
The Annals of Statistics
2001, Vol. 29, No. 4, 1024–1049

ROBUST DESIGNS FOR POLYNOMIAL REGRESSION BY
MAXIMIZING A MINIMUM OF D- AND D1-EFFICIENCIES1

By Holger Dette and Tobias Franke

Ruhr-Universität Bochum

In the common polynomial regression of degree m we determine the
design which maximizes the minimum of the D-efficiency in the model of
degree m and the D1-efficiencies in the models of degree m− j� � � � �m+ k
(j� k ≥ 0 given). The resulting designs allow an efficient estimation of the
parameters in the chosen regression and have reasonable efficiencies for
checking the goodness-of-fit of the assumed model of degree m by testing
the highest coefficients in the polynomials of degree m− j� � � � �m+ k.

Our approach is based on a combination of the theory of canonical
moments and general equivalence theory for minimax optimality criteria.
The optimal designs can be explicitly characterized by evaluating certain
associated orthogonal polynomials.

1. Introduction. Consider the common polynomial regression model of
degree m ∈ �,

y = fT
m�x�ϑm + ε�(1.1)

where fm�x� = �1� x� � � � � xm�T denotes the vector of monomials up to the order
m�ϑm = �ϑm0� � � � � ϑmm�T is the vector of unknown parameters, ε is a ran-
dom error with mean 0 and constant variance and the explanatory variable
varies in a compact interval, say � . An approximate design is a probability
measure ξ with finite support in � [see Kiefer (1974)], where the masses rep-
resent the relative proportion of total observations taken at the corresponding
design points. The Fisher information matrix of an approximate design in the
polynomial regression of degree m is proportional to

Mm�ξ� =
∫
�
fm�x�fT

m�x�dξ�x�(1.2)

and an optimal (approximate) design maximizes an appropriate (concave) real
valued function of the matrix Mm�ξ�� which is called an optimality crite-
rion. There are numerous optimality criteria proposed in the literature [see,
e.g., Silvey (1980) or Pukelsheim (1993)], which can be used to discriminate
between different designs, and the solution to various optimal design prob-
lem for the polynomial regression model has been found in many cases [see,
e.g., Hoel (1958), Guest (1958), Kiefer and Wolfowitz (1959), Studden (1980,
1982a, b, 1989), Pukelsheim and Studden (1993)].
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Nevertheless many authors point out that these designs are not robust with
respect to the model assumption and cannot be used for checking any depar-
tures from the assumed model [see, Box and Draper (1959), Läuter (1974),
Huber (1975), Studden (1982b), Wiens (1992), Wong (1994) among many oth-
ers]. For example, an optimal design with respect to the classical criteria
advises the experimenter to take observations at m+ 1 points and can there-
fore not be used for checking higher degree polynomials. There are several
proposals in the literature to incorporate the problem of model adequacy in
the construction of optimal designs. Stigler (1971) proposed to use a model
of higher degree, say m + k �k ≥ 0� and to determine the D-optimal design
for the model of degreee m subject to a guaranteed efficiency for testing the
highest k coefficients in the model of degree m+k [see also Studden (1982b)].
Similary, Läuter (1974) proposed the maximization of a weighted geometric
mean of D-optimality criteria for the models of degree 1� � � � �m+ k� in order
to obtain robustness against misspecification of the degree [see also Dette
(1990) for a complete solution of Läuter’s problem in the polynomial case
and Wong (1994) for a robustness study in this case]. A different approach
was suggested by Wiens (1992) who obtained (minimax) designs which are
robust against “small” contaminations of the polynomial regression of degree
m. Spruill (1990) and Dette (1995) proposed optimal designs for identifying
the degree of the regression by maximizing the minimum of D1-criteria in the
models up to degreem+k. In the present paper we use a different criterion for
the determination of robust designs which are efficient for parameter estima-
tion and for testing the goodness-of-fit of the assumed regression model. We
assume that the experimenter has some preference for the model of degree
m, but also wants an efficient design for checking higher and lower degree
models. We propose to maximize a weighted minimum of the D-efficiency in
the (assumed) model of degree m (in order to obtain an efficient design for
estimating the parameters in the assumed model) and of the D1-efficiencies
in the polynomial regression models of degree m − j� � � � �m + k (in order to
obtain an efficient design for testing the highest coefficients in the polynomials
of degree m−j� � � � �m+k�. Note that for the model of degree m the criterion
contains a D1- and a D-efficiency (corresponding to testing and estimating in
this model). Section 2 introduces the criterion and gives some basic results on
the theory of canonical moments which were introduced by Skibinsky (1967)
and used by Studden (1980, 1982a, b, 1989) in the context of optimal design for
polynomial regression. In Section 3 we combine these results with some gen-
eral equivalence theorems for maximin criteria [see Pukelsheim (1993)] and
obtain a characterization of the optimal design by a system of nonlinear equa-
tions for its canonical moments. Section 4 discusses the most important case
where all efficiencies are equally weighted. Here we are able to describe the
optimal design analytically by evaluating certain linear combinations of asso-
ciated orthogonal polynomials [see Grosjean (1986) or Lasser (1994)], which
allows a simple calculation of the support points and weights using standard
software such as Maple or Mathematica.
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2. Maximizing the minimum of D- and D1-efficiencies. The D-effici-
ency of a design ξ in the polynomial regression of degree m is defined by

effDm�ξ� =
�Mm�ξ��1/�m+1�

supη �Mm�η��1/�m+1� �(2.1)

where � · � denotes the determinant and the sup in the denominator is taken
over the set of all designs such that �Mm�η�� 
= 0 [see Pukelsheim (1993)]. The
D-optimal design ξDm has D-efficiency equal to 1 and minimizes the volume
of the confidence ellipsoid for the parameter ϑm. The D-optimal design for
the polynomial regression model of degree m has been independently found
by Hoel (1958) and Guest (1958). Similary, the D1-efficiency in the model of
degree m is defined by

effD1
m �ξ� = �Mm�ξ��

�Mm−1�ξ��
·
(
sup
η

�Mm�η��
�Mm−1�η��

)−1
�(2.2)

A D1-optimal design has D1-efficiency equal to 1 and maximizes the power
of the t-test for the significance of the highest coefficient in the polynomial
of degree m. The D1-optimal design has been found by Kiefer and Wolfowitz
(1959) [see also Studden (1968, 1980)].
For the definition of our robust criterion let m > j ≥ 0, k ≥ 0, wm−j� � � � �

wm+k�w∗
m denote positive weights and define

�w
m�j�k�ξ� �= min

{
wm−j eff

D1
m−j�ξ�� � � � �wm+k eff

D1
m+k�ξ��w∗

m effDm�ξ�
}

(2.3)

as a weighted minimum of D- and D1- efficiencies. The weights reflect the
importance of the different goals of the experiment, that is, estimation of the
parameters in the model of degree m and discrimination between the models
of degrees l − 1 and l� where l = m − j� � � � �m + k. Note that increasing the
weight decreases the importance of the corresponding efficiency [because we
are forming the minimum in (2.3)] and that the efficiency effD1

l �ξ� for poly-
nomial regression of degree l is excluded in the maximin criterion (2.3) by
defining the corresponding weight as wl = ∞. A design maximizing the crite-
rion �w

m�j�k is expected to have good properties for estimating the parameters
in the assumed regression of degree m and for testing the adequacy of poly-
nomials of higher or lower degree.
Note that the criterion (2.3) is invariant with respect to affine transfor-

mations of the design space � and we assume from now on without loss
of generality � = �−1�1�. Designs maximizing the criterion (2.3) on different
design spaces are obtained from the results of this paper by an affine transfor-
mation onto the given design space. Moreover, strict concavity of the maximin
criterion �w

m�j�k implies that the maximin optimal design must be symmetric.
An important tool for determining optimal designs for polynomial regression
is the theory of canonical moments which was introduced by Studden (1980,
1982a, b) in this context [see also Lau (1983, 1988), Skibinsky (1986) and the
recent monograph of Dette and Studden (1997)]. Roughly speaking, every prob-
ability measure on the interval �−1�1� is uniquely determined by a sequence
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�p1� p2� � � �� whose elements vary independently in the interval �0�1�. For a
given probability measure on the interval �−1�1� the element pj of the cor-
responding sequence is called the jth canonical moment of the measure ξ.
If j is the first index for which pj ∈ �0�1�� then the sequence of canonical
moments terminates at pj� the measure is supported at a finite number of
points and can be determined by evaluating certain orthogonal polynomials
[see Skibinsky (1986) or Lau (1988)]. Moreover, a measure ξ is symmetric if
and only if all canonical moments of odd order are equal to 1/2 and for a
symmetric measure we obtain for the determinant of the information matrix,

�Mm�ξ�� =
m∏
i=1

�q2i−2p2i�m−i+1�(2.4)

where p2� p4� � � � � p2m denote the canonical moments of the symmetric design
ξ and q2j = 1 − p2j �j = 1� � � � �m�. Observing this identity we can easily
identify the canonical moments of the D-optimal design for the polynomial
regression of degree m, that is,

p2l =
m− l+ 1

2�m− l� + 1
� p2l−1 =

1
2
� l = 1� � � � �m(2.5)

(note that the D-optimal design must be symmetric which determines the
canonical moments of odd order), which gives for the D-efficiency of a sym-
metric design ξ,

effDm�ξ� =
1
bm

m∏
j=1

�q2j−2p2j��m−j+1�/�m+1��(2.6)

where the constant bm is given by

bm =
((

m

2m− 1

)m m∏
i=2

( �m− i+ 1�2
�2�m− i� + 1��2�m− i� + 3�

)m+1−i)1/�m+1�
�(2.7)

Similary, the D1-efficiency of a symmetric design ξ in the polynomial regres-
sion of degree m is given by

effD1
m �ξ� = 22�m−1�

m∏
j=1

q2j−2p2j�(2.8)

We finally note that the maximin optimal designs for the weights w0 �=
�wm−j� � � � �wm+k�w∗

m� with w∗
m = ∞ (in other words we are maximizing the

minimum ofD1-efficiencies) have been found by Dette (1995) who showed that
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the maximin optimal design has canonical moments

p2l = 1
2 � l = 1� � � � �m− j− 1�(2.9)

p2m+2k = 1�(2.10)

p2l = max
{
1− wl

22�m+k−l�wm+k
∏m+k−1

i=l+1 p2i�1− p2i�
�
1
2

}
�(2.11)

l = m+k− 1� � � � �m− j. It will be demonstrated in Sections 3 and 4 that the
constrained optimal design [with respect to the maximin criterion (2.3)] can
be described explicitly by a system of (nonlinear) equations for its canonical
moments. The measure corresponding to the “optimal” canonical moments
specified by this system can then be determined numerically by standard
methods [see Dette and Studden (1997), Section 3]. Moreover, in important
special cases the maximin optimal designs can be found analytically.

3. Maximin optimal designs: the general case. A basic tool for deter-
mining the optimal design maximizing the criterion in (2.3) is the following
equivalence theorem, which characterizes the maximin optimal design by a
simple inequality. Throughout this paper el = �0� � � � �0�1�T ∈ �l+1 denotes
the �l+ 1�th unit vector.

Theorem 3.1. A design ξ∗ maximizes the minimum of efficiencies in the
optimality criterion (2.3) if and only if there exist nonnegative numbers
αm−j� � � � � αm+k� α∗

m with sum equal to 1 such that the following conditions
are satisfied:

αlwl eff
D1
l �ξ∗� = αl�

w
m�j� k�ξ∗�� l = m− j� � � � �m+ k�(3.1)

α∗
mwm effDm�ξ∗� = α∗

m�
w
m�j�k�ξ∗��(3.2)

m∑
l=1

α∗

m+ 1

(
eTl M

−1
l �ξ�fl�x�

)2
eTl M

−1
l �ξ�el

+
m+k∑

l=m−j
αl

(
eTl M

−1
l �ξ�fl�x�

)2
eTl M

−1
l �ξ�el

≤ 1− α∗

m+ 1

(3.3)

for all x ∈ �−1�1�.

Proof. Using general equivalence theory [see, e.g., Pukelsheim (1993)] we
obtain that a design maximizes the criterion (2.3) if and only if there exists
nonnegative numbers αm−j� � � � � αm+k� α∗

m with sum equal to 1 such that (3.1),
(3.2) are satisfied and the inequality

α∗

m+ 1
fT
m�x�M−1

m �ξ�fm�x� +
m+k∑

l=m−j
αl

(
eTl M

−1
l �ξ�fl�x�

)2
eTl M

−1
l �ξ�el

≤ 1(3.4)
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holds for all x ∈ �−1�1�. It is easy to see that for a design ξ with nonsingular
information matrix Mm�ξ� the polynomials

Pl�x� ξ� =
eTl M

−1
l �ξ�fl�x�

�eTl M−1
l �ξ�el�1/2

� l = 0� � � � �m

are orthonormal with respect to the design ξ and that the vector P�x� =
�P0�x� ξ�� � � � �Pm�x� ξ��T satisfies

P�x� = Afm�x�
for a nonsingular matrix A ∈ �m+1×m+1. This implies for any design such that
�Mm�ξ� �
= 0,

fT
m�x�M−1

m �ξ�fm�x� =
m∑
l=0

P2
l �x� ξ� =

m∑
l=0

(
eTl M

−1
l �ξ�fl�x�

)2
eTl M

−1
l �ξ�el

�

which gives in a combination with (3.4) the assertion of the theorem. ✷

Theorem 3.2. (a) Let η∗ denote the design with canonical moments given
by (2.9)–(2.11). If

w∗
m effDm�η∗� ≥ min

{
wl eff

D1
l �η∗��l = m− j� � � � �m+ k

}
(3.5)

then the design η∗ also maximizes the criterion �w
m�j�k defined in (2.3).

(b) If the design η∗ defined by the canonical moments in (2.9)–(2.11) does
not satisfy the inequality �3�5�, the canonical moments of even order of the
optimal design η∗ maximizing (2.3) are uniquely determined and obtained as
follows �all canonical moments of odd order are equal 1

2�: p2m+2k = 1.

(i) In the case k ≥ 1� there exists a positive integer n ∈ �m−j−1� � � � �m�
such that �p2� � � � � p2m+2k−2� ∈ � 12 �1�m+k−1 is the unique solution of the system
of nonlinear equations

p2l = max
{
1− wl

22�m+k−l�wm+k
∏m+k−1

i=l+1 p2i�1− p2i�
�
1
2

}
�(3.6)

�l = m+ k− 1�m+ k− 2� � � � �m+ 1��

p2l = 1− 2−2�m+k−l�wl

wm+k
∏m+k−1

i=l+1 p2i�1− p2i�
�(3.7)

�l = m�m− 1� � � � � n+ 1��

p2l=max
{
1− 2−2�m+k−l�wl

wm+k
∏m+k−1

i=l+1 p2i�1− p2i�
�

1−
[
2+ 2p2n − 1

p2n

n−1∏
i=l+1

1− p2i

p2i

]−1}
�

�l = n− 1� n− 2� � � � �m− j− 1��

(3.8)
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p2l =
�2�m− j− l� − 1�p2�m−j−1� −m+ j+ l+ 1

4�m− j− l− 1�p2�m−j−1� − 2�m− j− l� + 3
�(3.9)

�l = m− j− 2�m− j− 3� � � � �1��

wm+k2
2�m+k−1�

m+k−1∏
l=1

p2l�1− p2l�

= w∗
m

bm

( m∏
l=1

pm−l+1
2l �1− p2l�m−l

)1/�m+1�(3.10)

such that the inequalities

wn ≥ 22�m+k−n�wm+k�1− p2n�
m+k−1∏
l=n+1

p2l�1− p2l��(3.11)

2p2n − 1
1− p2n

≤
( l−1∏
i=n+1

1− p2i

p2i

)
2p2l − 1

p2l
� l = n+ 1� � � � �m(3.12)

are satisfied, where bm is defined by (2.7) and the convention wm−j−1 = ∞ is
used.

(ii) If, in the case k = 0� the D-optimal design ξDm for the polynomial
regression model of degree m satisfies

�w
m�j�k�ξDm� = w∗

m effDm�ξDm� = w∗
m�

then ξDm is also maximin optimal with respect to the criterion (2.3). Otherwise
there exist integers z ∈ �m− j� � � � �m� and n = n�z� ∈ �m− j− 1� � � � � z− 1�
such that the canonical moments �p2� � � � � p2m−2� of even order of the maximin
optimal design are the unique solution in the cube � 12 �1�m−1 of the system of
nonlinear equations: p2m = 1,

p2l =
m− l+ 1

2�m− l� + 1
� l = m− 1�m− 2� � � � � z+ 1�(3.13)

p2l = 1− 2−2�z−l�wl

wzp2z
∏z−1

i=l+1p2i�1− p2i�
�(3.14)

l = z− 1� z− 2� � � � � n+ 1�

2p2n − 1
1− p2n

=
m−1∏
l=n+1

1− p2l

p2l
(3.15)

�if z < m and n > 0�,
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p2l=max
{
1− 2−2�z−l�wl

wzp2z
∏z−1

i=l+1p2i�1− p2i�
�

1−
(
2+ 2p2n − 1

p2n

n−1∏
i=l+1

1− p2i

p2i

)−1}
�

l = n− 1� n− 2� � � � �m− j− 1�

(3.16)

p2l =
�2�m− j− l� − 1�p2�m−j−1� −m+ j+ l+ 1

4�m− j− l− 1�p2�m−j−1� − 2�m− j− l� + 3
�(3.17)

l = m− j− 2�m− j− 3� � � � �1�

wz2
2�z−1�p2z

z−1∏
l=1

p2l�1− p2l�

= w∗
m

bm

( m∏
l=1

pm−l+1
2l �1− p2l�m−l

)1/�m+1�
�

(3.18)

such that the inequalities

wn ≥ 22�z−n�wz�1− p2n�
z−1∏

l=n+1
p2l�1− p2l��(3.19)

wz≤22�l−z�wl�1− p2z�
l−1∏

i=z+1
p2i�1− p2i��

l = z+ 1� z+ 2� � � � �m�

(3.20)

2p2n − 1
1− p2n

≤
( l−1∏
i=n+1

1− p2i

p2i

)
2p2l − 1

p2l
�

l = n+ 1� n+ 2� � � � � z

(3.21)

are satisfied, where bm is defined by (2.7), wm−j−1 = ∞ and in the case n = 0
the inequalities (3.21) have to be replaced by the system

2p2l − 1
1− p2l

≥
m−1∏
i=l+1

1− p2i

p2i
� l = 1� � � � � z�(3.22)

Remark 3.3. Note that we do not claim the uniqueness of the constants z
and n in Theorem 3.2. However, the canonical moments of the maximin opti-
mal design are unique, because the optimization problem (2.3) has a unique
solution. It is also worthwhile to mention that Theorem 3.2 guarantees the
existence of a z [and n = n�z�] such that the system of nonlinear equations
has a solution p2� � � � � p2m+2k−2 in the cube � 12 �1�m+k−1.
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Proof of Theorem 3.2. A standard argument of optimal theory shows the
existence of a maximin optimal design. Because the maximin criterion (2.3)
is strictly concave it follows from the results of Section 2 that the optimal
design is unique and all canonical moments of odd order of the optimal design
equal 1/2.

(a) By the discussion in Section 2 the design η∗ with canonical moments
given by (2.9)–(2.11) maximizes

#w
m�j�k �= min�wl eff

D1
l �ξ��l = m− j� � � � �m+ k�

and it follows from (3.5),

max
ξ

�w
m�j� k�ξ� ≤ max

ξ
#w

m�j� k�ξ� = #w
m�j�k�η∗� = �w

m�j�k�η∗��

which also proves optimality of η∗ with respect to the maximin criterion�w
m�j�k.

(b) Assume that (3.5) is not satisfied and that k > 0. Observing Theorem
3.1 of this article and Theorem 6.3.2 in Dette and Studden (1997) (for p = 0�
it follows that η∗ maximizes the criterion (2.3) if and only if there exists a
prior �β1� � � � � βm+k� for the class of polynomials of degreee 1� � � � �m+ k with
βm+k > 0 such that the equations

βl = β1� l = 2� � � � �m− j− 1�(3.23) (
βl − min

i=1�����m
βi

)
wleff

D1
l �η∗� =

(
βl − min

i=1�����m
βi

)
�w

m�j�k�η∗��(3.24)

l = m− j� � � � �m�

βlwl eff
D1
l �η∗�=βl�

w
m�j� k�η∗��(

min
i=1�����m

βi

)
wm∗ effDm�η∗�=

(
min

i=1�����m
βi

)
�w

m�j�k�η∗��
(3.25)

l = m+1� � � � �m+k� are satisfied and such that the design η∗ maximizes the
weighted geometric mean of D1-efficiencies

m+k∑
l=1

βl log eff
D1
l �ξ��(3.26)

This follows directly by identifying the corresponding weights in the equiva-
lence theorems for both criteria. Additionally we obtain

β1 = min
i=1�����m

βi

whenever j ≤ m−2. Now Theorem 6.2.6 in Dette and Studden (1997) expresses
the weights βl of the criterion (3.26) in terms of the canonical moments of the
maximin optimal design η∗; that is,

βl =
l−1∏
j=1

q2j

p2j

(
1− q2l

p2l

)
� l = 1� � � � �m+ k�(3.27)
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From βm+k > 0 and (3.25) we have

wm+k eff
D1
m+k�η∗� = �w

m�j�k�η∗� = w∗
m effDm�η∗�(3.28)

[note that (3.5) is not satisfied in case (b)] which implies (3.10) observing (2.6)
and (2.8). A further application of (3.25) and (2.8) for l = m+ k− 1 yields

βm+k−1
4q2m+2k−2

= βm+k−1 eff
D1
m+k−1�η∗�

effD1
m+k�η∗�

= βm+k−1
wm+k
wm+k−1

�(3.29)

This gives either p2m+2k−2 = 1
2 (equivalently βm+k−1 = 0� or

p2m+2k−2 = 1− wm+k−1
4wm+k

�

Because

wm+k−1 eff
D1
m+k−1�η∗� ≥ �w

m�j�k�η∗� = w∗
m effDm�η∗� = wm+k eff

D1
m+k�η∗�

and βm+k−1 ≥ 0 we obtain from (2.8) and (3.27) the identity (3.6) for l =
m+k− 1. Repeating these arguments yields the remaining equations in (3.6)
for l = m + k − 2� � � � �m + 1. From (3.23) and (3.27) we directly obtain (3.9),
by induction. If we define

n = max
{
l ∈ �1� � � � �m� � βl = min

i=1�����m
βi

}
�(3.30)

then (3.7) follows directly observing (3.24) and (2.8), because for l = n +
1� � � � �m the corresponding factors βl−mini=1�����m βi in (3.24) are all positive.
Similary we derive from βn < βl �l = n+1� � � � �m� and (3.27) the inequalities
(3.12). The system of equations in (3.8) is also obtained from (3.24) as follows.
If βl > βn for l = n− 1� n− 2� � � � �m− j we have from (3.24),

wl eff
D1
l �η∗� = wm+k eff

D1
m+k�η∗��

which gives by (2.8),

p2l = 1− 2−2�m+k−l�wl

wm+k
∏m+k−1

i=l+1 p2i1− p2i

�

Otherwise the equation βn = βl and (3.27) imply

p2l = 1−
[
2+ 2p2n − 1

p2n

n−1∏
i=l+1

q2i
p2i

]−1
�

Because

wl eff
D1
l �η∗� ≥ wm+k eff

D1
m+k�η∗�

and βl ≥ βn we obtain that the optimal value for p2l is the corresponding max-
imum of these expressions for l = n−1� � � � �m−j. If j ≤ m−2, the remaining
case l = m−j−1 in (3.8) follows from β1 = βn = minml=1 βl and (3.23) using the
convention wm−j−1 = ∞. Finally, the inequality (3.11) is obtained from (2.8)
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and (3.28) which implies wm+k eff
D1
m+k�η∗� ≤ wneff

D1
n �η∗�. This shows that in

the case k > 0 the canonical moments of the maximin optimal design with
respect to the criterion �w

m�j�k in (2.3) satisfy the conditions specified by part
(i) of Theorem 3.2.
Reversing these arguments shows that any design with canonical moments

satisfying the system of equations and inequalities in Theorem 3.2(i) also satis-
fies the conditions (3.1)–(3.3) of Theorem 3.1, which proves its optimality with
respect to the criterion �w

m�j�k. Thus the class of maximin optimal designs
(with respect to the criterion �w

m�j�k) is characterized by the system of nonlin-
ear equations for the corresponding canonical moments in part (i) of Theorem
3.2 and the assertion follows because the optimization problem (2.3) has a
unique solution. The assertion for the case k = 0 in part (ii) is proved similary
[see Franke (2000)] and its proof therefore omitted. ✷

4. Two special cases. In this section we discuss a special but very impor-
tant situation in the optimality criterion (2.3), where all weights wl�w

∗
m are

equal. In this case the maximin optimality criterion reduces to

�m�j�k�ξ� = min
{
effDm�ξ�� effD1

m−j�ξ�� � � � � effD1
m+k�ξ�

}
�(4.1)

Similary, if wm = ∞ and all other weights are equal the maximin criterion
(2.3) yields

χm�j�k�ξ�=min
{
effDm�ξ�� effD1

m−j�ξ�� � � � � effD1
m−1�ξ��

effD1
m+1�ξ�� � � � � effD1

m+k�ξ�
}
�

(4.2)

Note that for the choice k = j = 0 the criterion χm�0�0 gives the D-optimality
criterion for which the optimal design was explicitly found by Hoel (1958). For
the criterion (4.1) and (4.2) the optimal designs can also be found analytically
using the associated ultraspherical polynomials, which are defined recursively
by

C
�λ�
−1�x� ν�=0� C

�λ�
0 �x� ν� = 1�

�n+ ν + 1�C�λ�
n+1�x� ν�=2�n+ ν + λ�xC�λ�

n �x� ν�
−�n+ ν + 2λ− 1�C�λ�

n−1�x� ν��
(4.3)

n ≥ 0 [see Grosjean (1986) or Lasser (1994)]. We will frequently make use of
the monic form of these polynomials defined by

Ĉ
�λ�
n �x� ν� = �ν + 1�n

2n�ν + λ�n
C

�λ�
n �x� ν��(4.4)
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where �α�0 �= 1; �α�n �= α�α + 1� · · · �α + n − 1� if n ≥ 1. These polynomials
satisfy the recursion

Ĉ
�λ�
0 �x� ν� = 1� Ĉ

�λ�
1 �x� ν� = x�

Ĉ
�λ�
n+1�x� ν� = xĈ

�λ�
n �x� ν� − �n+ ν + 2λ− 1��n+ ν�

4�n+ ν + λ− 1��n+ ν + λ� Ĉ
�λ�
n−1�x� ν��

n ≥ 1�

(4.5)

Theorem 4.1. If j = k = 0 and m ≥ 2 the maximin optimal design η∗

with respect to the criterion (4.1) has canonical moments p2m = 1�p2l−1 = 1
2 ,

l = 1� � � � �m� and �p2� � � � � p2m−2� is the unique solution of the system of equa-
tions

p2�m−1−l� =
�2l+ 1�p2�m−1� − l

4lp2�m−1� − 2l+ 1
� l = 1� � � � �m− 2�(4.6)

1 = bm+1
m 22�m

2−1�
m−1∏
l=1

pl
2l�1− p2l�l+1�(4.7)

in the cube � 12 �1�m−1. The support points x0� � � � � xm are given by the zeros of
the polynomial

�x2 − 1�C�3/2�
m−1 �x� ν − 1�

and the masses are obtained as

η∗�xl� =
�ν +m− 1�

[
xl
ν
C

�1/2�
m−1 �xl� ν − 1� − 1

ν+1C
�1/2�
m−2 �xl� ν + 1�

]
d
dx

�x2 − 1�C�3/2�
m−1 �x� ν − 1�∣∣

x=xl

(l = 0� � � � �m) where the parameter ν is defined by

ν = 1− p2m−2
2p2m−2 − 1

and p2m−2 is obtained from (4.6) and (4.7).
Otherwise the support points x0� � � � � xm+k of the maximin optimal design

with respect to the criterion (4.1) are given by the zeros of the polynomial

Qm+k+1�x� �=Um−j−1�x�Tk+j+2�x�+�k+j�Tk+m+1�x�−Um+k−1�x��(4.8)

where Tl�x� and Ul�x� denote the Chebyshev polynomial of the first and second
kind, respectively. The masses at the support points are obtained by

η∗�xl� =
�k+ j+ 1�Um+k�xl� −Um−j−2�xl�Uk+j�xl�

d
dx
Qm+k+1�x� �x=xl

�(4.9)

l = 0� � � � �m+ k�
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Proof. We start with an examination of condition (3.5) in Theorem 3.2.
Observing (2.9)–(2.11) it follows by a straightforward induction �wl = 1� l =
m− j� � � � �m+ k� that the design η∗ specified in part (a) of Theorem 3.2 has
canonical moments p2l−1 = 1/2, l = 1� � � � �m+ k; and

p2l =


1
2
� if 1 ≤ l < m− j�

m+ k− l+ 2
2�m+ k− l� + 2

� if m− j ≤ l ≤ m+ k�

(4.10)

Now a straightforward but tedious calculation shows that for equal weights
the inequality (3.5) in Theorem 3.2 can be rewritten as

(
m− 1

2

m

)m m∏
l=2

[�m+ 1
2 − l��m+ 3

2 − l�
�m− l+ 1�2

]m−l+1
≥
(
1
2

)m+1(k+ j+ 2
k+ j+ 1

)m−j
�

Elementary but cumbersome calculus shows that this inequality is always
satisfied except in the case k = j = 0 and m ≥ 2.

(i) Therefore the case k = j = 0 andm ≥ 2 requires the application of part
(ii) of Theorem 3.2. More precisely, it is easy to see that the D-optimal design
is not maximin optimal. With z = m and n = m − 1 the system of equations
(3.13)–(3.18) reduces to (4.6) and (4.7) and the inequality (3.19) is satisfied
(note that wm−1 = ∞ and that the inequality (3.20) does not appear in this
case). Moreover, it is easy to see that (4.6) and (4.7) define a unique solution
�p2� � � � � p2m−2�. Note that for p2m−2 = 2

3 the equation (4.6) gives the canonical
moments of the D-optimal design in (2.5), for which the left-hand side of
(4.7) is clearly greater than the right-hand side. Moreover, a straightforward
calculation shows that (4.6) is increasing and the right-hand side of (4.7) is
decreasing with increasing p2m−2, which proves that the canonical moments of
the maximin optimal design are less or equal than the corresponding canonical
moments of the D-optimal design. Especially we obtain p2m−2 ≤ 2

3 which
proves the remaining inequality (3.21).
By Theorem 3.4.1 in Dette and Studden (1997) the Stieltjes transform of

the measure η∗ is given by∫ 1

−1
dη∗�z�
x− z

=
m∑
l=0

η∗��xl��
x− xl

= Pm�x� q�
�x2 − 1� �Qm−1�x�p�

�

where �Qm−1�x�p��Pm�x� q� are the supporting polynomials of the
sequences

1
2 � p2�

1
2 � � � � �

1
2 � p2m−2�

1
2 �1�

1
2 � q2�

1
2 � � � � �

1
2 � q2m−2�

1
2 �0�

respectively [and the canonical moments are obtained from (4.6) and (4.7)].
Note that �Qm−1�x�p� is also the supporting polynomial of the sequence

1
2 � q2m−2�

1
2 � � � � �

1
2 � q2�

1
2 �1
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[see Studden (1982a)] and obtained recursively as �Qm−1�x�p� = �Qm−1�x�,�Q−1�x� = 0, �Q0�x� = 1,

�Ql+1�x� = x �Ql�x� − p2m−2l−2q2m−2l �Ql−1�x�

= �Ql�x� −

(
l+ p2m−2

2p2m−2−1

)(
l+ 2−3p2m−2

2p2m−2−1

)
4
(
l+ 1

2�2p2m−2−1�

)(
l+ 3−4p2m−2

2�2p2m−2−1�

) �Ql−1�x�

�l = 0� � � � �m − 2� [see Dette and Studden (1997)]. Comparing this recursive
relation with (4.4) and (4.5) yields

�Qm−1�x�p� =
�ν�m−1

2m−1(ν + 1
2

)
m−1

�x2 − 1�C�3/2�
m−1 �x� ν − 1��

A similar argument shows

Pm�x� q� =
�ν + 1�m−1

2m−1�ν + 1
2�m−1

[
xC

�1/2�
m−1 �x� ν� −

ν

ν + 1
C

�1/2�
m−2 �x� ν + 1�

]
and the assertion follows by calculating the coefficients in the partial fraction
expansion of the Stieltjes transform.
(ii) If k + j ≥ 1 or m = 1 part (a) of Theorem 3.2 shows that the design

with canonical moments given by (4.10) is maximin optimal with respect to
the criterion (4.1). The assertion now follows from Theorem 4.4 and equation
(4.2) in Dette (1995) [with k = m − j� n = m + k� ρ = ϑ = 2� observing the
identities Ul�1� = l+ 1 �l ∈ ��,

Ui+l�x�=Ui�x�Ul�x� −Ui−1�x�Ul−1�x� �i� l ≥ 0��
2Tl�x�=Ul�x� −Ul−2�x� �l ≥ 2��

(4.11)
✷

Example 4.2. Consider a cubic regression model and assume that j =
k = 0. In other words we are searching for the design maximizing

�3�0�0�ξ� = min
{
effD1

3 �ξ�� effD3 �ξ�
}
�

From part (a) of Theorem 4.1 and (2.7) we obtain that the design maximizing
�3�0�0 has canonical moments p1 = p3 = p5 = 1/2�p6 = 1 and p2� p4 are
determined from the equations

�4p4 − 1�3c = �3p4 − 1�p4
4�1− p4�3�

p2 =
3p4 − 1
4p4 − 1

�

where c = 55/220. The numerical solution of this system yields

p2 = 0�548724� p4 = 0�56052
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and the maximin optimal design η∗ has masses 0�203� 0�297� 0�297� 0�203
at the points −1� −0�491� 0�491 and 1, respectively [see Dette and Studden
(1997), page 106]. This design produces equal efficiencies, that is,

effD3 �η∗� = effD1
3 �η∗� = 0�97599�

We finally note that the D-optimal design ξD3 for the cubic model has D1-
efficiency effD1

3 �ξD3 � = 0�8533 while the D1-optimal design in this model has
D-efficiency 0�9346.

Example 4.3. If we assume that k = 0� j = 1 andm ≥ 2, we are interested
in a design which has reasonable D-efficiency for estimating the parameters
in the model of degree m and reasonable efficiencies for testing the highest
coefficients in the model of degree m − 1 and m. In this case we are looking
for the design η∗ which maximizes

�m�1�0�ξ� = min
{
effDm�ξ�� effD1

m �ξ�� effD1
m−1�ξ�

}
�

Observing the definition of the Chebyshev polynomials

Tj�x� = cos�jarccosx�� Uj�x� =
sin��j+ 1�arccosx�

sin�arccosx�
[see Szegö (1975)], we obtain from Theorem 4.1 that the zeros of the polynomial

Qm+1�x� = 2�x2 − 1��4xUm−2�x� −Um−3�x��
give the support points of the optimal design η∗ maximizing the criterion
�m�1�0. Moreover, from (4.10) it follows that the canonical moments of η∗ are
given by pl = 1/2 (l = 1� � � � �2m − 3), p2m−2 = 3/4, p2m−1 = 1/2, p2m = 1,
which yields equal D1-efficiencies in the models of degree m− 1 and m, that
is,

effD1
m−1�η∗� = effD1

m �η∗� = 0�75�

As a specific example consider the cubic case m = 3, where we obtain for the
polynomial Q4�x� in (4.8),

Q4�x� = 2�8x2 − 1��x2 − 1�
and the design η∗ maximizing the criterion �3�1�0 is supported at the points
−1�−1/√8�1/√8�1. The corresponding masses are obtained from (4.9) observ-
ing that the polynomial in the numerator is given by 2�8x3−5x�� which yields

η∗�∓1� = 3
14

� η∗
(
∓ 1√

8

)
= 2
7
�

This design has efficiencies

effD1
l �η∗� = 0�75� l = 2�3� effD3 �η∗� = 0�9625

in the quadratic and cubic model.
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Example 4.4. Consider the case k = j = 1 and m = 3, where we are
interested in a design with reasonable D-efficiency in the cubic model, which
also allows efficient testing of the highest coeffcients in the models of degree
2� 3 and 4. The design η∗ maximizing the criterion

�m�1�1�ξ� = min
{
effDm�ξ�� effD1

m+1�ξ�� effD1
m �ξ�� effD1

m−1�ξ�
}

can be determined by a further application of Theorem 4.1. The supporting
polynomial in (4.8) is given by

Q5�x� = 2xT4�x� + 2T5�x� −U3�x� = 16�3x2 − 1��x2 − 1��
which yields −1� −1/√3� 0� 1/√3� 1 as the support points of η∗. The corre-
sponding weights are obtained from formula (4.9) and are given by 3/16� 3/16,
1/4� 3/16� 3/16, respectively. This design has D1-efficiencies

effD1
2 �η∗� = effD1

3 �η∗� = effD1
4 �η∗� = 2/3

and D-efficiency

effD3 �η∗� = 0�9074

in the cubic model. It is worthwhile to mention that in the case m > 3 the
design maximizing the criterion�m�1�1 yields equalD1-efficiencies in the mod-
els of degree m − 1� m� m + 1. A proof of this statement follows by similar
arguments as given in Example 4.3 and is therefore omitted.

In the remaining part of this section we will concentrate on the maximin
problem (4.2), where for each model exactly one efficiency appears in the max-
imin criterion.

Theorem 4.5. The maximin optimal design η∗ with respect to the criterion
(4.2) can be characterized as follows.

(a) If k = 0; j = m− 1 ≥ 1 the maximin optimal design η∗ is supported at
the roots of the polynomial

�x2 − 1�C�2�
m−1�x� ν��(4.12)

and the masses are given by

η∗�xl� =
�ν +m�

[
Um�xl� − ν

ν+2Um−2�xl�
]

2�ν + 1� d
dx

[�x2 − 1�C�2�
m−1�x� ν�

]∣∣
x=xl

� l = 0� � � � �m�(4.13)

where

ν = 3− 4p2�m−1�
2p2�m−1� − 1

�(4.14)
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and p2m−2 is the solution of the equation

2�m+1��m−2�bm+1
m = �1− p2�m−1��

(
4�m− 2�p2�m−1� − 2�m− 3�)

2�m− 1�p2�m−1� − �m− 2�(4.15)

in the interval � 12 �1�.
(b) If k = 0� j ≥ 1� m − j ≥ 2 the maximin optimal design η∗ has canon-

ical moments p2l−1 = 1/2 �l = 1� � � � �m�� p2m = 1 and �p2� � � � � p2m−2� ∈
� 12 �1�m−1 is the unique solution of

p2�m−1−l� =
2�l+ 1�p2�m−1� − l

4lp2�m−1� − 2�l− 1� � l = 1� � � � � j− 1�

p2�m−j−1−l� =
�2l+ 1�p2�m−j−1� − l

4lp2�m−j−1� − 2l+ 1
� l = 1� � � � �m− j− 2�

p2�m−j−1� =
1+∏m−1

l=m−j
1−p2l
p2l

2+∏m−1
l=m−j

1−p2l
p2l

�

1− p2�m−1� =22m
2−2mj+j2−j−4bm+1

m p
m−j
2�m−j�

m−j−1∏
l=1

pl
2l�1− p2l�l+1�

(4.16)

The support points of the maximin optimal design η∗ are given by the zeros of
the polynomial �x2 − 1�Qm−1�x� where

Qm−1�x� =
[
C

�2�
j �x� ν�C�3/2�

m−j−1�x�ηj+1 − 1�

−ηj+1 + 1

ηj+1
C

�2�
j−1�x� ν�C�3/2�

m−j−2�x�ηj+1�
]
�

and the weights are obtained by the formula

η∗�xl� =
Pm�xl�

d
dx

�x2 − 1�Qm−1�x�
∣∣
x=xl

�

where

Pm�x� =
�ηj+1 +m− j− 1��ν + j+ 1�

2ηj+1�ν + 1�

×
{
C

�1/2�
m−j−1�x�ηj+1�

[
Uj+1�x� −

ν

ν + 2
Uj−1�x�

]
− ηj+1
ηj+1 + 1

· j+ ν + 2
j− ν − 3

·C�1/2�
m−j−2�x�ηj+1 + 1�

×
[
Uj�x� −

ν

ν + 2
Uj−2�x�

]}
�
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ν is defined in (4.14), ηj+1 given by

ηj+1 =
1− p2m−2j−2
2p2m−2j−2 − 1

and p2m−2j−2, p2m−2 are obtained from the system (4.16).
(c) If k = 1� j = 0 the maximin optimal design η∗ is supported at the zeros

of the polynomial

�x2 − 1�C�3/2�
m �x�η0 − 1��(4.17)

and the weights are given by

η∗�xl� =
xlC

�1/2�
m �xl�η0� − η0

η0+1C
�1/2�
m−1 �xl�η0 + 1�

η0
η0+m

d
dx

[�x2 − 1�C�3/2�
m �x�η0 − 1�]∣∣

x=xl

�(4.18)

l = 0� � � � �m+1. Here η0 = �1−p2m�/�2p2m−1� and p2m ∈ � 12 �1� is determined
from the system

p2�m−l� =
�2l+ 1�p2m − l

4lp2m − 2l+ 1
� l = 1� � � � �m− 1�

1= bm+1
m 22m�m+1�

m∏
l=1

pl
2l�1− p2l�l+1�

(4.19)

(d) If k = 2� m = 1 the maximin optimal design η∗ puts masses 0�2395 and
0�2605 at the points ∓1 and ∓0�3711� respectively.
(e) If j = 0� k ≥ 3 or j = 0� k = 2� m ≥ 2 the maximin optimal design is

supported at the zeros of the polynomial

Hm+k+1�x� = �x2 − 1��Um�x�U′
k�x� −Um−1�x�U′

k−1�x���(4.20)

and the masses are given by

η∗�xl� =
kUm+k�xl� −Uk−1�xl�Um−1�xl�

H′
m+k−1�xl�

� l = 0� � � � �m+ k�(4.21)

(f) If j ≥ 1� k ≥ 1 the maximin optimal design η∗ is supported at the zeros
of the polynomial

Qm+k+1�x�= �x2 − 1�
[(

k

k+ 1
U′

k+1�x� +
1

k+ 1
U′

k−1�x�
)
· (Um−j−1�x�

×C
�2�
j �x� k− 1� −Um−j−2�x�C�2�

j−1�x� k− 1�)− k+ 2
k

×U′
k�x�

(
Um−j−1�x�C�2�

j−1�x� k� −Um−j−2�x�C�2�
j−2�x� k�

)]
(4.22)

and the masses are obtained from

η∗�xl� =
�k+ j�Pm+k�xl�
d
dx
Qm+k+1�x��x=xl

� l = 0� � � � �m+ k�(4.23)
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where the polynomial Pm+k�x� is defined by

Pm+k�x�=
[(

Uk+1�x� −
1
k
Uk−1�x�

)

×
(
Um−1�x� −

1
j+ k

Um−j−2�x�Uj−1�x�
)

− k

k+ 1
Uk�x�

(
Um−2�x� −

1
j+ k

Um−j−2�x�Uj−2�x�
)]

�

(4.24)

Proof. In a first step we check if condition (3.5) in Theorem 3.2(a) is
satisfied. It is easy to see that for k = 0 the inequality (3.5) cannot be true.
For the case k > 0 we note that for wm = ∞, w∗

m = ∞, wl = 1 �l = m −
j� � � � �m−1�m+1� � � � �m+k� the canonical moments in (2.9)–(2.11) are given
by p2l−1 = 1

2�l = 1� � � � �m+ k�,

p2l=
m+ k− l+ 2

2�m+ k− l+ 1� � l = m+ 1� � � � �m+ k�

p2l=
1
2
� l = 1� � � � �m− j− 1�m�

p2l=
m+ k− l+ 1
2�m+ k− l� � l = m− j� � � � �m− 1�

(4.25)

which implies

effD1
l �η̃� = j+ k+ 1

2�j+ k� � l = m− j� � � � �m− 1�m+ 1� � � � �m+ k

for the design η̃ with canonical moments given by (4.25). For this design the
D-efficiency is obtained as

effDm�η̃� =
1
bm

[(
1
2

)m2(
k+ j+ 1
k+ j

)j+1 k

k+ 1

]1/�m+1�

and a straightforward but tedious calculation shows that condition (3.5) in
Theorem 3.2 is satisfied whenever

j = 0� k ≥ 3 or j = 0� k = 2� m ≥ 2�(e)

j ≥ 1� k ≥ 1�(f)

Here the design η̃ corresponding to the canonical moments in (4.25) is also
maximin optimal with respect to the criterion χm�j�k and we will discuss the
identification of the support points and weights for both cases separately.
(e) If j = 0�k ≥ 3 or j = 0� k = 2�m ≥ 2 it follows from (4.25) and Theorem

4.4 in Dette (1995) (using ϑ = ρ = 2� n = m + k� k = m + 1 in his notation)
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that η∗ is supported at the m+ k+ 1 zeros of the polynomial

Qm+k+1�x� = Um�x��kUk+1�x� − �k+ 2�Uk−1�x��
−Um−1�x���k− 1�Uk�x� − �k+ 1�Uk−2�x��

= 2�x2 − 1��Um�x�U′
k�x� −Um−1�x�U′

k−1�x���
where the last identity is obtained from the trigonometric respresentation of
the Chebyshev polynomials of the second kind [see, e.g., Szegö (1975)]. The
same result shows that the weights are given by

η∗��xl�� =
kUk�xl�Um�xl� − �k+ 1�Uk−1�xl�Um−1�xl�

TS 1
2

d
dx
Qm+k+1�x��x=xl

and the representation (4.20) and (4.21) follow from (4.11) which proves the
assertion of Theorem 4.5 for case (e).
(f) By Theorem 3.4.1 in Dette and Studden (1997) the Stieltjes transform

of the measure η∗ is given by∫ 1

−1
dη∗�z�
x− z

=
m+k∑
l=0

η∗��xl��
x− xl

= Pm+k�x� q�
�x2 − 1� �Qm+k−1�x�p�

�(4.26)

where �Qm+k−1�x�p��Pm+k�x� q� are the supporting polynomials of the
sequences

1
2 � p2�

1
2 � � � � �

1
2 � p2m+2k−2�

1
2 �1�(4.27)

1
2 � q2�

1
2 � � � � �

1
2 � q2m+2k−2�

1
2 �0�(4.28)

respectively. The assertion in part (f) of Theorem 4.5 therefore follows by show-
ing the identities

�Qm+k−1�x�p� =
1

�k+ j�2m+kQm+k−1�x��(4.29)

Pm+k�x� q� =
1

2m+kPm+k�x��(4.30)

where Qm+k−1�x� and Pm+k�x� are defined in (4.22) and (4.23), respectively.
We will only prove the statement (4.29) regarding the polynomial �Qm+k−1
�x�p�; (4.30) is shown similary and left to the reader. From Theorem 4.4.2 in
Dette and Studden (1997) we obtain that

�Qm+k−1�x�p� = Gk�x�Hm−1�x� −
1
4
k+ 2
k+ 1

Gk−1�x�Hm−2�x��(4.31)

where the polynomials Gk�x� and Hm−1�x� are the supporting polynomials of
the sequences

1
2 � p2m

1
2 � � � � �

1
2 � p2m+2k−2�

1
2 �1�

1
2 � p2�

1
2 � � � � �

1
2 � p2m−2�

1
2 �1�

(4.32)
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respectively. By Lemma 2.10 in Studden (1982a) and Corollary 2.3.6 in Dette
and Studden (1997) the polynomialGk�x� is obtained recursively asG0�x� = 1,
G1�x� = x,

Gi+1�x� = xGi�x� − q2m+2k−2ip2m+2k−2i−2Gi−1�x��

=


xGi�x� −

i�i+ 3�
4�i+ 1��i+ 2�Gi−1�x�� if i ≤ k− 2,

xGk−1�x� −
k− 1
4k

Gk−2�x�� if i = k− 1�

Comparing this recursion with the monic version of the recursive relation for
the associated ultraspherical polynomials in (4.3) yields

Gk−1�x�=
1

k2k−1
C

�2�
k−1�x�0� =

1
k2k

U′
k�x��

Gk�x�=
1

k2k
{
2xC�2�

k−1�x�0� −C
�2�
k−2�x�0�

}
= 1
2k�k+ 1�

{
C

�2�
k �x�0� + 1

k
C

�2�
k−2�x�0�

}
= 1

�k+ 1�2k+1
{
U′

k+1�x� +
1
k
U′

k−1�x�
}
�

(4.33)

where C�2�
k �x�0� = C

�2�
k �x� denotes the classical ultraspherical polynomial [see,

e.g., Szegö (1975)] and we used the recursion (4.3) and the identity U′
l�x� =

2C�2�
l−1�x�0� [see, e.g., Abramowitz and Stegun (1964)].
For the determination of the polynomials Hm−1�x� corresponding to the

second sequence in (4.32) we apply again Theorem 4.4.2 in Dette and Studden
(1997) and obtain

Hm−1�x� = G̃j�x�H̃m−j−1�x� −
1
4
k+ j− 1
k+ j

G̃j−1�x�H̃m−j−2�x��(4.34)

where G̃j�x� and H̃m−j−1�x� correspond to the sequences

1
2 � p2m−2j�

1
2 � � � � �

1
2 � p2m−2�

1
2 �1�

1
2 �

1
2 � � � � �

1
2 �1�

respectively. From Corollary 4.3.3 in Dette and Studden (1997) we have

H̃l�x� =
1
2l
Ul�x�� l = m− j− 1� m− j− 2(4.35)
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and Theorem 2.5.1 and Corollary 2.3.6 in the same reference show that the
polynomials G̃j�x� can be obtained recursively from

G̃0�x� = 1� G̃1�x� = x�

G̃l+1�x� = xG̃l�x� − q2m−2lp2m−2l−2G̃l−1�x�

= xG̃l�x� −
1
4
�k+ l− 1��k+ l+ 2�
�k+ l��k+ l+ 1� G̃l−1�x��

�l = 1� � � � � j − 1�. Comparing this recurrence relation with (4.4) and (4.5)
shows that

G̃l�x� =
k

2l�k+ l�C
�2�
l �x� k− 1�� l = j− 1� j(4.36)

[note that 2l�k+l�/k is the leading coefficient of the polynomial C�2�
l �x� k−1��.

Observing (4.34), (4.35) yields

Hm−1�x� =
k

�k+ j�2m−1
{
Um−j−1�x�C�2�

j �x� k− 1�

−Um−j−2�x�C�2�
j−1�x� k− 1�}

and similar arguments show

Hm−2�x� =
k+ 1

�k+ j�2m−2 �Um−j−1�x�C�2�
j−1�x� k� −Um−j−2�x�C�2�

j−2�x� k���

Finally a combination of these representations with (4.33), (4.34) and (4.31)
yields the assertion (4.29). The proof of the remaining statement (4.30) is sim-
ilar and therefore omitted. This completes the proof of part (f) of Theorem 4.5.
In the remaining cases

k = 0� j = m− 1 ≥ 1�(a)

k = 0� j ≥ 1�m− j ≥ 2�(b)

k = 1� j = 0�(c)

k = 2� m = 1�(d)

condition (3.5) of Theorem 3.2 is not satisfied and the other parts of this
theorem apply. We will only give a proof for (a) and (b). The proofs of the
other cases are very similar and therefore omitted.

(a), (b). If k = 0�j ≥ 1 it is easy to see that theD-optimal design ξDm satisfies

effD1
m−1�ξDm� < effDm�ξDm��

which shows that ξDm is not maximin optimal and that the maximin optimal
design η∗ is determined by the conditions (3.13)–(3.21) in Theorem 3.2(ii). In
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the case (a) �k = 0� j = m − 1 ≥ 1� we use z = m − 1 and n = 0 and obtain
from (3.14) and induction the recursion

p2�m−1−l� =
2�l+ 1�p2�m−1� − l

4lp2�m−1� − 2�l− 1� � l = 1� � � � �m− 2�(4.37)

which implies

p2l+2q2l = 1
4 � l = 1� � � � �m− 2�

Using this identity in (3.18) yields (4.15) for p2m−2. For the calculation of
the support points we use Theorem 2.5.1 and Corollary 2.3.6 in Dette and
Studden (1997) and it follows that the support of the maximin optimal design
is given by the zeros of the polynomial �x2−1�Qm−1�x�� where Qm−1�x� is the
supporting polynomial of the sequence

1
2 � q2m−2�

1
2 � � � � �

1
2 � q2�

1
2 �1

and obtained recursively as

Ql+1�x� = xQl�x� − q2m−2lp2m−2l−2Ql−1�x�

= xQl�x� −
1
4
�2�l+ 1�p2m−2 − l��2�l− 2�p2m−2 − l+ 3�
�2lp2m−2 − l+ 1��2�l− 1�p2m−2 − l+ 2� Ql−1�x��

A straightforward calculation shows that this is the recurrence relation for
the monic version of the associated ultraspherical polynomials defined in (4.4)
and (4.5) for λ = 2 and ν given in (4.14), that is,

Qm−1�x� =
�ν + 1�

2m−1�ν +m�C
�2�
m−1�x� ν��

which proves the assertion regarding the support points. A similar argument
shows for the polynomial in the numerator of (4.26),

Pm�x� q� =
1
2m

�Um�x� + �4p2m−2 − 3�Um−2�x��
and the assertion in the case k = 0� j = m− 1 ≥ 1 follows as in case (f).
The remaining case k = 0� m−j ≥ 2 is essentially treated in the same way,

where z = m− 1 and n = m− j− 1 in Theorem 3.2(ii). From (3.14) we obtain
the first equation in (4.16) which yields

effD1
l �η∗� = effD1

m−1�η∗�� l = m− 2�m− 3� � � � �m− j�

This implies for the equation in (3.18),(
effDm�η∗�)m+1 = (

effD1
m−1�η∗�)m+1

= (
effD1

m−j�η∗�)m−j+1 effD1
m−1�η∗�

m−1∏
l=m−j+1

effD1
l �η∗�

and a straightforward calculation shows [observing (2.6) and (2.8)] that this is
equivalent to the fourth equation in (4.16). The second and the third equation
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are obtained from (3.17) and (3.15), respectively. Finally, the statement regard-
ing the weights and support points follows by similar arguments as given for
the proof of case (a) and is left to the reader. ✷

Example 4.6. (a) Consider the case m = k = 2� j = 1, where part (f) of
Theorem 4.5 applies. We obtain that the support points of the maximin optimal
design are given by the zeros of

Q5�x� = x�x2 − 1��48x2 − 22��
where we have usedU0�x� = 1,U1�x� = 2x,U2�x� = 4x2−1,U3�x� = 8x3−4x
and

C
�2�
1 �x� ν� = 2�ν + 2�

ν + 1
x�

which follows from the recurrence relation (4.3) for the associated ultraspher-
ical polynomials. Consequently the design η∗ maximizing the criterion χ2�1�2

in (4.2) is supported at the points −1�−
√

11
24 �0�

√
11
24 �1. A similar calculation

shows

P4�x� = 16x4 − 38
3 x

2 + 2
3

and we obtain from (4.23) for the weights

η∗��∓1�� = 3
13 � η∗��∓

√
11/24�� = 32

11·13 � η∗��0�� = 1
11 �

(b) In the case m = 3� k = 0� j = 2 the maximin optimal design (with
respect to the criterion χ3�2�0� is obtained from part (a) of Theorem 4.5. For
the calculation of the support points we use (4.3) which gives

C
�2�
2 �x� ν� = 4�ν + 3�

ν + 1
x2 − ν + 4

ν + 2
�

where ν is defined in (4.14) for m = 3 and p4 is the solution of the equation

24b43 =
4�1− p4�p4

4p4 − 1

in the interval � 12 �1� [note that b43 = 24/55� by (2.7)], that is, p4 ≈ 0�93987.
This gives ν ≈ −0�8633 and the maximin optimal design with respect to the
criterion χ3�2�0 is the supported at the points ∓1 and ∓0�2101. The corre-
sponding masses are obtained from (4.13) and a straightforward calculation,
that is,

η∗�∓1� ≈ 0�36086� η∗�∓0�2101� ≈ 0�13914�

Note that this design has equal efficiencies for all criteria appearing in χ3�0�2�
that is,

effD1
1 �η∗� = effD1

2 �η∗� = effD3 �η∗� = p2 ≈ 0�73401�
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(c) In the casem = 3, j = 1, k = 0 the maximin optimal design with respect
to the criterion χ3�1�0 is obtained from part (b) of Theorem 4.5 as the unique
solution �p2� p4� ∈ � 12 �1�2 of the equations

�1− p4� = 28b43p
2
4p2�1− p2�2�

p2�1+ p4� = 1�

which gives p2 ≈ 0�5316 and p4 ≈ 0�8813 (all canonical moments of odd order
are equal 1/2, p6 = 1). The corresponding design η∗ maximizing χ3�1�0 has
equal masses at the points −1�−0�2512�0�2512�1. This design has efficiencies

effD1
2 �η∗� = effD3 �η∗� = 0�8778� effD1

3 �η∗� = 0�4169

and it might be of interest to compare the performance of η∗ with the design
given in Example 4.3. We observe an increase in efficiency for testing the
highest coefficient in the quadratic model, a (slight) loss in efficiency for esti-
mating all parameters in the cubic model and a substantial loss in efficiency
for testing the highest coefficient in the cubic model.
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