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VARIABLE SELECTION FOR COX’S PROPORTIONAL HAZARDS
MODEL AND FRAILTY MODEL

BY JIANQING FAN1 AND RUNZE LI2

Chinese University of Hong Kong and Pennsylvania State University

A class of variable selection procedures for parametric models via
nonconcave penalized likelihood was proposed in Fan and Li (2001a). It
has been shown there that the resulting procedures perform as well as if
the subset of significant variables were known in advance. Such a property
is called an oracle property. The proposed procedures were illustrated in
the context of linear regression, robust linear regression and generalized
linear models. In this paper, the nonconcave penalized likelihood approach
is extended further to the Cox proportional hazards model and the Cox
proportional hazards frailty model, two commonly used semi-parametric
models in survival analysis. As a result, new variable selection procedures for
these two commonly-used models are proposed. It is demonstrated how the
rates of convergence depend on the regularization parameter in the penalty
function. Further, with a proper choice of the regularization parameter and
the penalty function, the proposed estimators possess an oracle property.
Standard error formulae are derived and their accuracies are empirically
tested. Simulation studies show that the proposed procedures are more
stable in prediction and more effective in computation than the best subset
variable selection, and they reduce model complexity as effectively as the
best subset variable selection. Compared with the LASSO, which is the
penalized likelihood method with the L1-penalty, proposed by Tibshirani, the
newly proposed approaches have better theoretic properties and finite sample
performance.

1. Introduction. An objective of survival analysis is to identify the risk
factors and their risk contributions. Often, many covariates are collected and to
reduce possible modeling bias, a large parametric model is built. An important
and challenging task is to efficiently select a subset of significant variables upon
which the hazard function depends. There are many variable selection techniques
in linear regression models. Some of them have been extended to the context of
censored survival data analysis, such as the best subset variable selection and
stepwise deletion. Bayesian variable selection methods for censored survival data
were proposed by Faraggi and Simon (1998), based on an idea of Lindley (1968).
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Despite their popularity, the sampling properties of the aforementioned selection
methods are largely unknown and confidence intervals derived from the selected
variables may not have right coverage probabilities.

Fan and Li (2001a) proposed a family of new variable selection methods based
on a nonconcave penalized likelihood approach. The proposed methods are differ-
ent from traditional approaches of variable selection in that they delete insignifi-
cant variables by estimating their coefficients as 0. Thus their approaches simulta-
neously select significant variables and estimate regression coefficients. LASSO,
proposed by Tibshirani (1996, 1997), is a member of this family with the L1-
penalty. See also Knight and Fu (2000) for asymptotic properties of lasso-type
estimators. The penalized likelihood approach was applied to linear regression, ro-
bust linear regression and generalized linear models. From their simulations, Fan
and Li (2001a) showed the proposed penalized likelihood estimator with smoothly
clipped absolute deviation penalty (defined in Section 2, the name of SCAD refers
to the procedures related to this penalty function) outperforms the best subset
variable selection in terms of computational cost and stability, in the terminol-
ogy of Breiman (1996). The SCAD improves the LASSO via reducing estima-
tion bias. Furthermore, they showed that the SCAD possesses an oracle property
with a proper choice of regularization parameter, in the terminology of Donoho
and Johnstone (1994). Namely, the true regression coefficients that are zero are
automatically estimated as zero, and the remaining coefficients are estimated as
well as if the correct submodel were known in advance. Hence, the SCAD and
its siblings are an ideal procedure for variable selection, at least from the theo-
retical point of view. This encourages us to investigate their properties in Cox’s
proportional hazards model and frailty model, two popularly used semiparametric
models.

It will be shown that the proposed penalized likelihood for the Cox regression
model is equivalent to a penalized partial likelihood. This new approach can
select significant variables and estimate regression coefficients simultaneously.
This allows one to construct a confidence interval for coefficients easily. Rates
of convergence of the penalized partial likelihood estimators are established.
Further, with proper choice of regularization parameters, we will show that the
SCAD performs as well as an oracle estimator. The significance of this is that the
proposed procedure outperforms the maximum partial likelihood estimator when
true coefficients have zero components and performs as well as if one knew the
true submodel. This result is closely related to the super-efficiency phenomenon,
given by the Hodges example [Lehmann (1983), page 405]. In addition, a modified
Newton–Raphson algorithm is developed for maximizing the penalized partial
likelihood function, and a standard error formula for estimated coefficients of
nonzero components is derived by using a sandwich formula. The standard error
formula is empirically tested for the Cox regression model. It performs very
well with moderate sample sizes. The proposed method compares favorably with
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the best subset variable selection, in terms of performance, model stability and
computation.

Unlike the Cox regression model, there are some challenges in parameter es-
timation in the Cox frailty model even without the task of model selection. In
fact, with the “least informative” nonparametric modeling for the baseline cumu-
lative hazard function, the corresponding profile likelihood of the frailty model
does not have a closed form. This poses some challenges to find estimates for
parameters of interest. A new iterative procedure for this semi-parametric frailty
model is proposed in order to find the profile maximum likelihood estimator. It
provides a useful alternative to the EM algorithm for the frailty model, even with-
out the task of variable selection. Standard error formulas are derived and empir-
ically tested. Further, the penalized likelihood approach is extended to the semi-
parametric frailty model via penalizing the profile likelihood function. Due to its
simultaneous selection of significant variables and estimation of regression coef-
ficients, our approach allows one to construct confidence intervals for unknown
coefficients via a sandwich formula. The corresponding sandwich formula is an
estimator for the covariance matrix of the estimated coefficients. The Newton–
Raphson algorithm with some modifications is used to find the solution of penal-
ized profile likelihood score equations. It performs very well for moderate sample
size. Again, in this model, SCAD outperforms the best subset variable selection
and LASSO.

The paper is organized as follows. Motivations of variable selection via non-
concave penalized likelihood are briefly given in Section 2. A new variable selec-
tion procedure for the Cox model and Cox frailty model is proposed in Section 3,
in which the consistency and an oracle property of the proposed procedures are
established. A modification of the Newton–Raphson algorithm and standard er-
ror formulae for estimated coefficients are also presented in Section 3. Section 4
gives numerical comparisons among the newly proposed approach, the LASSO
and the best subset variable selection. Proofs of main results are given in Sec-
tion 5.

2. Variable selection via nonconcave penalized likelihood. Assume that
the collected data (xi, Yi) are independent samples. Conditioning on xi , Yi has
a density fi(yi; xT

i β). Denote by �i = log fi , the conditional log-likelihood of
Yi given xi . As discussed in Fan and Li (2001a), a general form of penalized
likelihood is

n∑
i=1

�i

(
yi; xT

i β
)− n

d∑
j=1

pλ(|βj |),(2.1)

where d is the dimension of β , pλ(·) is a penalty function and λ is a tuning
parameter (more generally, it is allowed to use λj ). Some conditions on pλ(| · |)
are needed in order for the approach to be an effective variable selection procedure
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[Antoniadis and Fan (2001)]. In particular, pλ(| · |) should be irregular at the
origin, that is, p′

λ(0+) > 0. Denote by β0 the true value of β , and let β0 =
(β10, . . . , βd0)T = (βT

10,βT
20)T . Without loss of generality, it is assumed that

β20 = 0, and all components of β10 are not equal to 0. Under some regularity

conditions, Fan and Li (2001a) showed their SCAD estimator β̂ = (β̂
T

1 , β̂
T

2 )T

possesses the following oracle property. With probability tending to 1, for certain
choice of pλn(·), we have β̂2 = 0 and

√
n
(
β̂1 − β10

)→ N
{
0, I−1

1 (β10, 0)
}
,

where I1(β10, 0) is the Fisher information matrix for β1 knowing β2 = 0.
For linear regression models, when the columns of the design matrix X are

orthonormal, it is easy to show that the best subset selection and stepwise deletion
are equivalent to the penalized least squares estimator with the hard thresholding
penalty, defined by

pλ(|θ |) = λ2 − (|θ | − λ)2I (|θ | < λ).

This penalty function was proposed by Fan (1997) and improved by Antoniadis
(1997). The name HARD refers to the procedure related to the hard thresholding
penalty. The hard thresholding penalty does not overpenalize the large value of |θ |.
Note that when a design matrix is not orthonormal, the penalized least-squares, the
stepwise deletion and the best subset methods may not be equivalent. Other penalty
functions have been used in the literature. The L2-penalty pλ(|θ |) = λ|θ |2 results
in a ridge regression. The L1-penalty pλ(|θ |) = λ|θ | yields LASSO, proposed by
Donoho and Johnstone (1994) in the wavelet setting and extended by Tibshirani
(1996, 1997) to general likelihood settings.

A good penalty function should result in an estimator with the following
three properties: unbiasedness for a large true coefficient to avoid excessive
estimation bias, sparsity (estimating a small coefficient as zero) to reduce model
complexity, and continuity to avoid unnecessary variation in model prediction.
Necessary conditions for unbiasedness, sparsity and continuity have been derived
by Antoniadis and Fan (2001). However, all of the L1, L2 (indeed all of Lp-
penalty) and the HARD penalties do not simultaneously satisfy these three
mathematical conditions.

A simple penalty function that satisfies all the three mathematical requirements
is the smoothly clipped absolute deviation (SCAD) penalty, defined by

p′
λ(θ) = I (θ ≤ λ) + (aλ − θ)+

(a − 1)λ
I (θ > λ) for some a > 2 and θ > 0.(2.2)

This function was proposed by Fan (1997) and involves two unknown parame-
ters λ and a. In practice, one could search the best pair (λ, a) over two dimensional
grids using some criteria, such as cross-validation and generalized cross-validation
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[Craven and Wahba (1979)]. However, such an implementation can be computa-
tionally expensive. From Bayesian statistical point of view, Fan and Li (2001a)
suggested using a = 3.7 and this value will be used throughout the whole paper.

Figure 1 depicts the aforementioned penalty functions. From Figure 1, the L1,
HARD and SCAD penalties are irregular at the origin, satisfying p′

λ(0+) > 0.
This is a necessary condition for the penalized least-squares to possess the
sparsity condition solution [Antoniadis and Fan (1999)]. The HARD and SCAD
penalties are constant when θ is large. This does not excessively penalize
large coefficients. However, SCAD is smoother than HARD and hence yields a
continuous estimator.

FIG. 1. Plots of penalty functions. (a) Lp penalties, solid, dotted and dashed curves are for
p = 0.3, 1 and 2, respectively. (b) Hard and SCAD penalties, solid and dashed curves are for the
SCAD and hard penalties, respectively.
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3. Proportional hazards models. Let T, C and x be respectively the survival
time, the censoring time and their associated covariates. Correspondingly, let Z =
min{T, C} be the observed time and δ = I (T ≤ C) be the censoring indicator. It is
assumed that T and C are conditionally independent given x and that the censoring
mechanism is noninformative. When the observed data {(xi, Zi, δi) : i = 1, . . . , n}
is an independently and identically distributed random sample from a certain
population (x, Z, δ), a complete likelihood of the data is given by

L =∏
u

f (Zi |xi )
∏
c

F (Zi |xi) =∏
u

h(Zi |xi)

n∏
i=1

F (Zi |xi),(3.1)

where the subscripts c and u denote the product of the censored and uncensored
data respectively, and f (t|x), F (t|x) and h(t|x) are the conditional density
function, the conditional survival function and the conditional hazard function
of T given x. Statistical inference in this paper will be based on the likelihood
function (3.1).

To present explicitly the likelihood function of Cox’s proportional hazards mod-
el, more notation is needed. Let t0

1 < · · · < t0
N denote the ordered observed failure

times. Let (j) provide the label for the item falling at t0
j so that the covariates

associated with the N failures are x(1), . . . , x(N). Let Rj denote the risk set right
before the time t0

j:

Rj = {
i : Zi ≥ t0

j

}
.

Consider proportional hazards models,

h(t|x) = h0(t) exp
(
xT β

)
,(3.2)

with the baseline hazard functions h0(t) and parameter β . The likelihood in (3.1)
becomes

L =
N∏

i=1

h0(Z(i)) exp
(
xT

(i)β
) n∏

i=1

exp
{−H0(Zi) exp

(
xT

i β
)}

,

where H0(·) is the cumulative baseline hazard function. If the baseline hazard
function has a parametric form, h0(θ , ·) say, then the corresponding penalized log-
likelihood function is

N∑
i=1

[
log{h0(θ, Z(i))} + xT

(i)β
]

(3.3)

−
n∑

i=1

{
H0(θ , Zi) exp

(
xT

i β
)}− n

d∑
j=1

pλ(|βj |).

Maximizing (3.3) with respect to (θ ,β) yields the maximum penalized likelihood
estimator.
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3.1. Penalized partial likelihood. In the Cox proportional hazards model, the
baseline hazard function is unknown and has not been parameterized. Following
Breslow’s idea, consider the “least informative” nonparametric modeling for
H0(·), in which H0(t) has a possible jump hj at the observed failure time t0

j . More

precisely, let H0(t) =∑N
j=1 hj I (t0

j ≤ t). Then

H0(Zi) =
N∑

j=1

hj I (i ∈ Rj ).(3.4)

Using (3.4), the logarithm of penalized likelihood function of (3.3) becomes

N∑
j=1

{
log(hj ) + xT

(j)β
}

−
n∑

i=1

{
N∑

j=1

hjI (i ∈ Rj ) exp
(
xT

i β
)}− n

d∑
j=1

pλ(|βj |).
(3.5)

Taking the derivative with respect to hj and setting it to be zero, we obtain that

ĥj =
{ ∑

i∈Rj

exp(xT
i β)

}−1

.(3.6)

Substituting ĥj into (3.5), we get the penalized partial likelihood

N∑
j=1

[
xT

(j)β − log

{∑
i∈Rj

exp
(
xT

i β
)}]− n

d∑
j=1

pλ(|βj |),(3.7)

after dropping a constant term “−N”. When pλ(·) ≡ 0, (3.7) is the partial
likelihood function [Cox (1975)]. The penalized likelihood estimate of β is derived
by maximizing (3.7) with respect to β . With a proper choice of pλ, many of the
estimated coefficients will be zero and hence their corresponding variables do not
appear in the model. This achieves the objectives of variable selection.

3.2. Frailty model. It is assumed for the Cox proportional hazards model
that the survival times of subjects are independent. This assumption might be
violated in some situations, in which the collected data are correlated. One popular
approach to model correlated survival times is to use a frailty model. A frailty
corresponds to a random block effect that acts multiplicatively on the hazard rates
of all subjects in a group. In this section, we only consider the Cox proportional
hazard frailty model, in which it is assumed that the hazard rate for the j th subject
in the ith subgroup is

hij (t|xij , ui) = h0(t)ui exp
(
xT

ijβ
)
, i = 1, . . . , n, j = 1, . . . , Ji,(3.8)
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where the ui’s are associated with frailties, and they are a random sample from
some population. It is frequently assumed that given the frailty ui , the data in the
ith group are independent. The most frequently used distribution for frailty is the
gamma distribution due to its simplicity. Assume without loss of generality that the
mean of frailty is 1 so that all parameters involved are estimable. For the gamma
frailty model, the density of u is

g(u) = ααuα−1 exp(−α u)

&(α)
.

From (3.1), the full likelihood of “pseudo-data" {(ui, Xij , Zij , δij ) : i = 1, . . . , n,
j = 1 . . . , Ji} is

n∏
i=1

Ji∏
j=1

[{h(zij |xij , ui)}δij F (zij |xij , ui)
] n∏

i=1

g(ui).

Integrating the full likelihood function with respect to u1, . . . , un, the likelihood of
the observed data is given by

L(β, α, H) = exp

{
βT

(
n∑

i=1

Ji∑
j=1

δij xij

)}
(3.9)

×
n∏

i=1

αα ∏Ji

j=1{h0(zij )}δij

&(α){∑Ji

j=1 H0(zij ) exp(xT
ijβ) + α}(Ai+α)

,

where Ai =∑Ji

j=1 δij . Therefore the logarithm of the penalized likelihood of the
observed data is

n∑
i=1

{
Ji∑

j=1

δij log h(zij ) −
[

(Ai + α) log

{
Ji∑

j=1

H0(zij ) exp
(
xT

ijβ
)+ α

}]}
(3.10)

+
n∑

i=1

{
βT

(
Ji∑

j=1

δij xij

)
+ α log α − log &(α)

}
− n

d∑
j=1

pλ(|βj |).

To eliminate the nuisance parameter h(·), we again employ the profile likelihood
method. Consider the “least informative" nonparametric modeling for H0(·):

H0(z) =
N∑

l=1

λlI (zl ≤ z),(3.11)

where {z1, . . . , zN} are pooled observed failure times.
Substituting (3.11) into (3.10), then differentiating it with respect to λl , l =

1, . . . , N , the root of the corresponding score function should satisfy the following
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equations:

λ−1
l =

n∑
i=1

(Ai + α)
∑Ji

j=1 I (zl ≤ zij ) exp(xT
ij β)∑N

k=1 λk

∑Ji

j=1 I (zk ≤ zij ) exp(xT
ij β) + α

(3.12)

for l = 1, . . . , N .
The above solution does not admit a closed form, and neither does the profile

likelihood function. However, the maximum profile likelihood can be implemented
as follows. With initial values for α,β and λl , update {λl} from (3.12) and obtain
the penalized profile likelihood of (3.10). With known H0(·) defined by (3.11),
maximize the penalized likelihood (3.10) with respect to (α,β), and iterate
between these two steps. When the Newton–Raphson algorithm is applied to the
penalized likelihood (3.10), it involves the first two order derivatives of the gamma
function, which may not exist for certain value of α. One approach to avoid this
difficulty is the use of a grid of possible values for the frailty parameter α and
finding the maxima over this discrete grid, as suggested by Nielsen et al. (1992).
Our simulation experience shows that the estimate of β is quite empirically robust
to the chosen grid of possible values for α. This profile likelihood method appears
new even without the task of variable selection. This provides a viable alternative
approach to the EM algorithm frequently used in the frailty model.

A natural initial estimator for β is the maximum pseudo-partial likelihood es-
timates of β ignoring possible dependency within each group. The corresponding
h1, . . . , hN in (3.6) may serve as an initial estimator for λ1, . . . , λN . Hence given a
value of α and initial values of β and λ1, . . . , λN , update the values of λ1, . . . , λN

and α, β in turn until they converge or the penalized profile likelihood of (3.10)
fails to change substantially. The proposed algorithm avoids optimizing a high-
dimensional problem. It will give us an efficient estimate for β . The algorithm
may converge slowly or even not converge. In this situation, the idea of one-step
estimator [see Bickel (1975)] provides us an alternative approach. See Section 3.4
for some other variations.

3.3. Oracle properties. We will use the theory of counting processes to
establish the oracle property of the proposed variable selection approach for the
Cox model under general settings. Following the notation in Andersen and Gill
(1982), define Ni(t) = I {Ti ≤ t, Ti ≤ Ci} and Yi(t) = I {Ti ≥ t, Ci ≥ t}. In this
section, the covariate x is allowed to be time-dependent, denoted by x(t). For
simplicity, we shall work on the finite time interval [0, τ ]. Assume without loss of
generality that τ = 1. One may extend the results to the interval [0,∞), following
the proof for Theorem 4.2 of Anderson and Gill (1982). We need the following
conditions to establish the oracle property.

CONDITIONS. A.
∫ 1

0 h0(t) dt < ∞.
B. The processes x(t) and Y (t) are left-continuous with right hand limits, and

P {Y (t) = 1 ∀t ∈ [0, 1]} > 0.
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C. There exists a neighborhood B of β0 such that

E sup
t∈[0,1],β∈B

Y (t)x(t)T x(t) exp
(
βT x(t)

}
< ∞.

D. Define

s(0)(β, t) = EY (t) exp
{
βT x(t)

}
,

s(1)(β, t) = EY (t)x(t) exp
{
βT x(t)

}
,

s(2)(β, t) = EY (t)x(t)x(t)T exp
{
βT x(t)

}
,

where s(0)(·, t), s(1)(·, t) and s(2)(·, t) are continuous in β ∈ B , uniformly in
t ∈ [0, 1]. s(0), s(1) and s(2) are bounded on B × [0, 1]; s(0) is bounded away
from zero on B × [0, 1]. The matrix

I (β0) =
∫ 1

0
v(β0, t)s(0)(β0, t)h0(t) dt

is finite positive definite, where

v(β, t) = s(2)

s(0)
−
(

s(1)

s(0)

)(
s(1)

s(0)

)T

.

Conditions A–D guarantee the local asymptotic quadratic (LAQ) property
for the partial likelihood function, and hence the asymptotic normality of the
maximum partial likelihood estimates. See Andersen and Gill (1982) and Murphy
and van der Vaart (2000) for details.

In this section we will show that the proposed estimators perform as well as
an oracle estimator. Let β0 = (β10, . . . , βd0)T = (βT

10,βT
20)T . Without loss of

generality, assume that β20 = 0. Denote by s the number of the components of
β1,

an = max{p′
λn

(|βj0|) : βj0 �= 0} and

bn = max{|p′′
λn

(|βj0|)| : βj0 �= 0}.(3.13)

It will be shown that there exists a penalized partial likelihood estimator that
converges at rate OP (n−1/2 + an). Oracle properties for the penalized partial
likelihood estimator will be also established. In this section, we only state theoretic
results. Their proofs will be given in Section 5.

The following theorem shows how the rates of convergence for the penalized
partial likelihood estimators depend on the regularization parameter. Let �(β) =∑N

j=1[xT
(j)β − log{∑i∈Rj

exp(xT
i β)}] denote the log-partial likelihood function

and let Q(β) = �(β) − n
∑d

j=1 pλ(|βj |) be the penalized partial likelihood
function.
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THEOREM 3.1. Assume that (x1, T1, C1), . . . , (xn, Tn, Cn) are independent
and identically distributed according to the population (x, T , C), T and C are
conditionally independent given x, and Conditions (A)–(D) hold. If bn → 0, then
there exists a local maximizer β̂ of Q(β) such that ‖β̂ − β0‖ = OP (n−1/2 + an),
where an is given by (3.13).

It is clear from Theorem 3.1 that by choosing a proper λn, there exists a
root-n consistent penalized partial likelihood estimator, as long as an = O(n−1/2).
Denote by

3 = diag
{
p′′

λn
(|β10|), . . . , p′′

λn
(|βs0|)}(3.14)

and

b = (
p′

λn
(|β10|) sgn(β10), . . . , p′

λn
(|βs0|) sgn(βs0)

)T
,(3.15)

where s is the number of components of β10.

THEOREM 3.2 (Oracle property). Assume that the penalty function pλn(|θ |)
satisfies condition (5.6). If λn → 0,

√
nλn → ∞ and an = O(n−1/2), then under

the conditions of Theorem 3.1, with probability tending to 1, the root-n consistent

local maximizer β̂ = (β̂
T

1 , β̂
T

2 )T in Theorem 3.1 must satisfy:
(i) (Sparsity) β̂2 = 0;

(ii) (Asymptotic normality)

√
n(I1(β10) + 3)

{
β̂1 − β10 + (

I1(β10
)+ 3)−1b

}
→ N

{
0, I1(β10)

}
,

where I1(β10) is the first s × s submatrix of I (β0).

Note that for HARD and SCAD, if λn → 0, then an = 0 for sufficiently large n.
Thus, 3 = 0 and b = 0. Hence when

√
nλn → ∞, we have β̂2 = 0 and

√
n
{
β̂1 − β10

}→ N
{
0, I−1

1 (β10)
}
.

Therefore HARD and SCAD possess the oracle property when λn → 0
√

nλn →
∞, and perform as well as the maximum partial likelihood estimates for estimating
β1 knowing β2 = 0. They are more efficient than the maximum partial likelihood
estimator for estimating β1 and β2.

For the L1-penalty, however, an = λn. Hence, the root-n consistency condition
in Theorem 3.1 requires that λn = OP (n−1/2). On the other hand, the oracle
property in Theorem 3.2 requires that

√
nλn → ∞. Hence, the oracle property

does not hold for the LASSO.
Asymptotic properties of the estimators for the regression coefficients in the

gamma frailty model have been studied in Parner (1998) and Murphy and van der
Vaart (1999) and references therein. Murphy and van der Vaart (2000) established
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the LAQ property for the profile likelihood under a general setting. They also
illustrated their results for the gamma frailty model when the number Ji of subjects
in each group are the same. In what follows, it is assumed that all Ji are the same,
denoted by J .

Denote θ = (α,βT )T , and θ0 = (α0,βT
0 )T , the true value of θ . Let P L(θ) be

the profile likelihood of L(θ , H) in (3.9). That is,

P L(θ) = sup
H∈H

L(θ , H),

where H = {H : H(z) =∑N
i=1 λlI (zl ≤ z)}.

Under some regularity conditions, Murphy and van der Vaart (2000) showed
that for any random sequence θn → θ0 in probability,

log P L(θn) = log P L(θ0)

+ (θn − θ0)T
n∑

i=1

�̃0
{
(xi1, zi1, δi1), . . . , (xiJ , ziJ , δiJ )

}
(3.16)

− 1
2n(θn − θ0)T Ĩ0(θ0)(θn − θ0) + oP

(√
n||θn − θ0|| + 1

)2
,

where �̃0 is the efficient score function of the marginal likelihood of {xi1, zi1, δi1},
. . . , {xiJ , ziJ , δiJ } for θ and Ĩ0 the efficient Fisher information matrix. To
guarantee the existence of a sequence of consistent estimators in (3.17) for the
gamma frailty model, one needs to impose some regularity conditions and some
bounds on the variance parameters. Those conditions can be found in Parner
(1998), in which consistency and asymptotic normality of the nonparametric
maximum likelihood estimator were investigated.

When the LAQ property (3.17) holds, we may establish the oracle property for
the penalized profile likelihood for the gamma frailty model. Here we only state
the results. Their proofs are given in Section 5. Denote the logarithm of penalized
profile likelihood by Q(θ) = log P L(θ) − n

∑d
j=1 pλ(|βj |).

THEOREM 3.3. Assume that (xij , Tij , Cij )J
j=1 are independent random sam-

ples for i = 1, . . . , n, and given ui , (xij , Tij , Cij ), j = 1, . . . , J , are independently
distributed according to (3.8). Tij and Cij are conditionally independent given xi

and {ui} are i.i.d. from a Gamma distribution. If bn → 0 and the local asymptotic
quadratic property (3.17) holds, then there exists a local maximizer θ̂ of Q(θ )

such that ‖θ̂ − θ0‖ = OP (n−1/2 + an), where an is given by (3.13).

To state the oracle properties, let

θ̂1 = (
α̂, β̂

T

1
)T

, θ 10 = (
α0,βT

10
)T

, θ̂ = (
θ̂

T

1 , β̂
T

2
)T

and θ0 = (
θT

10,βT
20
)T

.
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Denote by

31 = diag(0, 3) and b1 = (
0, bT )T

with 3 and b given in (3.14) and (3.15). Now we state the oracle properties of θ̂ .

THEOREM 3.4. Assume that the penalty function pλn(|θ |) satisfies condition
(5.6). If λn → 0,

√
nλn → ∞ and an = O(n−1/2), then under the conditions of

Theorem 3.3, with probability tending to 1, the root-n consistent local maximizer

θ̂ = (α̂, β̂
T

1 , β̂
T

2 )T in Theorem 3.3 must satisfy:
(i) (Sparsity) β̂2 = 0;

(ii) (Asymptotic normality)

√
n
(
Ĩ1(θ10) + 31

){
θ̂1 − θ10 + (

Ĩ1(θ 10) + 31
)−1b1

}→ N
{
0, Ĩ1(θ10)

}
,

where Ĩ1(θ10) consists of the first (s + 1) × (s + 1) submatrix of Ĩ0(θ10, 0).

With a proper choice of regularization parameter λn, the penalized likelihood
estimators with a class of penalty functions possess the oracle property under
some mild regularity conditions. In practice, data-driven methods, such as cross
validation and generalized cross validation, are employed to select λn. For a linear
estimator (in terms of response variable), asymptotic optimal properties of such
choice of λn have been studied in series of papers by Wahba (1985) and Li (1987)
and references therein. With the local quadratic approximations in Section 3.4,
the resulting estimators will be approximately locally linear. As pointed out by
a referee, it is of interest to establish the asymptotic property of the proposed
estimators with a data-driven λn. Further studies on this issue are needed, but it
is beyond the scope of this paper.

3.4. Local quadratic approximations and standard errors. Note that the pen-
alty function pλ(|βj |) is irregular at the origin and may not have a second deriv-
ative at some points. Some special care is needed before applying the Newton–
Raphson algorithm. Following Fan and Li (2001a), we locally approximate the
penalty functions introduced in Section 2 by quadratic functions as follows. Given
an initial value β0 that is close to the maximizer of the penalized likelihood func-
tion, when βj0 is not very close to 0, the penalty pλ(|βj |) can be locally approxi-
mated by the quadratic function as

[pλ(|βj |)]′ = p′
λ(|βj |) sgn(βj ) ≈ {

p′
λ(|βj0|)/|βj0|}βj ,

otherwise, set β̂j = 0. In other words,

pλ(|βj |) ≈ pλ(|βj0|) + 1
2p′

λ(|βj0|)(β2
j − β2

j0

)
for βj ≈ βj0.
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Similarly, approximate the profile likelihood via Taylor’s expansion. The maxi-
mization can be reduced to a local quadratic maximization problem. This results
in a modified Newton–Raphson algorithm.

As in the maximum likelihood estimation setting, with a good initial value
β0, the one-step penalized partial likelihood estimator can be as efficient as the
fully iterative one, namely, the penalized maximum likelihood estimate, when one
uses the Newton–Raphson algorithm [see Bickel (1975)]. Furthermore estimators
obtained after a few iterations can be always regarded as one-step estimators,
which is as efficient as the fully iterative method. Indeed, Robinson (1988) shows
the rate of convergence for the difference between a finite-step estimator and the
fully-iterative MLE. In this sense, one does not have to iterate the algorithm until
convergence as long as the initial estimators are good enough.

The standard errors for estimated parameters can be directly obtained because
we are estimating parameters and selecting variables at the same time. Following
the conventional technique in the likelihood setting, the corresponding sandwich
formula can be used as an estimator for the covariance matrix of the estimates β̂ .
For the Cox proportional hazards model, the solution in the Newton–Raphson
algorithm is updated by

β1 = β0 − {∇2�(β0) − n3λ(β0)
}−1{∇�(β0) − nUλ(β0)

}
,(3.17)

where �(β) is the partial likelihood

∇�(β0) = ∂�(β0)

∂β
, ∇2�(β0) = ∂2�(β0)

∂β∂βT
,

3λ(β0) = diag
{
p′

λ(|β10|)/|β10|, . . . , p′
λ(|βd0|)/|βd0|} and

Uλ(β0) = 3λ(β0)β0.

Thus the corresponding sandwich formula is given by

ĉov
(
β̂
)= {∇2�

(
β̂
)− n3λ

(
β̂
)}−1

ĉov
{∇�

(
β̂
)}{∇2�

(
β̂
)− n3λ

(
β̂
)}−1

.(3.18)

This formula is consistent with Theorem 3.2 and will be shown to have good
accuracy for moderate sample sizes. The sandwich formula for the frailty model
can be derived in the same way.

4. Simulation studies and applications.

4.1. Selection of thresholding parameters. To implement the methods de-
scribed in previous sections, it is desirable to have an automatic method for
selecting the thresholding parameter λ involved in pλ(·) based on data. Here we
estimate λ via minimizing an approximate generalized cross-validation (GCV)
statistic [Craven and Wahba (1977)]. Regarding the penalized partial likelihood



88 J. FAN AND R. LI

as an iteratively reweighted least-squares problem, by some straightforward
calculation, the effective number of parameters for the Cox proportional hazards
model in the last step of the Newton–Raphson algorithm iteration is

e(λ) = tr
[{∇2�

(
β̂
)+ 3λ

(
β̂
)}−1∇2�

(
β̂
)]

.

Therefore the generalized cross-validation statistic is defined by

GCV(λ) = −�(β̂)

n{1 − e(λ)/n}2

and λ̂ = argminλ{GCV(λ)} is selected. Similarly the corresponding generalized
cross-validation statistic can be defined for the penalized profile likelihood
function for the frailty model (3.8).

4.2. Prediction and model error. When the covariate x is random, if µ̂(x) is
a prediction procedure constructed using the present data, the prediction error is
defined as

PE(µ̂) = E{Y − µ̂(x)}2,

where the expectation is only taken with respect to the new observation (x, Y ). The
prediction error can be decomposed as

PE(µ̂) = E Var(Y |x) + E
{
E(Y |x) − µ̂(x)

}2
.

The first component is inherently due to stochastic errors. The second component
is due to lack of fit to an underlying model. This component is called a model error
and is denoted by ME(µ̂). For the Cox proportional hazards model (3.2),

µ(x) = E(T |x) =
∫ ∞

0
th0(t) exp

(
xT β

)
exp

{
−
∫ t

0
h0(u) exp

(
xT β

)
du

}
dt.

In the following simulation examples, it will be taken that h0(t) ≡ 1. Thus by some
algebra calculation,

µ(x) = exp
(−xT β

)
.

For the Cox frailty model with h0(t) ≡ 1,

µ(x) = exp
(−xT β

)
E
(
u−1).

The factor E(u−1), due to the frailty, is dropped off when the performance of two
different approaches is compared in terms of their Relative Model Errors (RME),
defined as the ratio of the model errors of the two approaches. Therefore, the model
error will be defined as

E
{

exp
(−XT β̂

)− exp
(−XT β0

)}2

for both the Cox model and the frailty model.
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4.3. Simulations. In the following examples, we numerically compare the pro-
posed variable selection methods with the maximum partial likelihood estimate
and the best subset variable selection. All simulations are conducted using MAT-
LAB codes. To find the best subset variable selection, we searched exhaustively
over all possible subsets and selected the subset with the best BIC score.

EXAMPLE 1. In this example we simulated 100 data sets consisting of n = 75
and 100 observations from the exponential hazard model

h(t|x) = exp
(
xT β

)
,

where β = (0.8, 0, 0, 1, 0, 0, 0.6, 0)T . The xi were marginally standard normal and
the correlation between xi and xj was ρ|i−j | with ρ = 0.5. The distribution of the
censoring time is an exponential distribution with mean U exp(xT β0), where U is
randomly generated from the uniform distribution over [1, 3] for each simulated
data set so that about 30% data are censored. Here β0 = β which is regarded as a
known constant so that the censoring scheme is noninformative. This model will
give us that the standard error of the maximum partial likelihood estimator β̂7 is
about 0.3 when n = 75, resulting in a t-statistic around 2. This is a challenge to any
data-driven variable selection technique on whether or not to include this variable
in the model.

Model errors of the proposed procedures are compared to those of the maximum
partial likelihood estimates. Following Tibshirani (1996), we compare the Median
of Relative Model Errors (MRME) rather than the mean of relative model errors
due to instability of the best subset variable selection and HARD. The MRME
over the 100 simulated data sets summarized in Table 1. The average number of
zero coefficients is also reported in Table 1, in which the column labeled “correct”

TABLE 1
Simulation results for Cox’s proportional hazards model

Method MRME(%) Aver. no. of 0 coeff.
correct incorrect

n = 75
SCAD 0.3696 4.34 0.18
LASSO 0.4559 4.05 0.10
HARD 0.3866 4.87 0.29
Best subset 0.4505 4.75 0.15
Oracle 0.3115 5 0
n = 100

SCAD 0.3346 4.33 0.03
LASSO 0.4582 3.99 0.02
HARD 0.4367 4.84 0.08
Best subset 0.4624 4.76 0.06
Oracle 0.3369 5 0
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TABLE 2
Standard deviations for the Cox proportional hazards models (n = 100)

β̂1 β̂4 β̂7
Method SD SDm(SDmad ) SD SDm(SDmad ) SD SDm(SDmad )

SCAD 0.191 0.154(0.023) 0.143 0.169(0.020) 0.188 0.141(0.026)
LASSO 0.190 0.150(0.019) 0.163 0.143(0.016) 0.157 0.118(0.016)
HARD 0.180 0.161(0.019) 0.155 0.175(0.014) 0.144 0.147(0.015)
Best subset 0.184 0.161(0.019) 0.154 0.175(0.015) 0.141 0.148(0.015)
Oracle 0.173 0.156(0.019) 0.165 0.169(0.017) 0.137 0.147(0.015)

presents the average restricted only to the true zero coefficients, while the column
labeled “incorrect” depicts the average of coefficients erroneously set to 0. From
Table 1, the SCAD outperforms the other three methods and performs as well as
the oracle estimator in terms of MRME. All methods select about the same correct
number of significant variables.

We now test the accuracy of the proposed standard error formula. The median
absolute deviation divided by 0.6745, denoted by SD in Table 2, of the 100
estimated coefficients in the 100 simulations can be regarded as the true standard
error except the Monte Carlo error. The median of the 100 estimated SDs, resulting
from 100 simulations, denoted by SDm, and the median absolute deviation error
of the 100 estimated standard errors divided by 0.6745, denoted by SDmad ,
gauge the overall performance of the standard error formula. In our simulations,
the standard errors of estimated coefficients were set to be 0 if they were
excluded from the selected model. Table 2 only presents the results for non-zero
coefficients when the sample size n = 100. The results for the other two cases
with n = 75 are similar. The last row of Table 2 lists the standard deviations
and standard errors for the oracle estimator, obtained by fitting the ideal model
consisting of variables X1, X4 and X7. Table 2 suggests that the proposed
standard error formula performs well, and SCAD and HARD perform as well as
the oracle estimator in terms of estimating the standard errors of the estimated
coefficients.

EXAMPLE 2. In this example we simulated 100 data sets consisting of n

groups and J subjects in each group from the exponential hazard frailty model

h(t|x, u) = u exp
(
xT β

)
,

where the β and x are the same as those in Example 1, and the frailty u is the
gamma frailty with α = 4.

The performance of variable selection via nonconcave penalized likelihood and
the best subset variable selection is compared in terms of their model errors, model
complexity and accuracy. Model errors of the proposed procedures are compared
to those of the maximum profile likelihood estimates. The Median of Relative
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TABLE 3
Simulation results for frailty model

Method MRME(%) Aver. no. of 0 coeff.

correct incorrect
n = 50, J = 2
SCAD 0.5322 4.18 0.14
LASSO 0.8880 4.04 0.06
Hard 0.5784 4.54 0.09
Best Subset 0.4251 4.78 0.07
Oracle 0.3592 5 0
n = 75, J = 2
SCAD 0.5177 4.18 0
LASSO 1.4075 4.08 0
Hard 0.5782 4.50 0
Best Subset 0.5188 4.89 0
Oracle 0.4886 5 0
n = 100, J = 2
SCAD 0.4930 4.29 0
LASSO 1.0438 4.10 0
Hard 0.6379 4.42 0
Best subset 0.6019 4.85 0
Oracle 0.5631 5 0

Model Errors (MRME) over 100 simulated data sets with some combinations of
n and J is summarized in Table 3, and the standard errors for estimated nonzero
coefficients with n = 100 and J = 2 are depicted in Table 4. The last row of Table 4
displays the standard deviations and standard errors of estimated coefficients based
on the true model (oracle estimate). From Tables 3 and 4, SCAD performs as
well as the oracle estimator and outperforms the other approaches. Comparing
the standard deviations for the SCAD and those for the oracle estimate in Table 4,
it can be seen that the SCAD performs as well as if one knew the true model in
advance.

TABLE 4
Standard deviations for frailty models (n = 100, J = 2)

β̂1 β̂4 β̂7
Method SD SDm(SDmad ) SD SDm(SDmad ) SD SDm(SDmad )

SCAD 0.114 0.100(0.012) 0.092 0.095(0.007) 0.113 0.098(0.008)
LASSO 0.098 0.077(0.007) 0.086 0.082(0.006) 0.097 0.072(0.008)
Hard 0.083 0.101(0.008) 0.095 0.102(0.008) 0.094 0.102(0.009)
Best Subset 0.080 0.103(0.008) 0.092 0.103(0.008) 0.090 0.102(0.010)
Oracle 0.083 0.100(0.008) 0.089 0.102(0.007) 0.087 0.102(0.009)
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EXAMPLE 3. The proposed approach is now applied to the “nursing home”
data set analyzed by Morris, Norton and Zhou (1994), where a full description of
this data set is given. Here is a brief summary. The data were from an experiment
sponsored by the National Center for Health Services Research in 1980–1982,
involving 36 for-profit nursing homes in San Diego, California. The experiment
was designed to assess the effects of differing financial incentives on the admission
of nursing home patients, on their subsequent care, and on the durations of stay.
The 18 treatment nursing homes received higher per diem payments for accepting
more disabled medicaid patients. They also received bonuses for improving a
patient’s health status and for discharging patients to their homes within 90 days.
These incentives were not offered to the 18 control nursing homes. Altogether
1601 samples are available.

Morris, Norton and Zhou (1994) took days in the nursing home as the response
variable t . They suggested the use of the following model:

h(t|x) = h0(t) exp

( 7∑
i=0

xiβi

)
,(4.1)

where x1 is a treatment indicator, being 1 if treated at a nursing home and 0
otherwise; x2 is the variable age, which ranges from 65 to 90; x3 is a gender
variable, being 1 if male and 0 if female; x4 is a marital status indicator, being 1
if married and 0 otherwise; x5 , x6 and x7 are three binary health status indicators,
corresponding from the best health to the worst health. The parameter β0 is an
intercept when a parametric model for the baseline h0 is employed, while it
is dropped from the model if the nonparametric model for h0 is used. Morris,
Norton and Zhou (1994) fitted the Cox model with three parametric and the
nonparametric baseline hazard models to this data set. Their model does not
include any possible interactions. To explore possible interaction and to reduce
possible modeling biases, all interactions among treatment, age, gender and marital
status are included in the initial model, and fit to the data by the Cox regression
model with 13 covariates. Only x2 is standardized as other variables are binary.
Penalized partial likelihood approach with the SCAD, L1 and hard penalty are
applied to this data set. The thresholding parameter λ, selected by the GCV, is
0.0227, 0.0113 and 0.0890 for the SCAD, LASSO and HARD, respectively. The
best subset variable selection with AIC and BIC is also conducted. Estimated
coefficients and their standard errors are shown in Table 5.

From Table 5, the best subset variable selection with AIC and the SCAD
yield almost the same model. Compared with the other approaches, the LASSO
somewhat shrinks all nonzero coefficients, while the best subset variable selection
with BIC results in too simple a model as it over-penalizes the dimension of the
selected model.

The resulting models are somewhat different from the one without including
interactions, presented by Morris, Norton and Zhou (1994). The main differences
are summarized as follows.
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TABLE 5
Estimated coefficients and standard errors

MLE Best (BIC) Best (AIC) SCAD LASSO HARD

TRT -0.04(0.07) 0(−) 0(−) 0(−) 0(−) 0(−)
Age -0.12(0.05) 0(−) -0.09(0.03) -0.09(0.04) -0.05(0.02) 0(−)
Gender 0.43(0.10) 0.40(0.06) 0.44(0.08) 0.44(0.08) 0.31(0.05) 0.44(0.08)
Married 0.22(0.14) 0(−) 0.16(0.08) 0.18(0.08) 0.08(0.03) 0.18(0.08)
Health1 0.03(0.08) 0(−) 0(−) 0(−) 0(−) 0(−)
Health2 0.24(0.07) 0.24(0.06) 0.23(0.06) 0.23(0.06) 0.14(0.04) 0.23(0.06)
Health3 0.57(0.10) 0.53(0.09) 0.54(0.09) 0.54(0.09) 0.35(0.06) 0.55(0.09)
TRT*Age 0.07(0.06) 0(−) 0(−) 0(−) 0(−) 0(−)
TRT*Gender -0.10(0.13) 0(−) -0.15(0.11) -0.16(0.11) 0(−) -0.15(0.11)
TRT*Married -0.00(0.16) 0(−) 0(−) 0(−) 0(−) 0(−)
Age*Gender 0.16(0.06) 0(−) 0.17(0.06) 0.16(0.06) 0.07(0.03) 0.09(0.05)
Age*Married 0.09(0.08) 0(−) 0(−) 0.09(0.08) 0(−) 0(−)
Gender*Married -0.07(0.16) 0(−) 0(−) 0(−) 0(−) 0(−)

In the model excluding interactions, the age variable is not statistically
significant, pointed out by Morris, Norton and Zhou (1994). However, it is very
significant in the resulting model with interactions. It is clear from Table 5 that
elderly patients are more likely (less risky) stay at nursing home.

From Table 5, the interaction between the variables treatment and gender is
selected by SCAD and HARD, although treatment is not significant. It seems that
men prefer to stay at a nursing home with treatment, while elderly men like to
leave a nursing home earlier. The latter is because elderly men are much more
likely to be married [see Morris, Norton and Zhou (1994)], and they like to stay at
their own home rather than a nursing home.

5. Proofs. In this section, we give rigorous proofs of Theorems 3.1 and 3.2
and sketch proof of Theorems 3.3 and 3.4. Rigorous proofs of Theorems 3.3
and 3.4 can be found in an earlier version of this paper [Fan and Li (2001b)].

PROOF OF THEOREM 3.1. The partial likelihood �(β) can be written as

�(β) =
n∑

i=1

∫ 1

0
βT Xi (s) dNi(s)

(5.1)

−
∫ 1

0
log

{
n∑

i=1

Yi(s) exp
(
βT Xi (s)

)}
dN̄(s),

where N̄ =∑n
i=1 Ni . Using Theorem 4.1 and the proof of Lemma 3.1 of Andersen

and Gill (1982) [see also Theorem VII 2.1 of Anderson, Borgan, Gill and Keiding
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(1993)], it follows that under Conditions A–D for each β in a neighborhood of β0,

1

n
{�(β) − �(β0)} =

∫ 1

0

[
(β − β0)T s(1)(β0, t)

− log

{
s(0)(β, t)

s(0)(β0, t)

}
s(0)(β0, t)

]
h0(t) dt(5.2)

+ OP

( ||β − β0||√
n

)
.

Let αn = n−1/2 +an. It is sufficient to show that for any given ε > 0, there exists
a large constant C such that

P

{
sup

‖u‖=C

Q(β0 + αnu) < Q(β0)

}
≥ 1 − ε.(5.3)

This implies with probability at least 1 − ε that there exists a local maximum in
the ball {β0 + αnu : ‖u‖ ≤ C}. Hence, there exists a local maximizer such that
‖β̂ − β0‖ = OP (αn).

Using pλn(0) = 0 and pλn(·) ≥ 0, we have

Dn(u) ≡ 1

n
{Q(β0 + αnu) − Q(β0)}

≤ 1

n
{�(β0 + αnu) − �(β0)}(5.4)

−
s∑

j=1

{pλn(|βj0 + αnuj |) − pλn(|βj0|)},

where s is the number of components of β10. By (5.3) and Taylor’s expansion, we
have

1

n
{�(β0 + αnu) − �(β0)}

(5.5)

= −1

2
α2

nuT {I (β0) + oP (1)}u + OP

(
n−1/2αn‖u‖),

as the first order derivative of the first term in (5.3) equals 0. Since I (β0) is positive
definite, the first term in the right-hand side of (5.6) is of the order C2α2

n. Note that
n−1/2αn = Op(α2

n). By choosing a sufficiently large C, the first term in the last
equation will dominate the second term, uniformly in ||u|| = C. On the other hand,
by the Taylor expansion and the Cauchy–Schwarz inequality, the second term in
the right-hand side of (5.4) is bounded by

√
sαnan||u|| + α2

nbn||u||2 = Cα2
n

(√
s + bnC

)
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which is dominated by the first term of (5.6) as bn → 0, when C is sufficiently
large. Hence by choosing sufficiently large C, (5.3) holds. This completes the proof
of the theorem. �

To establish the oracle property, we show that this estimator must process the
sparsity property β̂2 = 0, which is stated as follows.

LEMMA 5.1. Assume that

lim inf
n→∞ lim inf

θ→0+ p′
λn

(θ)/λn > 0,(5.6)

λn → 0,
√

nλn → ∞, and the conditions of Theorem 3.1 hold. Then with
probability tending to 1, for any given β1 satisfying that ‖β1 −β10‖ = OP (n−1/2)

and any constant C,

Q
{(

βT
1 , 0

)T }= max
‖β2‖≤Cn−1/2

Q
{(

βT
1 ,βT

2
)T }

.

PROOF. It is sufficient to show that with probability tending to 1 as n →
∞, for any β1 satisfying that β1 − β10 = OP (n−1/2), and ‖β2‖ ≤ Cn−1/2,
∂Q(β)/∂βj and βj have different signs for βj ∈ (−Cn−1/2, Cn−1/2) for j =
s + 1, . . . , d. From (5.3), for each β in a neighborhood of β0, we have

�(β) = �(β0) + nf (β) + OP

(√
n‖β − β0‖

)
,

where

f (β) =
∫ 1

0

[
(β − β0)T s(1)(β0, t) − log

{
s(0)(β, t)

s(0)(β0, t)

}
s(0)(β0, t)

]
h0(t) dt.

Note that

∂f (β)

∂β
=
∫ 1

0

[
s(1)(β0, t)

s(0)(β0, t)
− s(1)(β, t)

s(0)(β, t)

]
s(0)(β0, t)h0(t) dt

and

−∂2f (β)

∂β∂βT
=
∫ 1

0

[
s(2)(β, t)s(0)(β, t)− s(1)(β, t){s(1)(β, t)}T

[s(0)(β, t)]2

]
s(0)(β0, t)h0(t) dt.

Thus

f (β0) = 0,
∂f (β)

∂β

∣∣∣∣
β=β0

= 0

and

− ∂2f (β)

∂β∂βT

∣∣∣∣∣
β=β0

= I (β0)
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which is a finite positive definite matrix. Therefore for each β in a neighborhood
of β0

f (β) = −1
2 (β − β0)T {I (β0) + o(1)}(β − β0).

By the Taylor expansion, for β in a n−1/2-neighborhood of β0, we have

∂Q(β)

∂βj

= ∂�(β)

∂βj

− np′
λn

(|βj |) sgn(βj )

= −n

d∑
l=1

∂2f (β0)

∂βj∂βl

(βl − βl0) + OP

(
n‖β − β0‖2)− np′

λn
(|βj |) sgn(βj )

= −np′
λn

(|βj |) sgn(βj ) + OP

(
n1/2),

where Ij l(β0) is the (j, l)-element of I (β0). Thus, it follows that

∂Q(β)

∂βj

= nλn

{−λ−1
n p′

λn
(|βj |) sgn(βj ) + OP

(
n−1/2/λn

)}
.

Since lim infn→∞ lim infθ→0+ λ−1
n p′

λn
(θ) > 0 and n−1/2/λn → 0, the sign of the

derivative is completely determined by that of βj . This completes the proof. �

PROOF OF THEOREM 3.2. It follows by Lemma 5.1 that Part (i) holds. Now
we prove Part (ii). Using the proof of Theorem 3.1, it can be shown that there exists
a β̂1 in Theorem 3.1 that is a root-n consistent local maximizer of Q{(βT

1 , 0)T },
satisfying the likelihood equations

∂Q(β)

∂βj

∣∣∣∣β=(β̂
T

1 ,0)T
= 0 for j = 1, . . . , s.(5.7)

Let U(β) be the score function of (5.1), that is

U(β) =
n∑

i=1

∫ 1

0
Xi(s) dNi(s) −

∫ 1

0

∑n
i=1 Yi(s)Xi (s) exp{βT Xi(s)}∑n

i=1 Yi(s) exp{βT Xi (s)} dN̄(s),

and denote

Î (β) =
∫ 1

0

(∑n
i=1 Yi(s)Xi(s)XT (s) exp{βT Xi(s)}∑n

i=1 Yi(s) exp{βT Xi (s)}

− [∑n
i=1 YiXi (s) exp{βT Xi(s)}][∑n

i=1 YiXi(s) exp{βT Xi(s)}]T
[∑n

i=1 Yi(s) exp{βT Xi (s)}]2

)
dN̄(s).

Note that β̂1 is a consistent estimator and βj0 �= 0. By Taylor’s expansion, it holds
for j = 1, . . . , s that
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∂�(β)

∂βj

∣∣∣∣β=(β̂
T

1 ,0)T
− np′

λn
(|β̂j |)

= Uj(β0) −
s∑

l=1

Îj l(β
∗)(β̂l − βl0)

− n
(
p′

λn
(|βj0|) sgn(βj0) + {p′′

λn
(|βj0|) + oP (1)}(β̂j − βj0)

)
,

where β∗ is on the line segment between β and β0, Uj (β0) is the j -th component
of U(β0) and Îj l(β

∗) is the (j, l)- element of Î (β∗).
Using Theorem 3.2 of Andersen and Gill (1982), it can be proved that

1√
n

U1(β0) → N{0, I1(β0)}

in distribution as n → ∞, where U1(β0) consists of the first s elements of U(β0),
and I1(β10) consists of the first s rows and columns of I (β0); furthermore,

1

n
Î (β∗) → I1(β0)

in probability as n → ∞. Since β0 = (βT
10, 0)T , it follows by using Slutsky’s

Theorem that
√

n(I1(β10) + 3)
{
β̂1 − β10 + (

I1(β10) + 3
)−1 b

}
→ N

{
0, I1(β10)

}
.

This completes the proof. �

PROOF OF THEOREM 3.3. Denote αn = n−1/2 + an, and let αn → 0. It
follows that for any u with ‖u‖ = C, θ 0 + αnu → θ0. Therefore (3.17) holds for
θn = θ0 + αnu, which implies that

1

n
{log P L(θ0 + αnu) − log P L(θ0)}

= −1

2
α2

nuT Ĩ0(θ0)u

(5.8)

+ αnuT

n

n∑
i=1

�̃0{(xi1, zi1, δi1), . . . , (xiJ , ziJ , δiJ )}

+ oP

(
αn‖u‖ + 1√

n

)2

.

As �̃0{(xi1, zi1, δi1), . . . , (xiJ , ziJ , δiJ )} is the efficient score function of marginal
likelihood of the i-th group data at θ = θ0, the second term of (5.9) is of the
order OP (αn‖u‖/

√
n). Note that αn/

√
n = OP (α2

n). By choosing sufficient large
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C, the first term will dominate the second one, uniformly in ‖u‖ = C. Following
the same strategy as the proof of Theorem 3.1, it can be shown that the results in
Theorem 3.3 hold. We omit the details, but see Fan and Li (2001b) for a rigorous
proof. �

PROOF OF THEOREM 3.4. The sparsity in Part (i) can be established
following the same lines in the proof of Lemma 5.1.

Similarly to the proof of Theorem 3.2, it follows by Corollary 1 of Murphy and
van der Vaart (2000) that

√
n{Ĩ1(θ10) + 31}[θ̂1 − θ10 + {Ĩ1(θ10) + 31}−1b1] → N(0, Ĩ1(θ10))

in distribution, where Ĩ1(θ10) consists of the first (s + 1) × (s + 1) submatrix of
Ĩ0(θ10, 0). See Fan and Li (2001b) for a rigorous proof. �
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