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We present a new, natural way to construct nonparametric multi-
variate tolerance regions. Unlike the classical nonparametric tolerance in-
tervals, where the endpoints are determined by beforehand chosen order
statistics, we take the shortest interval, that contains a certain number of
observations. We extend this idea to higher dimensions by replacing the
class of intervals by a general class of indexing sets, which specializes to
the classes of ellipsoids, hyperrectangles or convex sets. The asymptotic
behavior of our tolerance regions is derived using empirical process theory,
in particular the concept of generalized quantiles. Finite sample properties
of our tolerance regions are investigated through a simulation study. Real
data examples are also presented.

1. Introduction. Several practical statistical problems require informa-
tion on the distribution itself rather than on functionals of the distribution,
like mean and variance. For example, in life testing of new products it is re-
quired that a certain percentage of sold products will not fail before the end
of the warranty period. There are many other examples of this kind in vari-
ous fields, such as reliability theory, medical statistics, chemistry, quality con-
trol, etc. (see, e.g., [3]). The statistical literature provides tolerance intervals
and regions as a solution to these problems. Starting with [40], many papers
on this topic have appeared. The monographs [3] and [19] provide thorough
overviews of the literature, while extensive bibliographies can be found in [20]
and [21]. Although there is a vast literature on the two types of tolerance re-
gions (guaranteed coverage and mean coverage in the terminology of [3] or
B-content and B-expectation in the terminology of [19]), statistics text books,
both the mathematically and the engineering oriented ones, hardly deal with
this topic explicitly. This is surprising since prediction regions are in fact -
expectation/mean coverage tolerance regions. We refer to the introduction of
[8] for useful remarks on this issue, in particular on when to use which type
of tolerance region. In case tolerance regions are mentioned in textbooks, the
treatment is often confined to tolerance intervals for the normal distribution.
In practice, however, one often encounters situations where the data are not
normally distributed or univariate. In order to deal with the first problem,
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nonparametric tolerance intervals are used. The idea, which first appeared in
the seminal paper [40], is to consider intervals with two order statistics as
endpoints. It is important to note that it is decided beforehand which order
statistics to take.

In the spirit of the shorth (see, e.g., [28], [18]), we propose a new approach
to nonparametric tolerance intervals by taking the shortest interval that con-
tains a certain number of order statistics. Surprisingly, the asymptotic theory
concerning content (or coverage) is the same as for the classical procedure,
although obviously by definition our intervals are not longer, and often much
shorter. A problem with nonparametric techniques in higher dimensions is
that there is no canonical ordering. In order to overcome this problem, essen-
tially one-dimensional procedures such as statistically equivalent blocks were
developed to construct multivariate tolerance regions (see [38], [34], [35], [16]
and more recently [1]). From a statistical point of view, there is much arbitrari-
ness in these procedures, since they depend on auxiliary ordering functions.
Moreover, they are not necessarily asymptotically minimal (see [9]). Instead,
one would like to have a genuine multivariate procedure, that is not based
on ordering the data. In [9] a procedure is presented based on nonparamet-
ric density estimation, which yields asymptotically minimal tolerance regions.
Our procedure is inspired by empirical process theory and extends to higher
dimensions in a natural way. It avoids the choices that have to be made when
estimating densities and it does not require any smoothness of the underlying
density. On the other hand, we have to choose an indexing class to parametrize
our empirical process, which however has the advantage that we can choose
the shape of the tolerance region. We will show that our procedures are asymp-
totically correct, in contrast to those in [9] where only asymptotic conservatism
is shown. Our tolerance regions are asymptotically minimal with respect to
the indexing class and have desirable invariance properties. For their actual
computation, which is non-trivial in higher dimensions, algorithms and soft-
ware are available. A related paper dealing with directional data is [25]. In
medical statistics, multivariate tolerance regions based on data from, for ex-
ample, blood counts, can be used for screening of patients. In this paper, we will
illustrate our approach by computing tolerance regions for bi- and trivariate
observations of blood counts for Leukemia and AIDS. Multivariate tolerance
regions can be applied in several other fields. For example, in statistical pro-
cess control a multivariate approach to capability studies (which, if properly
conducted, should be based on tolerance regions) is highly desirable, when
various quality characteristics are taken into account.

This paper is organized as follows. In Section 2 we present the main results.
In Section 3 we study the finite sample properties of our tolerance regions
through simulations and apply the methods to real data examples. Section 4
contains the proofs of the results in Section 2.

2. Main results. In this section we present the asymptotic results for our
tolerance regions. Let X;,..., X,, n > 1, be i.i.d. R*-valued random vectors
defined on a probability space (2, .7, P) with a common probability distribu-
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tion P, absolutely continuous with respect to Lebesgue measure, and corre-
sponding distribution function F. Let % be the o-algebra of Borel sets on R*
and define the pseudo-metric d, on 4 by

do(By, By) = P(B;AB,)  for By, By € %,

and similarly the related pseudo-metric d(B;, By) := V(B;AB,), where V
denotes volume (Lebesgue measure). Denote by P,, the empirical distribution:

1 n
Pn(B)=;ZIB(Xl)7 BE@,
i=1

where Iy is the indicator function of the set B. Let .o/ be a class of Borel-
measurable subsets of R*. (We assume that .7 is such that no measurability
problems occur.)

THEOREM 1. Fix ¢, € (0,1) and let C € R. Assume the following conditions
are fulfilled:

(C1) &7 is P-Donsker: /n(P, — P) converges weakly on o (in the sense
of [11]) to a bounded, mean zero Gaussian process Bp; the process Bp is
uniformly continuous on (27, dy) and has covariance function P(A; N A,) —
P(A)P(Ay), Ay, Ay € /.

(C2) There exists an ny € N, such that for all n > n,, with probability 1,
there exists a unique set A, ; ¢ € & with minimum volume and

C
P,(Ay..c) >ty + NG

(C3) There exists a sequence C,, | C, such that for all n > 1,

C
Pn(An,tO,C) < to + 7% a.s.
(C4) A, the set in o with minimum volume and P(A,) = &, exists, is
unique, and

d(Ayi 00 Ay) —> 0, n— oo
Then we have
2.1) Vit = P(A, o) +C -5 Z\Jtg(1—t;),  n— o,

where Z is a standard normal random variable.

The following theorems, which are corollaries to Theorem 1, are actually our
main general results about tolerance regions. In fact, we will show that the
sets A, ; ¢, for suitable C, are asymptotic tolerance regions. Theorem 2 gives
the result for guaranteed coverage tolerance regions, whereas Theorem 3 deals
with mean coverage tolerance (or prediction) regions. We show that the guar-
anteed coverage tolerance regions have indeed asymptotically the correct con-
fidence level, whereas the mean coverage tolerance regions have the correct
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mean coverage with error rate o(1/4/n). These results are new and of interest
in any finite dimension, including dimension one. Note that surprisingly the
results are asymptotically distribution-free. The numbers ¢, and 1 — « denote
the (desired) coverage and confidence level, respectively.

THEOREM 2. Fix o € (0,1) and let C = C(a) be the (1 — a)th quantile of
the distribution of Z./ty(1 — to). Under the conditions of Theorem 1 we have

2.2) lim P{P(A,, ¢) >t} =1—a.

THEOREM 3.  If the conditions of Theorem 1 hold and /n(ty — P(A, ; o))
is uniformly integrable, then

1
(2.3) [EP(An,tO,O) = tO +o0 (ﬁ) , n — o0.

Note that EP(A, ; ¢) — ty, n — oo, for every C € R.

In the final theorem, we will specialize our general results to three natural
and relevant indexing classes, which satisfy the conditions of the above the-
orems. From the point of view of applications, this is the main result of the
paper. In the sequel, 7 will be one of the following classes: all closed

(a) ellipsoids,
(b) hyperrectangles with faces parallel to the coordinate hyperplanes,
(c) convex sets (for & = 2)

that have probability strictly between 0 and 1.

These classes of sets are very natural for constructing nonparametric tol-
erance regions. The class of ellipsoids in (a) is a good choice, since ellipti-
cally contored distributions are considered to be natural and important in
probability and statistics. The multivariate normal distribution is of course
a prominent example. One should choose the parallel hyperrectangles of (b)
as indexing class, if it is desirable, like in many applications, to have a mul-
tivariate tolerance region that can be decomposed into (easily interpretable)
tolerance intervals for the individual components of the random vectors. The
convex sets of (¢), which reduce to tolerance regions that are convex polygons,
are very natural, since when taking the convex hull of a finite set of data
points, one hardly feels the restriction due to the underlying indexing class.
The latter choice of the indexing class might seem unnecessary, as there are
some interesting and deep geometrical results relating convex sets and ellip-
soids; see, for example, [30]. However, we have observed that, for a large class
of distributions the choice of an indexing class should be made with delicacy,
as the tolerance regions defined here are highly sensitive to the number of
points included (see Section 3).

In order to present the theorem in an unambiguous way we present some
preliminaries, which guarantee that the conditions (C2) and (C3) of Theorem
1 are satisfied for the classes above. Let & be the class of all closed ellipsoids A
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in R*. Fix t, € (0, 1) and C € R. Set p, = ¢, + % For n large enough, we need
existence and uniqueness of an ellipsoid A, ; ¢ € & of minimum volume such
that P,(A, ; c) > p,, almost surely. In other words, A, ; ¢ should contain at
least [np, ] observations. The existence and a.s. uniqueness of such an ellipsoid
A, , ¢ was proved in [10]. There are between % + 1 and k(% + 3)/2 points on

n,to,
the %oundary of A, ; c in dimension k (see, e.g., [33]) and hence,
C C k(k+3
tO + ﬁ =< Pn(An,tO,C) < tO + ﬁ + % a.s.

However with some more effort it can be shown that a minimum volume
ellipsoid that contains at least m out of n points, contains exactly m points,
a.s. (see Lemma 3 at the end of Section 4). This result seems not to be present
in the literature. It yields that

1 C

(24) Pn(An,to,C) = E ’771 (to + ﬁ) —‘ a.s.

Let # be the class of all closed hyperrectangles with faces parallel to the
coordinate hyperplanes. It is easy to adapt the proof of [10] to .#. Hence,
there exists an a.s. unique smallest volume hyperrectangle A, ;, - € #, with
P,(A,;, c) = p,- Since with probability one, all hyperplanes parallel to the
coordinate hyperplanes contain at most one observation, the equality in (2.4)
holds here too.

Consider now the existence and a.s. uniqueness problem of A, ,  for ¢,
the class of all closed convex sets in R2. It is a well-known fact that the convex
hull of 2" = {X,..., X,} is a bounded polyhedral set in R? (i.e., a bounded
set which is the intersection of finitely many half-planes; see, e.g., [39], The-
orem 3.2.5), and thus a polygon. Since the convex hull of 2" is the smallest
(with respect to set inclusion) convex set containing 2°, it follows that the
closed convex hull of 2" is the a.s. unique smallest area closed convex set con-
taining 2. As the number of subsets of 2" is finite, the existence of a smallest
area convex subset containing [np, ] points from 2" is assured. Hence, it is
left to show that with probability 1, any two different convex hulls of subsets
of the sample will have different areas. Suppose we have two sets of vertices
{Xi,,..., X;,and {X; ,..., X },3 < {, k < n with convex hulls A, and Ay,
respectively. Without loss of generality we assume that X, is a vertex of A,
but not of A,. If we condition on {X,, ..., X,}, then we have to show that for
any positive v

(2.5) P{X,:V(A)=v]|X,,...,X,} =0,

where V(A;) denotes the area of A;. Since A, is convex, X lies in the interior
of the triangle X; OX; (see Figure 1), for any neighboring vertices X; and
X;,. As the area of A, is fixed, X; can be only on some interval parallel to
X; X, . (Actually, we assumed 5 < ¢ < n, but a similar argument works for
¢ =3 or £ =4.) Hence, we see that (2.5) holds. Finally, it is obvious that (2.4)
holds for ¢.
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X

3

FiG. 1. Uniqueness of minimum area convex set.

THEOREM 4. Fix ty € (0, 1). If the density f of the distribution function F
is positive on some connected, open set . C R* and f = 0 on R*\./, and if
A, , the set in of with minimum volume and P(A, ) = t,, exists and is unique,
then we have for cases (a) and (b) that (2.1), (2.2) and (2.3) hold.

If k = 2 and, in addition, f is bounded, then (2.1), (2.2) and (2.3) also hold
for case (c).

REMARK 1. Theorem 4 is valid under very mild conditions. In particular,
there are no smoothness conditions on the density f, as in [9] . The uniqueness
of A, , however, is crucial for the results as stated. If it is not satisfied, then
the results may be substantially different. On the other hand, uniqueness of
A, is a mild condition and holds for many (multimodal) distributions.

In [13] generalized quantile functions and processes (see Section 4) are
introduced and studied. Generalized quantiles and related concepts play an
important role in this paper and are further investigated in, for example, [27],
where also a quantity closely related to the left-hand-side of (2.1) is studied.
Mainly due to the fact that the results in both papers are uniform (in our ¢,),
the conditions in both papers are much stronger than in the present paper.

Note that it is well-known (see, e.g., [12]) that for dimension 3 or higher
there is no weak convergence of the empirical process indexed by closed convex
sets, since the entropy of this class of sets is too large. (Actually the supremum
of the absolute value of this empirical process tends to infinity, in probability,
as n — o00.) This means that for this case Theorem 4, if true at all, cannot be
proved with the methods presented in this paper.

REMARK 2. Since our general tolerance regions A, ; - converge in prob-
ability to A, , they are asymptotically minimal with respect to the chosen
indexing class. That means, for example, for case (a), that no tolerance ellip-
soids can be found the volume of which converge to a number smaller than
V(A,). It is well-known that under weak additional conditions (see, e.g., [9])
there exists a region of the form {x € R* : f(x) > c}, for some ¢ > 0, that
has probability ¢, and minimal Lebesgue measure. Such a minimal region is
unique up to sets of Lebesgue measure 0. If the above level set belongs to
the indexing class we use, then our tolerance regions are asymptotically min-
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imal (with respect to all Borel-measurable sets). Since such a minimal region
contains just those points x where the density exceeds a certain level, “min-
imalness” is a desirable property, because the minimal region contains those
x’s which are “most likely” under f.

REMARK 3. It is rather easy to show that the tolerance regions of Theorem
4 have desirable invariance properties. For cases (a) and (c) the tolerance
region A, ; o is affine equivariant, that is, for a nonsingular & x & matrix

M and a vector v in R*, we have that MA, ; ¢ + v is the tolerance region
corresponding to the MX; + v. (Here MA, ;, o = {Mx : x € A,, }.) Since
case (b) deals with parallel hyperrectangles, this property does not hold in full
generality for this case, but it does hold when M is a nonsingular diagonal
matrix, which means that we allow affine transformations of the coordinate
axes.

REMARK 4. Let m > 1 be an integer and let .27 C & be the class consisting
of:

(a’) unions of m closed ellipsoids,

(b’) unions of m closed parallel hyperrectangles, or

(¢’) unions of m closed convex sets, contained in a fixed, large compact set
(for £ = 2), with probability strictly between 0 and 1, respectively.

Note that a minimum volume set A, ; ¢ consists of at most m ‘components’
and that some of these components may have an empty interior. Note as well
that now a minimum volume set A, , - need not be almost surely unique,
hence (C2) is not satisfied, but we still have the second part of (C4) of Theorem
1, which yields “asymptotic uniqueness.” Since also (C1), the “existence part”
of (C2), and (C3) are satisfied we see that Theorem 4 remains true when
replacing the cases (a), (b) and (c¢) by (a’), (b’) and (c¢’), respectively. This can
be relevant for multimodal distributions. However, often the indexing classes
of cases (a), (b) and (c) suffice, since in many (multimodal) situations the
smallest closed set having probability ¢, is a “nice” connected set, because ¢,
is typically close to 1. Note that Remark 3, mutatis mutandis, holds true for
the classes defined in (a'), (b’) and (c¢’). For more details and a proof of the
statements in this remark, see [24], Theorem 3.5.

REMARK 5. In order to argue about the novelty and advantages of the
method presented in this paper, let us first consider the one-dimensional case.
As we have mentioned already, classical nonparametric tolerance intervals
have, concerning content, the same asymptotic behavior as the smallest non-
parametric tolerance intervals. (This essentially follows from the weak conver-
gence of the classical uniform quantile process to a Brownian bridge.) However
the indices of the order statistics that define the classical tolerance intervals
are chosen beforehand and in the case of skew, asymmetric distributions like,
for example, Pareto or exponential distributions the length of the classical
nonparametric tolerance intervals may be much larger than that of our tol-
erance intervals (see Tables 1 and 2 below). In addition, since the tolerance
intervals obtained by the new method are the shortest intervals that contain a
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TABLE 1
90% guaranteed coverage tolerance intervals with confidence level 95%

Simulated confidence level Average length

Distribution Sample size Classical New Classical New
o tard . 300 95.7% 92.9% 3.61 357
standard norma 1000 95.3% 90.5% 3.46 3.43
300 95.8% 94.9% 18.9 18.3

standard Cauchy 1000 96.4% 93.2% 15.3 14.9
exponential(1) 300 95.3% 96.8% 3.31 2.73
p 1000 94.6% 96.9% 3.11 2.50
Pareto(1) 300 96.2% 97.5% 28.4 14.6
1000 95.1% 96.0% 22.8 11.2

chi-nquare(®) 300 95.8% 94.3% 11.0 10.0
u 1000 95.2% 92.6% 10.4 9.42

certain number or order statistics, it is obvious that they will never be longer
than the classical tolerance intervals. Furthermore it is difficult and unnatu-
ral to extend the classical procedure to higher dimensions, since an arbitrarily
chosen ordering has to be introduced on R*, £ > 1. In contrast to this, the new
method can be extended naturally to higher dimensions by using minimum
volume sets.

The common procedures for multivariate nonparametric tolerance regions
are based on statistically equivalent blocks or on density estimation. The
method based on statistically equivalent blocks (see [34] and [16] for a de-
scription), depends on arbitrary, auxiliary ordering functions and is essentially
a one-dimensional procedure. The tolerance regions obtained by this method
are exact, however they are in general not asymptotically minimal and have
a shape that is difficult to work with and which very much depends on the
chosen ordering functions. The other approach, that is based on density es-
timation [9], is more attractive and yields asymptotically minimal tolerance
regions, but it is (very) conservative. Note as well that since the method is
based on density estimation some regularity conditions have to be satisfied.
Note however, that in principle the method based on density estimation can
perform very well if a proper bandwidth is chosen, see the simulation results
in Section 3.

In contrast to these methods, our method is based on an indexing class and
therefore the shape of the tolerance regions can be chosen conveniently. Fur-
thermore when this indexing class includes the class of level sets our tolerance
regions are asymptotically minimal, hence best possible.

Another possible approach could be to construct tolerance regions using the
concept of data depth; for discussions on the concept, theory and applications
of depth in univariate and multivariate cases; see, for example, [22] and [23].
This would lead to regions based on the ‘central’ part of the data. For skewed
distributions, these regions would be typically larger than the ones studied in
this paper.
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TABLE 2
90% mean coverage tolerance intervals

Simulated coverage Average length

Distribution Sample size . .
Classical New Classical New
standard normal 300 90.0% 89.0% 3.31 3.24
1000 90.0% 89.5% 3.29 3.26
300 90.1% 89.5% 13.6 12.7
standard Cauchy 1000 90.0% 89.6% 12.9 124
exponential(1) 300 90.0% 90.0% 2.98 2.35
1000 90.0% 90.0% 2.96 2.32
Pareto(1) 300 90.1% 90.1% 20.5 9.71
1000 90.1% 90.0% 19.5 9.22
chi-square(5) 300 90.0% 89.4% 10.0 8.91
1000 90.0% 89.7% 9.97 8.92

3. Simulation study and real data examples. First we present results
on the finite sample behavior of our tolerance regions through simulations.
Each simulation consisted of 1000 replications. Note that the asymptotic be-
havior of our tolerance regions does not change if we vary the number of obser-
vations in the tolerance regions within o (/n). However, even for the classical
tolerance intervals, the finite sample behavior is very sensitive to the actual
number of order statistics used. For example, when n = 100, inclusion of 93,
95 or 97 order statistics leads for 90 % guaranteed coverage tolerance inter-
vals with confidence level 67.9 %, 88.3 % and 97.6 %, respectively. Simulations
showed a similar sensitivity for our tolerance regions. Moreover, including ex-
actly [np,] observations we obtained slightly too low coverages, resulting in
too low simulated confidence levels. Since the boundary of a tolerance region
has probability zero, we decided to add the number of points on the boundary
of our tolerance regions to [np,].

For the classical tolerance intervals, we of course used an exact calcula-
tion, based on the beta distribution, for the number of observations to be in-
cluded. These intervals were chosen in such a way that the indices of the order
statistics that serve as endpoints are (almost) symmetric around (n+1)/2. As
mentioned above, we added 2 observations when constructing our tolerance
intervals. Tables 1 and 2 contain our simulation results for guaranteed cov-
erage and mean coverage tolerance intervals. These tables show very good
behavior of our tolerance intervals. In particular, for the highly skewed distri-
butions they perform much better with respect to length; for example, for the
Pareto distribution the length is reduced with 50%. In general, we see that
the asymptotic theory works well.

Table 3 gives simulation results for mean coverage rectangles with sides
parallel to the coordinate axes. We included 4 extra observations in all cases,
that is, we used 274 observations for n = 300 and 904 for n = 1000. We
simulated from the following distributions:
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TABLE 3
Simulated coverages of 90% mean coverage tolerance rectangles

Sample size

Distribution

300 1000
bivariate normal 87.7% 88.7%
bivariate half-normal 88.3% 88.9%
bivariate Cauchy 86.2% 86.3%
bivariate exponential 88.5% 89.0%
bivariate pyramid 86.4% 87.1%

0

e bivariate standard normal with mean (0

) and covariance matrix (é 2)

e bivariate half-normal with density f(x, y) = %e_%(’czﬂz), x,y>0

e bivariate Cauchy distribution with density f(x, y) = % (1 +x2 4+ y2

e bivariate exponential (1,1) distribution with density f(x, y) = "),
x,y>0

e bivariate pyramid distribution with density f(x, y) = m e~ (=VIxD,

)—3/2

From this table, we again see that our tolerance regions perform well: the
coverages are close to 90%, but slightly too low. This effect is caused by the
minimum area property of our tolerance regions.

We have also performed simulations for tolerance hyperrectangles in R3,
from the following trivariate distributions:

0 100

e trivariate standard normal with mean (0) and covariance matrix |01 0)
001

?)

0
e trivariate half-normal with density f(x,y,z) = (%)3/ 2 gma(xtrytee
x,y,2>0
e trivariate Cauchy distribution with density f(x, v, z) = #(1 + 22 4 y?
+22)72

e trivariate exponential distribution with density f(x, y,z) = e (*Ty+2)
x,y,2>0.

In Table 4 simulation results for the mean coverage hyperrectangles for n =
300 are presented. Here we included 6 extra points. Hence for the 95% mean
coverage tolerance regions 291 data points were included. As is clear from
this table the results are again very good. Replacing 90% (Table 3) by 95%
seems to improve the asymptotics. We chose 95% here, not to improve on the
coverage, but to speed up the computations; now the number of points that
have to be excluded is substantially less (9 against 24).

Note that we did not perform simulations for the classical tolerance regions,
based on statistically equivalent blocks, in higher dimensions, since the results
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TABLE 4
Simulated coverages of 95% mean coverage tolerance hyperrectangles

Distribution Simulated coverage
trivariate normal 93.6%
trivariate half-normal 94.1%
trivariate Cauchy 94.8%
trivariate exponential 94.2%

will depend very much on the choice of the ordering functions. Nevertheless,
in general, the results would give the same picture as in the one-dimensional
case.

Given the discrete nature of the empirical measure and the aforementioned
sensitivity of tolerance regions it can be, in particular when the density f is
smooth, that a smoothed version of the empirical measure yields somewhat
better tolerance regions than the ones presented in Section 2. We will briefly
consider this here and will restrict ourselves to the one dimensional situation
and guaranteed coverage tolerance intervals. It can be shown (see, e.g., [5],
[32], Section 23.2, and [36]) that an integrated kernel density estimator (Isn,
say) as an estimator for the probability measure yields the same limiting
behavior as in Section 2, when the bandwidth is chosen to be K/n'/3, K €
(0, 00). So asymptotically, in first order, there is no difference between the two
procedures, that is, Theorem 2 holds true, when A, , . is based on P, instead
of on P,. However, for finite n it may be that a “smoothed procedure” works
better. We investigated this through a simulation. Table 5 gives the results.
We chose the Epanechnikov kernel (with support [—1, 1]) and K = /58, with

S the sample standard deviation, as suggested in [5]. Since Pn is absolutely
continuous we did not add the 2 observations as indicated above.

TABLE 5
“Smoothed” 90% guaranteed coverage tolerance intervals with confidence level 95%

Distribution Sample size Simulated conf. level Average length
o . 300 92.6% 3.58
standard norma 1000 92.7% 3.44
: 300 96.4% 9.98
chi-square(5) 1000 96.8% 9.50
300 94.5% 415
beta(5,10) 1000 94.3% -400
- 300 93.4% 6.51
ogistic 1000 93.1% 6.23
300 93.6% 4.52

Student-#(5) 1000 92.7% 4.28
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Table 5 shows excellent behavior of the “smoothed” tolerance intervals. We
see indeed that there is some evidence that, when the underlying density is
smooth, our procedures can be somewhat improved by properly smoothing the
empirical.

All simulations were performed on a SunSparc5 and SunUltralO. Simula-
tions in dimensions one and three were performed using the statistical pack-
ages of the computer algebra system Mathematica. The (two-dimensional)
rectangles algorithm was implemented in C++, which was linked with a
Mathematica notebook where data were generated and coverages were com-
puted. The computation for one replication (including the coverage computa-
tion) with n = 1000 took at most 6 seconds. Our simulations procedures for
parallel hyperrectangles can easily be extended to dimensions 4 and higher.

As mentioned before medical statistics is one of the fields where tolerance
regions are used. Here we illustrate our theory with applications to leukemia
and AIDS diagnoses. Leukemia is a cancer of blood-forming tissue such as bone
marrow. The diagnosis of leukemia is based on the results of both blood and
bone marrow tests. There are only three major types of blood cells: red blood
cells, white blood cells and platelets. These cells are produced in the bone mar-
row and circulate through the blood stream in a liquid called plasma. When
the bone marrow is functioning normally the count of blood cells remains sta-
ble. In the case of this disease the number of blood cells changes drastically
and is therefore easy to detect with tolerance regions. We now construct a
95% mean coverage tolerance ellipse and two 95% mean coverage tolerance
(hyper)rectangles (for dimensions 2 = 2 and %k = 3) for blood count data kindly
provided by Blood bank de Meierij, Eindhoven. Blood samples were taken from
1000 adult, supposedly healthy potential blood donors. Among the measured
variables were the total number of white blood cells (WBC), red blood cells
(RBC) and platelets (PLT) in one nanoliter, picoliter and nanoliter, respectively,
of whole blood. We computed tolerance regions (ellipse, rectangle, hyperrect-
angle) for the following combinations of variables: (WBC, PLT), (WBC, RBC)
and (WBC, RBC, PLT), for 500, 1000 and 500 observations, respectively (see
Figures 2, 3 and 4 below).

Comparing the tolerance regions in Figures 2, 3 and 4 with the one-
dimensional “reference” or “normal” values for WBC, RBC, and PLT used in
practice (which we do not record here), it can be seen that our procedures work
nicely. Due to the fact that the one-dimensional distributions of WBC and PLT
are somewhat skewed to the right our procedures tend to give smaller regions
(when these variables are involved), than those constructed (in one way or
another) from the one-dimensional reference values. This is the same effect as
seen in Tables 1 and 2 for the skewed distributions there. Moreover, our toler-
ance regions are somewhat shifted to the “left” because of this skewness of the
distributions of these variables. It is obvious, but it can be important, that in
Figure 2, the tolerance ellipse does not include certain bivariate values, which
would be included when forming two intervals by projecting the ellipse on the
horizontal and vertical axes. For Acute Leukemia, newly diagnosed, adult pa-
tients very often have WBC values considerably over 10 [in many cases even
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FIG. 2. 95% mean coverage tolerance ellipse.

above 100(!)] or RBC values around 3 or PLT values below 100. Clearly these
values can be easily detected by the depicted tolerance regions.

The second application of our methods is on data from the Dutch ATHENA
study on HIV/AIDS. HIV is a retrovirus that infects several kinds of cells in
the body, the most important of which is a type of white blood cell called the
CD4 lymphocyte. The CD4 cell is a major component of the human immune
system that helps keep people free from many infections and some cancers;
the so called CD8 cell is a very similar type of cell. HIV can effectively disable
the body’s immune system, and destroy its ability to fight diseases. The two
two-dimensional data sets we use consist of CD4 and CD8 counts (both per
microliter) and CD4 and °log-ged HIV counts (per milliliter), respectively; the
sample sizes are 119 and 114. Each of the data points represents a deceased
HIV-infected person who died of AIDS, meaning that his death was caused by
a CDC-C event, that is, one of several diseases or cancers, including: Kaposi’s
Sarcoma (skin cancer), Tuberculosis, Toxoplasmosis, PCP, wasting syndrome
(involuntary weight loss), Candidiasis, HIV dementia (memory impairment).
The blood measurements were taken relatively shortly (at most 100 days) be-
fore death. All the patients died under Highly Active Anti-Retroviral Therapy
(combination therapy). Typically, for AIDS patients CD4 and CD8 counts are
relatively low and HIV counts are relatively high. In Figures 5 and 6 below
we computed a 90% mean coverage tolerance ellipse and tolerance rectangle,
respectively, based on the just described data. These tolerance regions can be
very helpful in determining whether a deceased HIV-infected person did or
did not die because of AIDS, since in practice it is not always possible to de-
termine if a CDC-C event was present and caused death or not. A bivariate
observation, from a deceased HIV-infected person under HAART therapy, out-
side the tolerance region indicates that the person does have counts that are
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FI1G. 3. 95% mean coverage tolerance rectangle.

atypical for a person who died of AIDS. Observe that most of the ’statistical’
remarks made when discussing the tolerance regions for the Leukemia appli-
cation are valid here too. Note also that an earlier (until 1993) definition of
AIDS is having a CD4 count of 200 or less. It is very clear from the tolerance
regions in Figures 5 and 6 that this (old) definition is very different from the
definition being presently in force.

Finally we give some references on computing minimum volume ellipsoids,
minimum volume hyperrectangles and minimum area planar convex sets
(which we did not compute in this section). An algorithm for computing the
minimum volume ellipsoid containing all data points is presented in [33]. Al-
gorithms for computing approximate minimum area ellipsoids containing m
(< n) points are given in [26] and [29] and the exact algorithm we used for
the minimum volume ellipse containing m (< n) points was developed in [2].
The computer code of this algorithm was kindly placed at our disposal by
the author; it also works in higher dimensions (up to 10). A description of
the algorithm we used for computing minimum volume rectangles and hy-
perrectangles can be found in [24], Section 3.3.3. As we noted in Section 2,
the minimum area planar convex set containing m (< n) sample points is a
polygon. Exact algorithms for computing such sets are described in [14] and
[15].

4. Proofs. Here we present the proofs of the theorems of Section 2.

PrOOF OF THEOREM 1. For each n > 1, define the empirical process in-
dexed by .27 to be

,(A) = V(P (A) - P(A)), Ae.
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Because of (C1) and the Skorohod-Dudley-Wichura representation theorem
(see, e.g., [17], page 82), there exists a probability space (Q, 7, P) carrying a
version Bp of Bp and versions &, of a,,, for all n € N, such that

(4.1) sup |&,(A) — Bp(A)| - 0  as., n— .

Aeos/
Henceforth, we will drop the tildes from the notation, for notational conve-
nience. By (C2) we obtain
(4.2) Vn(P,(A,.c)—P(A,.c)—Bp(A,;c)— 0 a.s., n — oo.
Combining this with (C3) yields
(4.3) Vn(ty — P(A, ;.c)+C—Bp(A,;c)—>0 a.s., n — oo.

From (C4) we have that dy(4, ;, ¢, A4,) . 0and hence, since Bp is contin-
uous with respect to d,

P
4.4) Bp(A, 1,.c) — Bp(Ay), n — oo.
From (4.3) and (4.4) we now obtain that
P
Vn(ty — P(An,to,C)) +C — BP(AtO), n — oo.
Since
d
Bp(Ay) L Z,[to(1— o),

the proof is complete. O
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PRrROOF OF THEOREM 2. By Theorem 1, for all x € R, we have

Pty — P(Ayu0) +C = x} = P{ZJty(1—tg) <2}, n—co.

Hence, taking x = C, we obtain

Tim P{P(A,,c) = to} = P{Z/to(1 - t9) < C} =1 —a. 0

PROOF OF THEOREM 3. Theorem 1 with C = 0 yields

(4.5) Valty— P(Ay 4 0) ~5> Z Jts(1—19),  n— oo,

By assumption /n(¢y — P(A, ; o)) is uniformly integrable, hence

EVlto — P(Ay40) — E(Z\/to(1— 1)) =0,  n - ox,

which is the statement of the theorem. O

We next present two lemmas. Lemma 2 is crucial for the proof of Theorem
4, whereas Lemma 1 is needed for the proof of Lemma 2. Until further notice
we shall, for case (c), tacitly restrict ourselves to those closed convex sets that
are contained in some large circle B (which will be specified later on). In the
proof of Theorem 4 we will show that this restriction can be removed. For
Lemma 1 we need some more notation. Define for any class .»7 C #%:

F,(y)= sup{P,(4): V(4) =y},

F(y)= sup{P(4): V(4) =3}, y>0,
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and introduce as in [13] the generalized empirical quantile and quantile func-
tions, based on P, V and .7 by

U,(t)= inf{V(A): P,(A) > t},
Aeos
U(t)= inf {V(A): P(A)>t}, t€(0,1);
Aeos/
set U(t) =0 for ¢t <0, and U(¢) = limgy, U(s) for ¢ > 1.
LEMMA 1. Under the assumptions of~Theorem 4 we have for the cases (a),
(b) and (c), that the functigns U and F are inverses of each other. Hence,

U is continuous on (0, 1), F is continuous on R*, and they are both strictly
increasing.

PROOF. We first prove the continuity of U. Note that absolute continuity
of P implies that

U(t) = [i‘nfi{V(A) : P(A) >t} for any ¢ € (0, 1)
and

F(y)=sup{P(A): V(A) <y} foranyyeR".
Aeos

Let us now take an arbitrary decreasing sequence ¢,, | ¢, where ¢,,, ¢ € (0, 1).
Consider the sequence of sets

D, ={V(A): P(A)>t,, Ac}.

It is easy to see that this is a nested sequence of sets, with limit set

Cj D, ={V(A): P(A)> t}.
m=1
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Hence,

lim U(t,) = lim inf D,, = inf {V(A): P(A)> 1} =U(?).
m— o0 €.

m— o0

In case t,, 1 ¢ the proof is analogous. Similar arguments yield continuity of F.
Note that absolute continuity of P also implies that

(4.6) U(t) = [i‘nvg/{V(A) : P(A)=t} foranyte(0,1)

and

(4.7 f(y) = sup{P(A): V(A) =y} for any y € R™.
Aco/

It follows from (4.6) and (4.7) that U is the generalized inverse of ﬁ, that is,
U(t)=inf{y: F(y) >t}  forany ¢ e (0,1).

Hence, both U and F are strictly increasing and continuous. Thus we con-
clude that they are inverses of each other.

LEMMA 2. Under the assumptions of Theorem 4 we have for the cases (a),
(b) and (c) that with probability one
d(An,tO,C’ Ato) — 0,
and hence do(A,, c» Ay) — 0 (n — 00).

Note that an in-probability-version of this lemma, with 2 =1 and C = 0, can
be found in [6], Corollary 1; see also [13] and [27].

PrOOF OF LEMMA 2. Since for the cases (a) and (b) & is a Vapnik-
Chervonenkis (VC) class we have that C1) of Theorem 1 holds. The (restricted)
class of convex sets is not a VC class, but we still have (C1); see [7] and [11],
page 918. Hence, we have (4.1) for all three cases. Since Bp is bounded, this
yields

(4.8) sup |P,(A)— P(A)|— 0 a.s., n — oo.
Aeos/
It now trivially follows from (4.8) and the definitions of ﬁn and F that
(4.9) sup|F,(y)— F(y)| >0 as., n— .
y>0

Let 0 < ¢ < 1 be arbitrary. Since U(¢) is continuous, increasing and non-
negative on (0, 1) by Lemma 1, it is uniformly continuous on (0, ¢], and thus

(4.10) sup
te(0,¢]

u(e+ =)

—U(t)l — 0, n — oo.
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We now want to prove that

(4.11) sup |[U,(t) —U()| — 0, n — oo.
te(0,¢]

For any £ > 0 we have from (4.9) that for n large enough
F(y)—e<F,(y)<F(y)+e forally>0as.

By Lemma 1, U is the generalized inverse of F. 1t is easy to see that U, and

F, are generalized inverses. Hence, we obtain from the above inequalities
that

Uit—e)<U,(t) <U(t+¢) for all £ € (0,1) a.s.
Since U is uniformly continuous, there exists § > 0 such that
U)—6<U(t—-e)<U,t)<U(t+e)<U@@)+6 for any ¢ € (0, ¢] a.s.,
which immediately yields (4.11). From (4.10) and (4.11) it follows that

(4.12) sup
te(0,¢]

C |
Un<t+—>—U(t)|—>0 a.s., n — o0o.
Jn |

Now let us return to the sets given in the statement of the lemma:

e A, c>the as. unique smallest element of o7 with P,(A, , ¢) > o+ %
(and hence, V(An,tO,C) =U,(ty+ %)),
e A, , the unique smallest element of .o/ with P(A,) = ¢, (and V(4,) =
Ul(ty)).
By (2.4),
P,(A,.c)— t a.s., n — oo,
and thus by (4.8)
P(A, ;.c)— to a.s., n — 0o.
From (4.12) we have
lim V(A,,0)=V(4,) as

The sequence {A,, ; c},>1 18 uniformly bounded a.s., that is, for each & € Q,
with P(Q,) = 1, there exists a compact set .#,,, that contains all the A, , (’s
(for details see [24], pages 27-28). By the Blaschke Selection Principle (see,
e.g., [39], Theorem 2.7.10), and the fact that the Hausdorff and the pseudo-
metric d(A, B) = V(AAB) are equivalent on the class of all compact convex
subsets of R* with non-empty interior (see [31]), the sequence {A, 1, ctn=1 has
at least one limit set. So there exists a subsequence {A,, , ¢};-1 and a non-
empty closed convex set A* (an element of the indexing class (a), (b) or (c),
respectively), such that

]}im V(A cAAY)=0 a.s.

np,to,
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Hence, V(4A,, ;, ¢) = V(A*), and thus V(A*) = U(¢;) a.s. Using that P is
absolutely continuous with respect to Lebesgue measure, it is easy to see that
P(A*) = t,.

So we have for the limit set A* that

V(A*)=U(t,) and P(A*)=t, as,

but by assumption there exists a unique set A, satisfying these two equations.
Hence, any limit set A* of the sequence {A, ; ¢},-1 is equal to A, , and thus
the sequence itself converges to A, (a.s.). O

PrROOF OF THEOREM 4. We will check the conditions (C1)-(C4) of Theorem
1. We first prove (2.1) and (2.2), for the cases (a), (b) and the restricted case
(c). As noted in the proof of Lemma 2 we have that (C1) holds. In Section 2
it is shown that (C2) holds; (C3) follows from (2.4). The first part of C4) is an
assumption of Theorem 4; Lemma 2 yields the second part of condition (C4).
This completes the proof of (2.1) and (2.2) for these cases.

Now consider the unrestricted case (c). We will prove (2.1) and (2.2). Let
us first construct a proper circle B, as used in the definition of the restricted
class. Let B, be a circle with radius r, say, such that A, C B, and P(B,) >
to vV (1 —¢y). For sake of notation, any space V, between two parallel lines in
R2 at distance v is said to be a y-strip. Note that for a probability measure P
with density f we have that

lim sup P(V,) =0,
y—0 Vy

where each supremum runs over all y-strips. Therefore there exists a y, > 0
satisfying the inequality
(4.13) sup P(V, ) < %to,
Y0

where the supremum runs over all y,-strips. Now choose B to be a circle with
the same centre as B, , but with radius R > %U(to) + r, where vy, satisfies
(4.13).

Next we show that A, ; ¢ = A,  for large n a.s., where A} , . is defined
similarly as A, ; ¢ but for the restricted class. In other words we have to show
that for n large enough A, , ¢ C B almost surely. Observe that

lim P, (A, c)=to a.s.,
lim P,(B;) = P(B;) <t A (1—1¢) a.s.

So, if there exists with positive probability a subsequence {A,, ; c}i>1 such
that A, , ¢ ¢ Bfor all k, then A, , . contains an element of B, as well as
an element of B¢ eventually. Because the y,-strips form a VC class, we have
that

lim sup P,(V, ) < %to a.s.

n—o0o V
Y0
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Hence, A, , ¢ eventually contains a triangle with area 2(R —r) > 2U(t,).
However, this can not happen because of the Glivenko-Cantelli theorem. This
proves (2.1) and hence (2.2).

Finally we prove (2.3) for all three cases. It suffices to show that /n(#, —
P(A, ;, 0)) is uniformly integrable. It follows from (2.4) that

Wty — P(A, 4,.0)| = [Vr(Po(Ay 40.0) = P(An 0| + [Vt — Pu(An0))]
sup |v/n(P,(A) - P(A))|+1 as.
Aecos

IA

IA

Therefore it suffices to establish uniform integrability of

Y, = sup [Va(P,(A) - P(A))].
Aes
Note that if Y is a non-negative random variable then

EY =f P{Y > yldy.
0

Hence,
EYIjy.q = /0 P{YIjy.q > y}dy = aP{Y > a} + / P{Y > y}dy.

Moreover, for the cases (a) and (b) (as then .27 is a VC class), using Theorem
2.11 of [4], we have for A > 8 and Cy, C, € (0, c0) that

(4.14) [FD{iup |vVn(P,(A) — P(A))| > A} < C;12exp(—2A2).
e/

For large enough A, the right-hand side of (4.14) is less than exp(—A2). Let
& > 0. Then for a large enough:

EY , Iy -q = aP{Y, > a} —i—/a P{Y, > y}dy < ae —i—/a e Vdy < e.
In case (¢), using Corollary 2.4 and Example 3 (page 1045 of [4]) with ¢ = i3,
we obtain the uniform integrability similarly as above; see also [37], page
2134. O

Recall the notation of Section 2, in particular let X,,..., X, and & be as
in that section. Denote with E; € & the almost surely unique ellipsoid of
minimum volume containing at least m € {k+ 1, ..., n} (data) points.

LEMMA 3. E; contains exactly m points, almost surely.

PROOF. Assume that E; contains £ > m points and ¢ (k+1 <t < k(k +
3)/2 a.s.) of these points are on its boundary. Note that the smallest ellipsoid
containing these ¢ boundary points is equal to E;; see [33]. Consider ¢ — 1 of
the ¢ boundary points (call this set B) and let E; be the smallest ellipsoid
containing B. Denote the remaining ¢th boundary point of E; by Y ;. Observe
that Y, ¢ E,. It follows from a conditioning argument that for any subset of
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size r > 1 of the n points, we have a.s. that none of the remaining n — r points
are on the boundary of the smallest ellipsoid containing these r points. This
yields that a.s. V(E,) < V(E).

Note that the smallest ellipsoid containing a finite set is equal to the small-
est ellipsoid containing the convex hull of that set. Denote by Y, a point on
the boundary of E such that the line through Y, and Y, intersects the con-
vex hull of B and such that the open interval from Y to Y; has an empty
intersection with E,. Set Y, = (1 — A\)Y,+ AY, A € [0,1]. Let C, be the
convex hull of BU{Y,}. Note that for A < A" we have that C, c C,,. Let E,
be the smallest ellipsoid containing C,. So V(E,) < V(E,) for A < \’.

It follows from the Blaschke Selection Principle that there exists a sequence
{A;}jen> 0 < A < 1, converging to 1 and such that

lim V(E, AE*) =0
Jj—>00 J

for some E* € &. We have V(E*) < V(E,), since V(E, ) < V(E,), j € N.
But C; C E*, so V(E,) < V(E*). Hence, V(E*) = V(E;) and both E* and E;
contain C;. But, with probability 1, E; is unique, so E* = E; and thus

lim V(E, AE,) = 0.
Jj—>oo J

So there exists a large j (denote the corresponding A; by 7) such that E,
contains all the £ — ¢ points in the interior of E; and the points of B and does
not contain the n — ¢ points in the complement of E,. If Y; € E,, then Y, isin
the interior of E,, so according to [33], E, = E, and hence V(E,) = V(E,) <
V(E,) a.s., but this can not happen since C; C E,. This yields that Y, ¢ E,.
We now see that E, contains ¢ — 1 (> m) points and V(E,) < V(E,). Since
E, is the minimum volume ellipsoid containing at least m points, we have
that V(E,) = V(E;). Since E, # E; this contradicts the a.s. uniqueness of
the minimum volume ellipsoid. O
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