Beta prior interval (A.15) satisfies

Pp(p ∈ CIB)= (1 − α)+ [g(p, �B)− g(p,uB)]φ(κ)(npq)−1/2

+ [
2T2 − κT 2

1 − 1
3(3κ − κ3)(1 − 2p)(pq)−1/2T1 +w(κ)

]
× φ(κ)n−1

+ {[
a − 5

6 + ( 5
3 − a − b

)
p
]
Q21(�B, uB)+Q22(−κ, κ)}

× κφ(κ)(npq)−1

+O(n−3/2)

(A.16)

where w(κ) is defined in (3.10), �B and uB are defined as in (A.19) and

T1 = [(1
6κ

2 + 1
3 − a

)+ (
a + b− 1

3κ
2 − 2

3

)
p
]
(pq)−1/2,(A.17)

T2 = 1
8κ

3(pq)−1 + (
a + b − 1

3κ
2 − 2

3

)
κ − r2(p)(pq)

−1/2(8pq)−1κ3

+ (
a + b− 1

3κ
2 − 2

3

)
κ + r2(p)(pq)

−1/2 − (1
2 − p

)
(pq)−1r1(p)κ

(A.18)

with r1(p) and r2(p) given in (A.25).
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We will use the direct expansion method to derive (A.16) [see Barndorff-
Nielsen and Cox (1989) and Hall (1992)]. The expansion can also be derived using
asymptotic expansions for posterior distributions [see, e.g., Johnson (1970) and
Ghosh (1994)].

PROOF OF THEOREM 9. The posterior distribution of p given X = x is
Beta(x + a,n − x + b). Denote by F(z;m1,m2) the cdf of the Beta(m1,m2)

distribution and denote by B(α;m1,m2) the inverse of the cdf. Then

P (p ∈ CIB)= P
(
B(α/2;X+ a,n−X + b)

≤ p ≤ B(1 − α/2;X+ a,n−X+ b)
)

= P
(
α/2 ≤ F(p;X+ a,n−X + b)≤ 1 − α/2

)
.

Holding other parameters fixed, the function F(p;X + a,n − X + b) is strictly
decreasing in X [see, e.g., Johnson, Kotz and Balakrishnan (1995)]. So there exist
unique Xl = ρ1(1 − α/2,p, a, b) and Xu = ρ2(α/2,p, a, b) satisfying

F(p;Xl + a,n−Xl + b)≤ 1 − α/2

and

F
(
p;Xl − 1 + a,n− (Xl − 1)+ b

)
> 1 − α/2,

F (p;Xu + a,n−Xu + b) ≥ α/2

and

F
(
p;Xu + 1 + a,n− (Xu + 1)+ b

)
< α/2.

Therefore

P (p ∈ CIB)= P
(
�B ≤ n1/2(p̂ − p)/(pq)1/2 ≤ uB

)
with

�B = [ρ1(1 − α/2,p, a, b)− np]/(npq)1/2,

uB = [ρ2(α/2,p, a, b)− np]/(npq)1/2.
(A.19)

The quantities �B and uB are defined implicitly in (A.19) through ρ1 and ρ2. The
proof of (A.16) requires an asymptotic expansion for both �B and uB. We do this
below.

STEP 1. Denote

x1 = x + a − 1, n1 = n+ a + b− 2,

p1 = x1/n1, q1 = 1 − p1,

s = n−1
1

(
1

x1
+ 1

n1 − x1

)−1/2

= (p1q1)
1/2n

−1/2
1 ,

γ = ?(n+ a + b)

?(x + a)?(n− x + b)
= ?(n1 + 2)

?(x1 + 1)?(n1 − x1 + 1)
.
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Here p1 is the mode of p under the posterior distribution. Let Y = (p − p1)/s.
Then the conditional density of Y given X = x is

ψ(y)= γ s(p1 + sy)x1(q1 − sy)n1−x1 .

STEP 2. LetL(y)= logψ(y).Then it is easy to see thatL′(0)= 0,L′′(0)= −1,
L(3)(0)= 2(1−2p1)(n1p1q1)

−1/2 and L(4)(0)= −6(1−3p1q1)(n1p1q1)
−1. Ap-

plying Stirling’s formula to the Gamma functions in L(0), one gets, after some
algebra

L(0)= log
(

?(n1 + 2)

?(x1 + 1)?(n1 − x1 + 1)

)
+ log

(
x

1/2
1 (n1 − x1)

1/2n
−3/2
1

)
+ x1 logx1 + (n1 − x1) log(n1 − x1)− n1 logn1

= −1

2
log(2π)+

(
13

12
− 1

12p1q1

)
n−1

1 +O(n
−3/2
1 ).

Expanding L(y) at 0, one has

L(y)= −1
2 log(2π)+ c0n

−1
1 − 1

2y
2 + c1n

−1/2
1 y3 + c2n

−1
1 y4 +O(n

−3/2
1 )(A.20)

where

c0 = 13
12 − 1

12(p1q1)
−1, c1 = 1

3 (1 − 2p1)(p1q1)
−1/2

and

c2 = −1
4 [(p1q1)

−1 − 3].
Then

ψ(y)= eL(y)

= φ(y)
[
1 + c1n

−1/2
1 y3 + (

c0 + c2y
4 + 1

2c
2
1y

6)n−1
1

]+O(n
−3/2
1 ).

(A.21)

STEP 3. Integrating both sides of (A.21) from −∞ to z, we have

H(z)≡
∫ z

−∞
ψ(y)dy

="(z)− v1(z)φ(z)n
−1/2
1 + v2(z)φ(z)n

−1
1 +O(n

−3/2
1 )

(A.22)

where v1(z) = −c1(z
2 + 2) and v2(z) = −[1

2c
2
1(z

5 + 5z3 + 15z) + c2(z
3 + 3z)]

[because the O(n
−3/2
1 ) term in (A.21) is bounded by a polynomial in y times

φ(y)n
−3/2
1 ].

We wish to find an expansion for the quantiles of the distribution H . For fixed
0 < α < 1, let ξα,n = H−1(α). It is easy to see that ξα,n → zα = "−1(α) as
n→ ∞. Let

ξα,n = zα + τ1n
−1/2
1 + τ2n

−1
1 + o(n−1

1 ).
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Plugging in (A.22) and solving for τ1 and τ2, after some algebra, we get

τ1 = 1
3 (1 − 2p1)(z

2
α + 2)(p1q1)

−1/2,

τ2 = ( 1
36z

3
α + 11

36zα
)
(p1q1)

−1 − (13
36z

3
α + 71

36zα
)
.

STEP 4. It follows that an approximation to the limits of a 100(1 − α)%
interval is

(pl,pu)= p1 + 1
3 (1 − 2p1)(κ

2 + 2)n−1
1

± {
κ(p1q1)

1/2n
−1/2
1

+ κ(p1q1)
1/2n

−3/2
1

[( 1
36κ

2 + 11
36

)
(p1q1)

−1 − (13
36κ

2 + 71
36

)]}
+O(n−2

1 ).

(A.23)

Let

r1(p)= a + 1
3 (κ

2 − 1)− [
a + b+ 2

3 (κ
2 − 1)

]
p,(A.24)

r2(p)= {−(a + b − 2)/2 + (1/2 − p)[a − 1 − (a + b− 2)p](pq)−1

+ ( 1
36κ

2 + 11
36

)
(pq)−1 − (13

36κ
2 + 71

36

)}
κ(pq)1/2.

(A.25)

Rewriting the approximate limits (A.23) in terms of n, p̂ = x/n and q̂ = 1 − p̂,
one has

(pl,pu)= (
p̂ + r1(p̂)n

−1)± {
κ(p̂q̂)1/2n−1/2 + r2(p̂)n

−3/2}+O(n−2)(A.26)

with the + sign going with pu and the − sign with pl.

STEP 5. Now we expand the coverage probability by using (A.2). In order to
use (A.2) we invert the inequalities pl ≤ p ≤ pu into the form of

�B ≤ n1/2(p̂ − p)/(pq)1/2 ≤ uB.

We need the following lemma. The proof, which we omit here, is straightforward.

LEMMA 2. Let w1 and w2 be two functions with continuous first derivative.
Then the roots x∗ of the equations

x ± κ[x(1 − x)]1/2n−1/2 +w1(x)n
−1 +w2(x)n

−3/2 − p = 0(A.27)

can be expressed as

x∗ = p ∓ κ(pq)1/2n−1/2 + [(1
2 − p

)
κ2 −w1

(
p ∓ κ(pq)1/2n−1/2)]n−1

−w2(p)n
−3/2

∓ {[1
8 (pq)

−1/2 − (pq)1/2]κ3 − (1
2 − p

)
(pq)−1/2w1(p)κ

}
n−3/2

+O(n−2).

(A.28)

All the −(+) signs in ∓ in (A.28) go with the + (−) sign in ± in (A.27).
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Applying Lemma 2 to (A.26), we obtain

P (p ∈ CIB)= P
(
�B ≤ n1/2(p̂− p)/(pq)1/2 ≤ uB

)
with

(�B, uB)= ±κ + [(1
6κ

2 + 1
3 − a

)+ (
a + b− 1

3κ
2 − 2

3

)
p
]
(npq)−1/2

± {
(8pq)−1κ3 + (

a + b− 1
3κ

2 − 2
3

)
κ + r2(p)(pq)

−1/2

− (1
2 − p

)
(pq)−1r1(p)κ

}
n−1

+O(n−3/2).

(A.29)

The expansion (A.16) now follows from (A.2). �

PROOF OF THEOREM 5. In the special case of Jeffreys prior, a = b = 1/2.
Simple calculations show that

r1(p)= (1
3κ

2 + 1
6

)
(1 − 2p),(A.30)

r2(p)= [( 1
36κ

2 + 1
18

)
(pq)−1 − (13

36κ
2 + 17

36

)]
κ(pq)1/2.(A.31)

Plugging (A.30) and (A.31) into (A.18), after some algebra, the expansion for
Jeffreys prior interval (3.17) follows from (A.16). �

PROOF OF THEOREM 6. We prove (4.5). The proof of (4.6) is similar.

STEP 1. Suppose 0 < a < b < 1 and z = zn(p) = κ +wn(p)(npq)
−1/2 with

wn(p) satisfying

|wn(p)|, |w′
n(p)| and |w′′

n(p)| ≤ C for p ∈ [a, b] and all n.(A.32)

Let rn(p,w) = np + κ(npq)1/2 + wn(p). Then for sufficiently large n, rn is a
strictly increasing function of p on [a, b]. Let

?n = {
γ :a ≤ γ ≤ b and rn

(
γ,wn(γ )

)
is an integer

}
.

It is easy to see that Card(?n) = (b − a)n(1 + o(1)). Let γi ∈ ?n be defined
by rn(γi,w) = i, where i is an integer. Denote γ∗ = min{γ :γ ∈ ?n} and γ ∗ =
max{γ :γ ∈ ?n}. Consider p ∈ [γi, γi+1]. Let δ = p − γi . Expanding rn(p,w) at
p = γi , one has

rn(p,w)= i + {
n+ (1/2 − γi)[γi(1 − γi)]−1/2n1/2 +w′

n(γi)
}
δ

− 1
8 [γi(1 − γi)]−3/2n1/2δ2 +O(δ2)

≡ i + (n+A1n
1/2 +A2)δ +A3n

1/2δ2 +O(δ2).

Let δ∗
i = γi+1 − γi ; then

(n+A1n
1/2 +A2)δ

∗
i +A3n

1/2(δ∗
i )

2 +O
(
(δ∗
i )

2)= 1.
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Solving for δ∗
i , one has, after some algebra,

δ∗
i = n−1 −A1n

−3/2 + (A2
1 −A2)n

−2 +O(n−5/2).

Let g(p, z, n) be defined as in (3.5). Then∫ γi+1

γi

(
g(p, z, n)− 1

2

)
dp =

∫ γi+1

γi

(
rn(p,w)− i − 1

2

)
dp

=
∫ δ∗

i

0

{
(n+A1n

1/2 +A2)δ +A3n
1/2δ2 +O(δ2)

}
dδ

−
∫ δ∗

i

0

1
2dδ(A.33)

= 1
2 (n+A1n

1/2 +A2)(δ
∗
i )

2 − 1
2δ

∗
i +O

(
n1/2(δ∗

i )
3)

=O(n−5/2).

Similarly, ∫ γ∗

a

(
g(p, z, n)− 1

2

)
dp =O(n−5/2)

and ∫ b

γ ∗
(
g(p, z, n)− 1

2

)
dp =O(n−5/2).

STEP 2. We now show that for any Lipschitz function f supported on [a, b],

n−1/2
∫ b

a

(
g(p, z, n)− 1

2

)(
p(1 − p)

)−1/2
f (p)dp =O(n−3/2).(A.34)

Let v(p) = (p(1 − p))−1/2f (p). Then v(p) is bounded and also Lipschitz on
[a, b]. Then

n−1/2
∫ γ ∗

γ∗

(
g(p, z, n)− 1

2

)(
p(1 − p)

)−1/2
f (p)dp

= n−1/2
∑
i

∫ γi+1

γi

(
g(p, z, n)− 1

2

)
v(p)dp

= n−1/2
∑
i

∫ γi+1

γi

(
g(p, z, n)− 1

2

)
v(γi) dp

+ n−1/2
∑
i

∫ γi+1

γi

(
g(p, z, n)− 1

2

)(
v(p)− v(γi)

)
dp

≡ T1 + T2.
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It follows from the boundedness of v(p) and (A.33) that T1 = O(n−2). For T2,
since v(p) is Lipschitz on [a, b] and |g(p, z, n)− 1/2| ≤ 1/2, we have, for some
constant C > 0,

|T2| ≤ n−1/2
∑
i

∫ γi+1

γi

∣∣g(p, z, n)− 1
2

∣∣|v(p)− v(γi)|dp

≤ Cn−1/2
∑
i

∫ γi+1

γi

(p− γi) dp

≤ C

2
n−1/2

∑
i

(δ∗
i )

2 =O(n−3/2).

It is easy to see that

n−1/2
∫ γ∗

a

(
g(p, z, n)− 1

2

)(
p(1 − p)

)−1/2
f (p)dp =O(n−5/2)

and

n−1/2
∫ b

γ ∗
(
g(p, z, n)− 1

2

)(
p(1 − p)

)−1/2
f (p)dp =O(n−5/2).

Hence,

n−1/2
∫ b

a

(
g(p, z, n)− 1

2

)(
p(1 − p)

)−1/2
f (p)dp = n−3/2.

STEP 3. For any of the five intervals under consideration,

O(n−1/2) oscillation = (
g(p, �)− g(p,u)

)
φ(κ)(npq)−1/2

= n−1/2φ(κ)
(
g(p, �)− 1/2

)(
p(1 − p)

)−1/2

− n−1/2φ(κ)
(
g(p,u)− 1/2

)(
p(1 − p)

)−1/2
,

with � = �n(p) and u = un(p) satisfying (A.32). Now it follows directly from
(A.34) that ∫

{O(n−1/2) oscillation}f (p)dp =O(n−3/2). �

PROOF OF THEOREM 7. Throughout this proof, we will use the notation
ω = (X/n− p)/p and τ = p/q .

The interval CIs. The length of the standard interval, denoted by Ls, is

Ls = 2κn−1/2
[
X

n

(
1 − X

n

)]1/2

= 2κn−1/2(pq)1/2(1 +ω)1/2(1 − τω)1/2(A.35)

= 2κn−1/2(pq)1/2
{

1 + 1 − τ

2
ω− (1 + τ )2

8
ω2 +Rs(ω)

}
,
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where Rs(ω)≤ C1|ω|3 +C2|ω|4 +C3|ω|6 for universal constants C1, C2 and C3,
depending on p, but not n. Since E|X − np|3 = O(n3/2), E|X − np|4 = O(n2)

and E|X− np|6 =O(n3), it follows from (A.36) that

E(Ls)= 2κn−1/2(pq)1/2
(

1 − 1

8npq

)
+O(n−2),(A.36)

which establishes (5.2).

The interval CIW. The length of the Wilson interval, LW, is

LW = 2κn−1/2 n

n+ κ2

[
X

n

(
1 − X

n

)
+ κ2

4n

]1/2

= 2κn−1/2[1 − κ2n−1 +O(n−2)
]
(pq)1/2(A.37)

×
{

1 + 1 − τ

2
ω− (1 + τ )2

8
ω2 + κ2

8npq
+RW(ω)

}
,

where RW(ω) ≤ C1|ω|3 + C2|ω|4 + C3|ω|6 + C4n
−2 for universal constants C1,

C2, C3 and C4. As in (A.36), it now follows from (A.38) that

E(LW)= 2κn−1/2(pq)1/2[1 − κ2n−1 +O(n−2)
]

×
(

1 + κ2 − 1

8npq
+O(n−3/2)

)

= 2κn−1/2(pq)1/2
[
1 − 8κ2pq + 1 − κ2

8npq

]
+O(n−2),

(A.38)

which establishes (5.3). The proof for the Agresti–Coull interval is very similar to
the proof of (5.3) and so we will omit it.

The interval CILR. With X ∼ Bin(n,p), the likelihood ratio is given by

�n = pX(1 − p)n−X

(X/n)X(1 −X/n)n−X =
(
p

p̂

)np̂(
q

q̂

)nq̂
.(A.39)

We may assume that p̂ = X/n > 0, and for p̂ > 0, the equation − log�n = κ2/2
has two roots in p, which are the limits of the interval CILR. Writing t = p/p̂− 1,
the roots of − log�n = κ2/2 satisfy

log(1 + t)− q̂

p̂
log

(
1 − p̂

q̂
t

)
= κ2/(2np̂).

The roots t and t̄ satisfy

t = −κ(q̂/p̂)1/2n−1/2 + 1
3κ

2(1 − 2p̂)(np̂)−1

− 1
36κ

3(1 − 13p̂q̂)q̂−1/2(np̂)−3/2 +R1,n

(A.40)
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and

t̄ = κ(q̂/p̂)1/2n−1/2 + 1
3κ

2(1 − 2p̂)(np̂)−1

+ 1
36κ

3(1 − 13p̂q̂)q̂−1/2(np̂)−3/2 +R2,n

(A.41)

where E(|Ri,n|)=O(n−2), i = 1,2. From (A.40) and (A.41),

E(LLR)= 2κE[(p̂q̂)1/2]n−1/2 + 1
18κ

3(1 − 13pq)(pq)−1/2n−3/2

+O(n−2).
(A.42)

Writing Zn = n1/2(p̂− p)/(pq)1/2, by a straightforward expansion,

E[(p̂q̂)1/2] = (pq)1/2[1 − (8npq)−1] +O(n−3/2),

and so from (A.42) one obtains

E(LLR)= 2κ(pq)1/2[1 − (8npq)−1]n−1/2 + 1
18κ

3(1 − 13pq)(pq)−1/2n−3/2

+O(n−2),

which simplifies to

E(LLR)= 2κ(pq)1/2n−1/2
[
1 − 9 + κ2(26pq − 2)

72npq

]
+O(n−2).

The interval CIJ. Using equation (A.26), the length of the Jeffreys interval,
LJ, is

LJ = 2κn−1/2
[
X

n

(
1 − X

n

)]1/2

+ 2r2(p̂)n
−3/2 +O(n−2),(A.43)

with p̂ = X/n and the function r2(·) as defined in equation (A.31). Note that for
any 0 < p < 1, r2(p) is differentiable. The first term in (A.43) exactly equals
the length of the standard interval CIs. Therefore, from (5.2) and the mean value
theorem,

E(LJ)= 2κn−1/2(pq)1/2
(

1 − 1

8npq

)
+ 2r2(p)n

−3/2 +O(n−2)

= 2κn−1/2(pq)1/2
{

1 − (2/9)(13κ2 + 17)pq − (2/9)(κ2 + 2)

8npq

}

+O(n−2),

by algebra from the definition of r2(p) in equation (A.31). This establishes (5.6)
and completes the proof of Theorem 7. �

PROOF OF THEOREM 8. Brown, Casella and Hwang (1995) shows that CI∗
essentially uniquely satisfies the following rule:

ρ∗(p | p̂)=
{

1, if B(n,p;np̂) > k(p),

0, if B(n,p;np̂) < k(p),
(A.44)
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where k(p) is chosen so that CI∗ satisfies (5.7). Here B(n,p;x) denotes the
binomial probability mass function. Note that for any K < ∞, by the local limit
theorem [Breiman (1992)],

B(n,p;x)= φ(z)+ 1
6(z

3 − 3z)(1 − 2p)φ(z)(npq)−1/2 +O(n−1)(A.45)

where z = z(x) = (x − np)(npq)−1/2, uniformly as n → ∞ for ε < p < 1 − ε,
|z|<K . Also note that for x ≥ np, we have z(x)≥ 0, and

φ
(
z(x + 1)

)− φ
(
z(x)

)= zφ(z)(npq)−1/2 +O(n−1)(A.46)

uniformly for ε < p < 1 − ε, |z|<K . A similar expression holds for x < np.
Now, suppose {np}−np = 0 or 1/2. Then (for ε < p < 1 − ε and n≥ nε) there

are two distinct points satisfying (5.11) and two satisfying (5.12), respectively.
Denote the corresponding x values as xa,1, xa,2 and xr,1, xr,2. With appropriate
labeling

xr,1 + 1 = xa,1 < np < xa,2 = xr,2 − 1.

Also, −z(xa,1)= z(xa,2)= κ +O(n−1/2). From (A.45),

min
i=1,2

B(n,p;xa,i)≥ φ
(
z(xa,2)

)− 1
6 |κ3 − 3κ||1 − 2p|φ(κ)(npq)−1/2

+O(n−1)
(A.47)

and

max
i=1,2

B(n,p;xr,i)≤ φ
(
z(xa,2 + 1)

)+ 1
6 |κ3 − 3κ||1 − 2p|φ(κ)(npq)−1/2

+O(n−1).
(A.48)

Hence, from (A.47) and (A.48),

min
{
B(n,p;x) :ρW

(
p

∣∣∣∣xn
)

= 1
}

− max
{
B(n,p;x) :ρW

(
p

∣∣∣∣xn
)

= 0
}

= min
i=1,2

B(n,p;xa,i)− max
i=1,2

B(n,p;xr,i)

≥
(
κ − 1

3
|κ3 − 3κ|

)
φ(κ)(npq)−1/2 +O(n−1) > 0

(A.49)

for κ <
√

6 and n≥ nε. Since α > 0.015 implies κ < 2.44 <
√

6, it follows from
(A.49) and (A.44) that ρ∗(p | p̂)= ρW(p | p̂) a.e., as claimed.

When {np}−np �= 0 or 1/2 similar reasoning shows that for any integer y1 �= xa
having ρW(p | y1/n)= 1 and any integer y2 �= xr having ρW(p | y2/n)= 0,

B(n,p;y1)−B(n,p;y2) > 0(A.50)

for ε < p < 1 − ε, n ≥ nε . Conclusion (5.11) then follows from this, (A.44) and
the unimodality of φ. �
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