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We suggest a method for monotonizing general kernel-type estimators,
for example local linear estimators and Nadaraya–Watson estimators.
Attributes of our approach include the fact that it produces smooth esti-
mates, indeed with the same smoothness as the unconstrained estimate.
The method is applicable to a particularly wide range of estimator types,
it can be trivially modified to render an estimator strictly monotone and it
can be employed after the smoothing step has been implemented. There-
fore, an experimenter may use his or her favorite kernel estimator, and
their favorite bandwidth selector, to construct the basic nonparametric
smoother and then use our technique to render it monotone in a smooth
way. Implementation involves only an off-the-shelf programming routine.
The method is based on maximizing fidelity to the conventional empirical
approach, subject to monotonicity. We adjust the unconstrained estimator
by tilting the empirical distribution so as to make the least possible change,
in the sense of a distance measure, subject to imposing the constraint of
monotonicity.

1. Introduction. We suggest a method for “monotonizing” a general
kernel-type estimator of a regression mean. It applies to Gasser–Müller,
Nadaraya–Watson, Priestley–Chao and local linear estimators, as well as
many of the modified forms of these types that have been proposed [e.g., by
Hougaard (1988), Hougaard, Plum and Ribel (1989), Müller and Song (1993),
Mammen and Marron (1997), Müller (1997)]. It may be implemented rapidly
and without difficulty, using standard software. It involves tilting the empir-
ical distribution by the least possible amount, subject to the constraint being
enforced. Its roots lie partly in biased-bootstrap techniques suggested by Hall
and Presnell (1999). Monotone estimates are of course required in many practi-
cal applications, where physical considerations suggest that a response should
be monotone in the dosage or the explanatory variable. These include analy-
sis of dose-response in pharmokinetics, and many specific practical problems
mentioned in the literature cited below.

Competing methods include those of Friedman and Tibshirani (1984), based
on isotonic regression, and Bloch and Silverman (1997), where the cost of mis-
classification is minimized. Mammen (1991) discusses, among other matters,
the theoretical performance of Friedman and Tibshirani’s (1984) technique.
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In common with other methods based on projecting an unconstrained estima-
tor onto a constrained subspace, these approaches reduce the smoothness of
the estimator with which they started. In the just-mentioned examples, the
projected estimator is so unsmooth as to commonly have jump discontinuities.
In related techniques the lack of smoothness can be in the form of a discontin-
uous derivative; then cusps in a graph of the smoother are visible. We sought
a method which, by way of contrast, would produce a curve estimator that
enjoyed the same level of smoothness (i.e., the same number of derivatives)
as its unconstrained counterpart. At the same time it should be applicable
to general kernel methods, modifying them principally in regions where they
are nonmonotone, and differing in only trivial respects in other places. Fur-
thermore, it should require no more additional computational labor (relative
to that needed for the unconstrained estimator) than the constraining step of,
say, a spline estimator, and it should use only standard computing routines
and software.

Our method has all these features, and in addition is readily able to enforce
strict monotonicity, for example by constraining the minimum gradient to be at
least a given value ε > 0. Moreover, it employs a smoothing parameter which
can be chosen prior to and separately from the monotonizing step. In particu-
lar, the experimenter may use a conventional kernel-type method, and his or
her favorite bandwidth selection rule, to construct a nonparametric estimator
and can then apply our technique to make it monotone in a smooth way. Fur-
thermore, our approach can be applied locally to monotonize a conventional
kernel estimator in regions where there are “dips” and “bumps,” and then
trivially extended monotonically to the entire curve, the resulting estimator
being equivalent to that obtained by a global application. We do not discuss
optimality issues, but they are of interest. In particular it is possible that
one approach or another to monotonizing a regression mean has theoretical
performance advantages from a minimax viewpoint.

Ramsay (1988), Kelly and Rice (1990), Turlach (1997) and Mammen and
Thomas-Agnan (1999) have considered constrained spline-based methods for
constructing monotone nonparametric estimators of regression means. These,
and new projection-based techniques suggested by Mammen, Marron, Turlach
and Wand (1999a, b) [see also Marron, Turlach and Wand (1997)] are arguably
the principal competitors with our approach, in that they produce smooth
estimators and are in the same class as familiar estimator families (spline
and kernel methods, respectively). The fact that our technique has roots in
conventional kernel estimation is one reason why it is appealing to users of
those methods; spline smoothing does not hold the same attraction for them.

Alternative monotonizing techniques include those of Mukerjee (1988),
who modified maximum likelihood methods of Brunk (1955) to construct
a monotone function defined at the response or design variables and then
smoothed and interpolated this function using a kernel with special log-
concave properties. General methodology for inference under order restric-
tions, developed by Bartholomew (1959) and Barlow, Bartholomew, Bremner
and Brunk (1972), among others, should also be mentioned in this regard.
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Ramsay (1998) proposed methods based on solving differential equations
that define twice-differentiable monotone functions. Statistical tests for mono-
tonicity of a regression mean include those of Schlee (1982), Bowman, Jones
and Gijbels (1998) and Hall and Heckman (1998).

Section 2 will introduce our method and discuss its main features. Numer-
ical and theoretical properties will be addressed in Sections 3 and 4, respec-
tively. Technical arguments will be summarized in Section 5. In Section 4
we shall show that our constrained estimator is well-defined under very gen-
eral conditions. Moreover, we shall prove that, away from places where the
unconstrained estimator is non-monotone, the constrained and unconstrained
estimators are very close, generally differing only to second order.

The methods that we suggest have application to a host of related problems,
including monotonization of hazard rate estimators [see, e.g., Patil, Wells and
Marron (1994) and González-Manteiga, Cao and Marron (1996) for more con-
ventional nonparametric methods in that context], to rendering nonparametric
estimators convex [see Fisher, Hall, Turlach and Watson (1997) for examples
where nonparametric techniques are important in that setting] and many
other areas. Excitingly, they can be used to impose shape constraints along
with other conditions, for example, to impose the constraint that a density
estimate produce a hazard rate having a certain shape in a given region, and
at the same time that the associated smoothed distribution estimate have the
same first k moments as the conventional empirical distribution, and/or have
a given probability mass in a specified interval.

Throughout we use the terms “increasing” and “decreasing” to mean “non-
decreasing” and “nonincreasing,” respectively.

2. Methodology. Our method has several different versions, of which we
give only one here. It involves applying the weights primarily to the response
variables and is chosen because it is generic to a large class of linear esti-
mators. An alternative approach, where the weights are applied to the data
pairs, is briefly discussed in the Appendix. It has the advantage that it is
fully translation invariant, but since this is achieved at the expense of greater
computational labor, and since the simpler, alternative approach is virtually
translation invariant in practice, we present only the latter in detail.

Let �X1�Y1�� � � � � �Xn�Yn� denote a sample of pairs of explanatory and
response variables, and write �X�Y� for a general data pair. We wish to esti-
mate the mean response, g�x� ≡ E�Y�X = x�, given that the explanatory
variable equals x. Conventional linear estimators of g�x� may be expressed
in the form

ĝ�x� = n−1
n∑
i=1

Ai�x�Yi�(2.1)

where the weight functions Ai depend only on the Xi’s, not on the Yi’s. For
example, in the case of regularly spaced design, without loss of generality on
the interval �0�1	, Ai�x� = Ki�x� ≡ h−1K
�x − Xi�/h�, where the kernel
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function K is generally a bounded, symmetric, compactly supported proba-
bility density, and h is a bandwidth. For the Nadaraya–Watson estimator,
appropriate for irregular design, Ai = nKi/�

∑
j Kj�; for the Priestley–Chao

estimator, Ai = n�Xi −Xi−1�Ki, where here and in the next example it is
assumed that the pairs �Xi�Yi� have been ordered so that X1 ≤ · · · ≤ Xn;
for the Gasser–Müller estimator, Ai�x� = n ∫� �i�Ki�x − u� du, where � �i�
denotes the interval �Zi−1�Zi	 andZi = �Xi+Xi+1�/2; and for the local linear
estimator,

Ai�x� =
S2�x� − 
�x−Xi�/h�S1�x�
S0�x�S2�x� −S1�x�2

Ki�x��

where Sk�x� = n−1 ∑
i 
�x − Xi�/h�k Ki�x�. See Wand and Jones [(1995),

Chapter 5] for discussion. In the cases of Gasser–Müller and Priestley–Chao
methods it is common to assume that design points are sampled randomly
from a continuous distribution supported on a known interval �a� b	, and to
take X0 = a and Xn+1 = b.

We suggest generalizing the definition of ĝ�x� at (2.1) to

ĝ�x�p� =
n∑
i=1

pi Ai�x�Yi�(2.2)

where p = �p1� � � � � pn� is a probability distribution on the set 
X1� � � � �Xn�.
To impose the condition that ĝ�·�p� is increasing on an interval � we pro-
pose choosing p = p̂ to minimize the distance D�p� from p to the uniform
distribution, punif = �1/n� � � � �1/n�, subject to ĝ′�·�p� ≥ 0 on � . More gener-
ally we might ask that ĝ′�·�p� ≥ ε, for a given positive number ε. Of course,
additional constraints,

∑
i pi = 1 and minpi ≥ 0, are required by virtue of

the fact that p is a probability measure. The first of these must be imposed
explicitly, but the second is often implied by the distance measure and then
does not need to be considered explicitly.

Suitable distance measures were introduced by Cressie and Read (1984):

Dρ�p� =
1

ρ �1 − ρ�
{
n−

n∑
i=1

�npi�ρ
}

for −∞ < ρ <∞ and ρ �= 0�1, and

D0�p� = −
n∑
i=1

log�npi�� D1�p� =
n∑
i=1

pi log�npi��

The latter are both Kullback–Leibler divergences. If 0 ≤ ρ ≤ 1, which is
the range that we shall address in detail, then Dρ�p� is not well defined
unless each pi is nonnegative, or strictly positive in the case ρ = 0. Therefore,
positivity does not need to be imposed.

Implementation is straightforward, and (in our experience) without vices,
using an off-the-shelf quadratic programming routine such as E04UCF in the
NAG library. If ĝ�·�p� is constrained to be monotone on a grid of N points,
then the algorithm for computing p to a given level of accuracy involves
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only O�N logN� iterations, the constant increasing logarithmically as a func-
tion of the required accuracy. Of course, quadratic programming is routinely
used to construct other constrained nonparametric smoothers, such as those
based on splines; see for example Turlach (1997). Monotonicity of a function
may be verified to hold, or to fail, in numerical terms by checking the signs of
differences between function values at adjacent grid points.

Our algorithm need only be applied on those intervals (and a little beyond)
where the basic estimator ĝ�·�punif � is not monotone; it does not have to be
implemented on the entire interval of estimation. During this step the other
pi’s may be taken identical to one another, at a value determined by the
constraint

∑
i pi = 1. This is a consequence of the following properties:

if ĝ′�·�p� > 0 on an interval � , then the sign of ĝ′�·�p� ≥ 0
on � does not change if all those values of pi for which
A′
i�x� �= 0 (for x ∈ � ) are multiplied by a fixed constant

(2.3)

and

if � and � are complementary subsets of the integers 1� � � � � n,
and if pi, for i ∈ � , are fixed, then the values of pj, for j ∈ �,
that minimise Dρ�p� are identical, and are uniquely determined
by the constraint that their sum should equal 1 − ∑

i∈�
pi�

(2.4)

Result (2.3) follows immediately from the definition of ĝ�·�p� at (2.2), and
(2.4) follows via an application of the calculus of variations to the distance
measure Dρ.

One implication of (2.3) and (2.4) is that, for values ofXi that lie away from
dips or bumps in the unconstrained estimator, the corresponding value of pi
equals a constant that is close to 1/n. As a result, the constrained estimator
equals a constant multiple (close to 1) of the unconstrained estimator, in places
that are not near to dips or bumps. A characteristic of a graph of an estimator
produced by our method is that it corrects for nonmonotonicity in dips or
bumps in the unconstrained estimator, and returns quickly to the graph of
the unconstrained estimator on either side of those places. These properties
will be expanded upon in theoretical work in Section 4. Illustrations of (2.3)
and (2.4) in action will be given in Section 3.

3. Numerical illustrations. We present a comparative simulation study
(Example 1) and two real-data examples. We originally implemented our
method for Nadaraya–Watson estimators without experiencing any difficulty,
although local linear estimators are chosen for illustration here. We use the
biweight kernel in Example 1, and the Gaussian kernel in Examples 2 and 3.

A more extensive simulation study, comparing qualitative properties of
smoothers that result from different simulated datasets, is available from the
authors. Among other matters, this work makes it clear that varying ρ usually
makes little difference to either the curve estimates or the weights p̂i. In none
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of the cases that we considered, involving either simulated data or real data,
was there any difficulty carrying out the monotonizing step.

Example 1.

Y = −X3 + 3X+ ε� X ∼ Uniform �−1�1	 � ε ∼N�0�0�42��

This cubic regression function is increasing on � = �−0�9�0�9	. When either
imposing the constraints or plotting the curves we took 100 equally spaced grid
points on � . We used sample size n = 50 and employed bandwidth h = 0�25,
in order that fluctuations might occur despite the underlying function being
monotone. Forty out of 250 simulations produced increasing estimates without
manipulation. Figure 1(a) shows the simulated dataset corresponding to the
largest divergence distance, D0�p̂� = 1�02, among the remaining 210. Also
depicted are the true function (dotted line), the original local linear estimate
(short-dashed line), and the constrained-to-be monotone estimates when ρ = 0
and 1 (unbroken line and long-dashed line, respectively). Estimates for other
values of ρ lie between the latter two.

As can be seen, varying ρ makes little difference to the constrained esti-
mates, although D1�p̂� = 0�015. Both constrained curves correct for the small
bump near x = 0. Though the constrained estimates may not be visually very
smooth, this is an artifact of the small bandwidth used; the estimators have
as many derivatives as the kernel. The weights p̂i that yielded D0�p̂� = 1�02
are plotted in Figure 2(a). Values of p̂i for ρ = 1 are connected by dashed
lines.

A comparison with other methods for constrained estimation is insightful.
We implemented the algorithm suggested by Friedman and Tibshirani [(1984),
Section 3.2], obtaining, for the dataset used in Figure 1(a), the estimate
depicted in Figure 1(b). [For ease of comparison we have repeated from panel
(a) the constrained local linear estimate with ρ = 0.] Discontinuities caused
by the “pool adjacent violators” algorithm are evident. Monotone spline esti-
mates were kindly provided by Turlach (1997) with the smoothing parameter
α = 10−5 and 10−3. The spline curves show several smooth steps; this tendency
to increase in steps is less marked for our algorithm.

These qualitative differences between the three estimator types, that is,
the Friedman and Tibshirani (1984) estimator showing discontinuous jumps,
the Turlach (1997) estimator tending to increase in smooth jumps, and our
estimator tending to increase more gradually after constraint, are typical of a
much larger number of simulations, not given here. It is not really possible to
give a quantitative comparison of these effects, however, since the smoothing
parameters for the different techniques [particularly that of Turlach (1997)
and our own] are not comparable.

Figure 2(b)–(d) gives pointwise squared bias, variance, and mean squared
error, respectively, of the constrained estimators and their unconstrained coun-
terpart. (These quantities were computed by averaging over the 250 simu-
lated curve estimates.) The most obvious feature is a marked decrease in bias
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Fig. 1. Performance of monotonization for data simulated from model in Example 1. In panel (a)
the dotted line represents the true regression function, the dashed line shows the unconstrained
local linear estimate, the solid line shows the constrained local linear estimate for ρ = 0 and
the long-dashed line shows the constrained estimate for ρ = 1. In panel (b) the solid line is as
in (a), the jump function shown by the dotted line represents the estimate proposed by Friedman
and Tibshirani (1984), and the dashed and long-dashed lines are the spline estimates of Turlach
(1997) with smoothing parameter α = 10−5 and 10−3, respectively.

in most parts of � , virtually the same variance for the constrained estima-
tor relative to its unconstrained form, and an overall smaller mean squared
error (MSE). The slightly larger variance near the origin results from fre-
quent need to enforce monotonicity there, using relatively large weights. In
this respect, among others, the weights shown in Figure 2(a) are typical. The
weights employed in this region are not as large when ρ = 1. Average mean
integrated squared errors of the unconstrained estimator, and the constrained
forms with ρ = 0 and ρ = 1, are 0.089, 0.084 and 0.084, respectively.
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Fig. 2. Performance of monotonization for data simulated from model in Example 1. In panel (a)
the value of p̂i, for the dataset from Figure 1 and after the constraint has been achieved with ρ = 0,
is plotted against the data values. The corresponding result for ρ = 1 is indicated by the dashed
line. Panels (b)–(d) give pointwise squared bias, variance and mean squared error, respectively.
The solid line, dashed line, and dotted line represent, respectively, the constrained estimators with
ρ = 0 and 1 and the unconstrained local linear estimator. (The cases ρ = 0 and 1 are virtually
indistinguishable on the scale of the figure.)

Example 2 (Radiocarbon data). These data were published by Pearson and
Qua (1993), and a subset analyzed by Bowman and Azzalini (1997). We use
the same subset, and bandwidth h = 30 as suggested by Bowman and Azzalini
(1997). The variables are radiocarbon age, predicted from the radiocarbon dat-
ing process, and calendar age, that is, the true calendar age. In this example
we also tried constraining the minimum gradient to be at least ε = 0�25.

Figure 3 shows the data, the local linear estimate with Gaussian kernel
and the estimates under the “increasing” constraints when ε = 0. The curve
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Fig. 3. Radiocarbon data. The figure shows the unconstrained local linear estimator (dashed
line), its monotonically constrained form with ε = 0 (solid line), the jump function (dotted line)
of Friedman and Tibshirani (1984), and the spline estimate (long-dashed line) of Turlach (1997)
with α = 100.

with ε = 0�25 is barely distinguishable on the scale of Figure 3(a). Curves
obtained using larger values of ε depart more markedly from the scatterplot
and seem not to be such satisfactory estimates. The divergence corresponding
to ε = 0 is D0�p̂� = 0�00029.

Estimates of Friedman and Tibshirani (1984) and Turlach (1997), with α =
100, are also included. They show the same qualitative features revealed in
Figure 1, with the Friedman and Tibshirani (1984) estimator having
marked jumps and the Turlach (1997) estimator being smooth but less grad-
ually increasing than our own.
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Fig. 4. Weights p̂i for real datasets. Panel (a) shows the weights p̂i for the radiocarbon data,
plotted against values of Xi, in the case ε = 0. Panel (b) presents the same information for the
Great Barrier Reef data.

The weights p̂i when ε = 0 are shown in Figure 4(a). The plot there has been
truncated so that the differences between the p̂i’s and the uniform weights
is more clearly visible. It is clear that p̂i’s that correspond to Xi’s that are
not in the immediate vicinity of dips or bumps in the unconstrained esti-
mate, are constant and very close to n−1. This was predicted by arguments in
Section 2 [see in particular (2.3) and (2.4)], and will be corroborated by theo-
retical results in Section 4; see Theorem 4.3. It explains why the constrained
and unconstrained estimates are so close in such places.
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Fig. 5. Great Barrier Reef data. Panel descriptions and legends are as for Figure 3, except that
now the constraint was that the curve be monotone decreasing and α = 0�001 for the spline estimate.

Example 3 (Great Barrier Reef data). These data derive from a survey of
fauna on the seabed between the coast of northern Queensland and the Great
Barrier Reef. They were analyzed by Poiner et al. (1997) and Bowman and
Azzalini (1997). We used the data subset suggested by Bowman and Azzalini
[(1997), Figure 5.4]. The variables are longitude and catch score 1. We
employed the bandwidth h = 0�1 used by Bowman and Azzalini (1997).
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Figure 5 plots the data, the local linear estimate with Gaussian kernel and
uniform weights, the estimate under the “decreasing” constraint with ε = 0,
and the estimates by Friedman and Tibshirani (1984) and Turlach (1997)
with α = 0�001. The corresponding power divergence distance is D0�p̂� =
0�1499. Taking ε = −0�5 changes the curve slightly, and produces a larger
value of Dρ�p̂�. Larger negative values of ε produce curves that arguably
depart too far from the scatterplot. The weights p̂i in the case ε = 0 are
shown in Figure 4(b). Again it is seen that, away from nonmonotone parts of
the unconstrained curve, the p̂i’s are constant and virtually identical to n−1.
That explains why constrained and unconstrained estimates in Figure 5 are
virtually identical in places away from dips and bumps.

Incidentally, applying translations of up to several thousand to the radiocar-
bon data, and then estimating g and correcting back to the original location,
produces results that are indistinguishable on the scale of Figure 3. Similar
results are observed in many other examples, in particular Example 2. Thus,
for practical purposes the method proposed in Section 2 is translation equiv-
ariant. A fully translation equivariant approach will be noted in the Appendix.

4. Theoretical properties. If the weight functionsAi are approximately
bell-shaped; if for each x there is an index i such that A′

i�x� > 0, and another
index j such that A′

j�x� < 0; and if the response variables are all of the one
sign then monotonization in either direction is always possible. This is true
despite the fact that the unconstrained estimator ĝ�·�punif � might oscillate
wildly. Our first theorem formalizes this result under explicit conditions. It
requires the weight functions to be monotone increasing only in their far left-
hand tails, and imposes those conditions on only some of the weights. It treats
the case where we wish to construct a monotone increasing estimator, and the
response variables are positive, but by reversing the direction of the axis on
which the explanatory variables Xi are plotted, and/or changing the sign of
the response variables Yi, one obtains the more general result.

Theorem 4.1. Assume that the set 
1� � � � � n� contains a sequence i1� � � � � ir
with the properties.

(a) For each k, the function A′
ik
is strictly positive and continuous on

�Uik�Vik�, and vanishes on �−∞�Uik	, where the differences Vik − Uik are
strictly positive �but may be infinite, if Uik = −∞�.

(b) Each x ∈ � = �a� b	 is contained in at least one interval �Uik�Vik�.
(c) For 1 ≤ i ≤ n, A′

i is continuous on �−∞�∞�.
(d) Each Yik > 0.

Then there exists a probability measure p = �p1� � � � � pn� such that each pi > 0
and ĝ′�x�p� > 0 for all x ∈ � .

Next we shall show that under general conditions, not requiring such
detailed assumptions about the weight functions or the responses, or indeed
monotonicity of g, there exists p̃ such that ĝ�·�p̃� is asymptotically linear,
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either increasing or decreasing. For simplicity we assume that the regression
function g is bounded away from 0—without loss of generality it is positive—
although a longer argument, involving an additional regularity condition, can
be used to address other cases.

Let � denote a compact interval. Suppose the estimator, the distribution
of �X�Y� and the kernel K satisfy

the estimator is of Gasser–Müller, Nadaraya–Watson,
Priestley–Chao or local linear type; the data �Xi�Yi� are
generated by the model Yi = g�Xi� + εi, where the εi’s are
independent and identically distributed with zero mean, and
are independent of the Xi’s, which are either regularly spaced
on a compact interval � = �c� d	, or independent random
variables coming from a distribution whose density f is
continuous and nonvanishing on � ; K is a symmetric,
compactly supported density with a Hölder-continuous
derivative, � ⊆ � , and, in the Gasser–Müller, Nadaraya–
Watson and Priestley–Chao cases, � ⊆ �c+ δ�d− δ	 for
some δ > 0

(4.1)

and

inf
x∈�

g�x� ≥ B1 > 0� E��εi�t� is bounded�(4.2)

where t > 0. A longer argument, involving an additional regularity condition,
can be used to remove the assumption at (4.2) that g is positive.

Theorem 4.2. Assume �4�1� and �4�2�, that t > 0 is chosen sufficiently large
in �4�2�, and that h = h�n� → 0 and n1−δh3 → ∞ for some δ > 0. Then for
either choice of the ± signs, taken respectively, with probability 1 there exists
a probability measure p̃± = �p̃±�1� � � � � p̃±�n� on 
1� � � � � n�, and a constant
B± > 0, such that �a� p̃±�i > 0 for each i, and �b� ĝ′�x�p̃±� → ±B± uniformly
in x ∈ � .

The value of t in (4.2) depends on the exponent of Hölder continuity of K′,
among other aspects of the conditions.

In Theorems 4.1 and 4.2 we did not need to specify the distance D, but
it is required for our next result, where we establish consistency and rates
of convergence in cases where the true regression mean is monotone. Define
g̃ ≡ ĝ�·�punif � to be the unconstrained estimator. In Theorem 4.3 we con-
strain ĝ�·�p̂� to be monotone increasing and treat the case where bandwidth
is chosen in a way that would be “asymptotically optimal” for g̃. That is, we
take h � h−1/5.

Let us paraphrase Theorem 4.3 before we state it. Part (a) notes that if g
is strictly monotone on � , then asymptotically, the estimate g̃ is also strictly
monotone. Part (b) shows that if g′ has an isolated zero, and if g is locally
quadratic there, then the tilted empirical distribution will have nonconstant
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weights only within an O�h� neighborhood of the zero point, and the con-
strained estimate will be equal to its unconstrained counterpart, to first order,
outside the neighborhood. Moreover, the ratio of the two estimators will be
constant there. Part (c) shows that the same is true if g′ has an isolated zero
where it is locally cubic, with degenerate quadratic component, except that
the neighborhood is now of radius O�h1/2� rather than O�h�.

Theorem 4.3. Assume �4�1� and �4�2�, that t > 0 is chosen sufficiently
large in �4�2�, that f and g have two continuous derivatives on � = �a� b	,
that h � n−1/5 as n→ ∞, and that D = Dρ where 0 ≤ ρ ≤ 1.

(a) If g′ > 0 on � then with probability 1, p̂ = punif for all sufficiently
large n. Hence, ĝ�·�p̂� ≡ g̃ on � , for all sufficiently large n.

(b) If g′ > 0 except at a single point x0 = a or b, where g′ = 0 and
g′′ �= 0, then �ĝ�·�p̂� − g̃� = Op�h2� uniformly on � , and supi p̂i = Op�n−1�.
Furthermore, there exist random variables ' = '�n� and Z1 = Z1�n� ≥ 0,
satisfying ' = Op�h5/2� and Z1 = Op�1�, and such that ĝ�x�p̂� = �1+'� g̃�x�
uniformly in x ∈ � such that �x − x0� > Z1h. The latter property reflects the
fact that, for a random variable Z2 = Z2�n� ≥ 0 satisfying Z2 = Op�1�, we
have p̂i = n−1�1 + '� for all indices i such that both �Xi − x0� > Z2h and
Ai�x� �= 0 for some x ∈ � .

(c) If g′ > 0 except at a single point x0 interior to � , in the neighborhood
of which g has three continuous derivatives, with g′′�x0� = 0 and g′′′�x0� �= 0,
then �ĝ�·�p̂�− g̃� = Op�h5/4� uniformly on � . Furthermore, there exist random

variables ' = '�n� and Z1 = Z1�n� ≥ 0, satisfying ' = op�h2� and Z1 =
Op�1�, and such that ĝ�x�p̂� = �1 + '� g̃�x� uniformly in x ∈ � such that

�x−x0� > Z1h
1/2. The latter property reflects the fact that, for a random variable

Z2 = Z2�n� ≥ 0 satisfyingZ2 = Op�1�, we have p̂i = n−1�1+'� for all indices i
such that both �Xi − x0� > Z2h

1/2 and Ai�x� �= 0 for some x ∈ � .

In part (b) of the theorem, a longer argument shows that ' = Op�h3� rather
than simply ' = Op�h5/2�. We believe that the assertion ' = op�h2� in part (c)
can likewise be strengthened to ' = Op�h3�, but we do not have a proof. On
the other hand, it is straightforward to extend the theorem to the case where
a finite number of points x1� � � � � xm, with the properties assumed of x0 in
parts (b) or (c), is distributed within the interval. In this case the results in
part (c) continue to hold, provided the quantities �x− x0� and �Xi − x0� there
are replaced by inf j �x− xj� and inf j �Xi − xj�, respectively.

5. Technical arguments.

5.1. Proof of Theorem 4.1. Let � = �a� b	. Without loss of generality, the
Vik ’s are arranged in increasing order, and i1 < · · · < ir. Let j1 denote the
largest ik such that Uik < a. Taking x = a in condition (b) we see that j1
is well-defined and Vj1

> a. Given j*, with a < Vj* ≤ b, let j*+1 be the
largest ik such that Uik < Vj* . Using condition (b), with x = Vj* , we see that



638 P. HALL AND L.-S. HUANG

j*+1 exists and j*+1 > j*. Terminate the sequence j1� � � � � js when Vjs > b.
Put ' = mink�Vjk−Ujk+1

� > 0, and let 0 < ε < min�Vj1
−a�Vjs−b�'�. In view

of properties (a) and (b), the sequence j1� � � � � js is well-defined and strictly
increasing. Take qj1

= 1, and note that by definition of j1, qj1
A′
j1
Yj1

> 0
on �a�Vj1

�.
Suppose we have constructed a sequence qj1

� � � � � qj* , where * < s, with
the property that

∑
k≤* qjkA

′
jk
Yjk > 0 on �a�Vj* − ε	. Since (i) Uj*+1

< Vj* −
ε [by virtue of the definition of j*+1 and our choice of ε], (ii) A′

j*+1
> 0 on

�Uj*+1
�Vj*+1

� [by property (a)], and (iii) A′
jk
�x� is bounded away from −∞,

uniformly in k ≤ * and in −∞ < x < ∞ [by property (c)], then if qj*+1
is

sufficiently large positive we shall have
∑
k≤*+1 qjkA

′
jk
Yjk > 0 on �a�Vj*+1

−ε	.
Using induction over *, this proves the existence of integers j1 < · · · < js,

and of positive numbers qj1
� � � � � qjs , such that 
j1� � � � � js� ⊆ 
1� � � � � n� and∑

k qjkA
′
jk
Yjk > 0 on �a�Vjs − ε	. In view of the definition of ε, the latter

interval contains � . Taking qi = 0 if i is not in the sequence j1� � � � � js, and
defining pi = qi/�

∑
j qj�, we see that ĝ′�·�p� > 0 on � . In view of property (c),

we may take the vanishing pi’s to be very small but strictly positive without
invalidating this result. This gives a vector p for which ĝ′�·�p� > 0 on � and
each pi is strictly positive. ✷

5.2. Proof of Theorem 4.2. In the proofs of this theorem and the next we
shall suppose that a ridge parameter has been incorporated into the denomi-
nators in definitions of Ai and A′

i for Nadaraya–Watson and local linear esti-
mators, so that their moments are all well-defined. The ridge will be taken
to equal n−λ, where λ ≥ 3; note that λ can be taken arbitrarily large without
affecting second- or third-order properties of the nonridged estimator. A sim-
ple subsidiary argument enables the theorem to be derived without the ridge,
once it has been established with the ridge.

The conditions imposed in the theorem are sufficient to ensure the existence
of constants B2�B3�B4 > 0 such that

sup
x∈�

n∑
i=1

�A′
i�x��r = O

(
n�1−B2�r) almost surely for 2 ≤ r ≤ r0�(5.1)

sup
x∈�

{∣∣∣∣n−1
n∑
i=1

A′
i�x�

∣∣∣∣+
∣∣∣∣n−1

n∑
i=1

XiA
′
i�x� − 1

∣∣∣∣
}
= o�1� almost surely�(5.2)

sup
1≤i≤n

sup
x�y∈�

�x− y�−B3 �A′
i�x� −A′

i�y�� = O
(
nB4

)
almost surely�(5.3)

where the value of r0 may be taken arbitrarily large by choosing t in (4.2)
sufficiently large. We need only (4.2), (5.1), (5.2) and (5.3).

Without loss of generality, � = �0�1	. Put qi = �1 ± 1
2Xi�/g�Xi�, Q =

n−1 ∑
i qi and p̃±� i = �nQ�−1qi. Then each p̃±�i > 0,

∑
i p̃±�i = 1 and

ĝ′�·�p̃±� = Q−1�ḡ1+ḡ2�, where ḡ1 = n−1 ∑
i �1± 1

2Xi�A′
i and ḡ2 = n−1 ∑

i �1±
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1
2Xi� 
Yi g�Xi�−1 − 1�A′

i. Let E′ denote expectation conditional on the
explanatory variables Xi. By (5.2), sup �ḡ1 − �± 1

2�� → 0 almost surely, where
here and below, suprema are over � ; by (4.2), (5.1) and Rosenthal’s inequality,
supE′�ḡ2�2r = O�n1−2B2r� almost surely for 1 ≤ r ≤ 1

2r0, and from this result,
(5.3) and the Borel–Cantelli lemma, sup �ḡ2� → 0 almost surely. (The Borel–
Cantelli lemma is applied conditional on the explanatory variables and along
a sequenceX1�X2� � � � that arises with probability 1.) Hence, sup �Qĝ′�·�p̃±�−
�± 1

2�� → 0 almost surely. Since Q→ E
�1 ± 1
2X�/g�X�� > 0, where the con-

vergence is almost sure, then the theorem is proved. ✷

5.3. Proof of Theorem 4.3. Part (a). Under the conditions of part (a), g̃′ =
g′ + o�1� uniformly on � , with probability 1. Therefore, with probability 1,
for all sufficiently large n, g̃′ satisfies the monotonicity constraint throughout
the interval � , without manipulation. Result (a) is immediate.

Part (b). Without loss of generality, x0 is the left-hand endpoint of � =
�a� b	, in which case g′ > 0 on �a� b	. Recall that g̃ = ĝ�·�punif �. The proof for
part (b) is divided into six steps.

Step (i) [Size of D�p̂�]. In Step (iv) below we shall show that for each δ > 0
there exists a multinomial distribution p̃ = p̃�δ� satisfying

P
{
ĝ′�x�p̃� > 0 for all x ∈ �

}
> 1 − δ(5.4)

for all sufficiently large n and

D�p̃� = Op�1��(5.5)

Since p = p̂ denotes the multinomial distribution that minimizesD�p� subject
to nonnegativity of ĝ′�·�p� on � , then (5.4) implies that for all sufficiently
large n,

P
D�p̂� ≤ D�p̃�� > 1 − δ�

This result and (5.5) imply that

D�p̂� = Op�1��(5.6)

It may be proved that D�p� = Dρ�p� is bounded below by a constant multi-
ple of max
S�p�� S�p�2�, where S�p� ≡ supi �npi−1� and the constant depends
only on ρ. It follows from this property and (5.6) that S�p̂� = Op�1�, and hence
that

sup
1≤i≤n

p̂i = Op
(
n−1)�(5.7)

which is one of the results noted in part (b) of the theorem.
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Step (ii) [Bounds on ĝ�·�p̂� − g̃ and its derivative]. By the Cauchy–Schwarz
inequality and for j = 0�1,

∣∣ĝ�j��x�p̂� − g̃�j��x�∣∣ ≤
{
n−1

n∑
i=1

�np̂i − 1�2
}1/2{

n−1
n∑
i=1

A
�j�
i �x�2

}1/2

= Op
(
h2−j)�

(5.8)

uniformly in x ∈ � . Here we have used, in addition to (5.6) and (5.7), the
following properties:

C1�C�ρ�Dρ�p� ≤
n∑
i=1

�npi − 1�2 ≤ C2�C�ρ�Dρ�p�(5.9)

uniformly in p such that supi npi ≤ C [where Cj�C�ρ� depends only on the
indicated arguments] and

sup
x∈�

n−1
n∑
i=1

A
�j�
i �x�2 = Op

(
h−�2j+1�)�

Taking j = 0 in (5.8) we deduce that ĝ�·�p̂�− g̃ = Op�h2�, uniformly on � ,
which is one part of result (b) of the theorem. It also follows from (5.8) that

sup
x∈�

∣∣ĝ′�·�p̂� − g̃′∣∣ = Op�h��(5.10)

Step (iii) [Properties of p̂, and thence ĝ�·�p̂�]. In Step (v) we shall show
that for an absolute constant C1 > 0, and for each δ > 0, there exists C2 =
C2�δ� > 0 such that, for all sufficiently large n,

P
{
g̃′�x� > C1 g

′�x� for all x ≥ a+C2h
}
> 1 − δ�(5.11)

We may assume thatK is supported on the interval �−1�1	. For the estimator
types that we are considering, this means that

Ai�x� = 0 if �x−Xi� ≥ h�(5.12)

If η is a random variable, and if

pi = n−1�1 + '� for all i with Xi ≥ η�(5.13)

where ' is a random variable not depending on i and satisfying −1 < ' <∞,
then in view of (5.12), x ≥ η+ h implies that pi = n−1�1 + '� for each i such
that Ai�x� �= 0. Hence, using the definition of ĝ�x�p� at (2.2), we see that
x ≥ η+ h implies that ĝ�x�p� = �1 + '� g̃�x�. Therefore it follows from (5.11)
that if p satisfies (5.13) then

P
{
ĝ′�x�p� > C1 �1 + '�g′�x� > 0 for all

x ≥ max�a+C2h�η+ h�} > 1 − δ�
(5.14)

From (2.4), (5.10) and (5.14) we may deduce that if Z2h is defined to equal
the infimum of V > 0 such that p̂i is identically constant for all i such that
�x0 −Xi� ≥ V, then Z2 = Op�1�.
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That is, p̂i is identically equal to n−1�1+'�, for some random variable ' and
for all i’s such that �Xi − x0� ≥ Z2h, where Z2 = Op�1�. This establishes one
aspect of part (b) of the theorem. To bound ' we note that the contribution
to D�p̂� from those p̂i’s for which the index i satisfies �Xi − x0� > Z2h is,
by (5.9), bounded below by a constant multiple of the number, N, of such i’s
[which satisfies n = Op�N�] multiplied by '2. [It is to be understood, here and
below, that we are referring only to i’s such that Ai�x� �= 0 for some x ∈ � .]
Therefore, n'2 = Op
D�p̂��. It now follows from (5.6) that ' = Op�h5/2�,
which is the result in part (b) of the theorem.

Result (5.12), and the properties of p̂ noted in the previous paragraph,
imply that the probability that the random variable Z1, defined by

Z1h = inf
{
z ≥ 0� for all x ∈ � for which x ≥ a+ z�
Ai�x� = 0 whenever p̂i �= n−1 �1 + '�}�

is well-defined, converges to 1 as n → ∞, and that conditional on Z1 being
well-defined, it satisfies Z1 = Op�1�. Moreover, ĝ�x�p̂� = �1 + '� g̃�x� for all
x’s with the property that Ai�x� = 0 whenever p̂i �= n−1 �1+'�. It follows that
ĝ�x�p̂� = �1 + '� g̃�x� uniformly in values x ∈ � for which x ≥ a+Z1h. This
is the last result in part (b) of the theorem that remains to be proved.

Step (iv) [Derivation of (5.4) and (5.5)]. Define

p̃i = n−1
{
1 + '+ g�Xi�−1 h2L

(
x0 −Xi
h

)}
�(5.15)

where L is a fixed, compactly supported, twice-differentiable function and '
is defined by

∑
i p̃i = 1. [The variable ' plays a role similar to ' at (5.14), and

so is expressed in the same notation, but it is generally different from that
quantity.] Then,

ĝ′�x�p̃� = �1 + '�g̃′�x� + h2 '1�x� + h2'2�x��(5.16)

where

'1�x� = n−1
n∑
i=1

L

(
x0 −Xi
h

)
A′
i�x��

'2�x� = n−1
n∑
i=1

g�Xi�−1L

(
x0 −Xi
h

)
A′
i�x�εi�

Note that

n−1
n∑
i=1

g�Xi�−1L

(
x0 −Xi
h

)
= Op�h��

Therefore, solving the equation
∑
i p̃i = 1 for ', we find that

' = Op
(
h3)�(5.17)

More simply, it may be proved that supx∈� �g̃�x�� = Op�1�.
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Under the conditions imposed in the theorem it may be shown that

sup
x∈�

�'2�x�� = Op
{�nh3�−1/2} = Op�h��

[Note that '2�x� vanishes if x is distant more than O�h� from x0.] Likewise
it may be proved that

'1�x� = −h−1
∫
L′

(x0 − x
h

+ y
)
K�y�dy+Op�1�

uniformly in x ∈ � . Combining the results from (5.16) down we see that we
may write

ĝ′�x�p̃� = g̃′�x� − h
∫
L′

(x0 − x
h

+ y
)
K�y�dy+ '3�x��(5.18)

where '3�x� = Op
(
h2

)
uniformly in x ∈ � . (The last two displayed formu-

las differ slightly in the local linear case, but the subsequent argument is
identical.)

Given δ > 0, we may choose C > 0 so large that for all sufficiently large n,

P
{
g̃′�x� > 3h for all x ∈ �a+Ch� b	} > 1 − 1

3δ�

Given both C and δ we may choose L to be linearly decreasing, at a sufficiently
fast rate, on a sufficiently wide interval containing the origin, and returning
sufficiently slowly to 0 on either side of the interval where it is decreasing,
such that

P

{
g̃′�x�−h

∫
L′

(x0−x
h

+y
)
K�y�dy>2h for all x∈�a�a+Ch	

}
>1− 1

3δ�

∫
L′

(x0−x
h

+y
)
K�y�dy<1 for all x∈�a�b	�

Furthermore, for all C�δ > 0, and all sufficiently large n,

P
{
'3�x� ≥ −h for all x ∈ �a� b	} > 1 − 1

3δ�

Combining (5.18) and the displayed results in this paragraph we deduce that
(5.4) holds for all sufficiently large n. Result (5.5) follows from (5.9), (5.15),
(5.17) and the property

n−1
n∑
i=1

g�Xi�−2L

(
x0 −Xi
h

)2

= Op�h��

Step (v) [Derivation of (5.11)]. Define� = 
X1� � � � �Xn�andµ = E�g̃�� �.
(Thus, µ is a random function unless the Xi’s are regularly spaced.) Let

An = sup
{
x ∈ � � µ′�x� < 2

3 g
′�x�}�(5.19)

Bn = sup
{
x ∈ � � �g̃′�x� − µ′�x�� > 1

3g
′�x�}(5.20)

and Cn = max�An�Bn�. Then,

g̃′�x� ≥ 1
3g

′�x� > 0 for x ≥ Cn�(5.21)
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Therefore, (5.11) (with C1 = 1
3 ) would follow from the properties

An − a = Op�h� and Bn − a = Op�h��(5.22)

These results may both be derived as follows. Assume (without loss of gener-
ality) that x0 = 0 and � = �0�1	. Consider the stochastic processes γ1 = µ′−g′,
γ2 = g̃′−µ′ and γkj�u� = h−1 γk
�j+u�h�, the latter defined for 0 ≤ j ≤ h−1−1
and u ∈ �0�1	. Using Taylor expansion and the Hungarian embedding it may
be shown that on �j ≡ �0�min�1� h−1 − j�	, and writing λj for either γ1j or
γ2j, we have

sup
j

P

{
sup
u∈�j

�λj�u�� > v
}
≤ C1�1 + v�−2

for all v ∈ �0�C2h
−1	, uniformly in j ≤ J, where the constants C1�C2 > 0 do

not depend on n, and J denotes the integer part of h−1−1. Therefore, defining
wj ≡ �3h�−1 infu∈�j g

′
�j+ u�h� and vj ≡ min�wj�C2h
−1�, we deduce that

P
{�γ�t�� > 1

3 g
′�t� for some t ∈ �j0h�1	

} ≤
J∑
j=j0

C1�1 + vj�−2�(5.23a)

where γ represents either γ1 or γ2. The conditions imposed on g in the theorem
imply that vj ≥ C3 min�j�C4h

−1�, where C3�C4 > 0 do not depend on n. It
now follows from (5.23) that

lim
C→∞

lim sup
n→∞

P
{�γ�t�� > 1

3g
′�t� for some t ∈ �Ch�1	} = 0�

Applying this result to the respective versions of γ we obtain (5.22).
Part (c). The method of proof is similar to that in part (b), and so we do

no more than give an outline of places where the arguments differ. The main
difference is that the weights p̂i and p̃i are now nonconstant for indices i such
that Xi lies in a neighborhood of radius O�h1/2�, rather than O�h�, of x0. In
particular, analogously to (5.15), we define

p̃i = n−1
{
1 + '+ g�Xi�−1h3/2L

(
x0 −Xi
h1/2

)}
�(5.23b)

In place of (5.16) one proves that ĝ′�·�p̃� = �1+'� g̃′ +h3/2 '1 +h3/2 '2, where
'1� '2 are the analogues of the respective quantities introduced in Step (iv)
and satisfy supx∈� �'2�x�� = Op
h�log n�1/2� and '1�x� = −h−1/2L′
�x0 −
x�/h1/2� + Op�1� uniformly in x ∈ � and ' = Op�h2� [instead of (5.17)].
Arguing as in Step (iv) it may be shown that (5.4) is satisfied, and in place
of (5.5),

D�p̃� = Op
(
nh7/2)�(5.24)

On this occasion (5.7) does not necessarily hold. That result was used in
the first paragraph of Step (ii), and in the present setting the argument there
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should be replaced by

∣∣ĝ�j��x�p̂� − g̃�j��x�∣∣ ≤
{
n−1 ∑

i��np̂i−1�≤2

�np̂i − 1�2
}1/2{

n−1
n∑
i=1

A
�j�
i �x�2

}1/2

+n−1 ∑
i��np̂i−1�>2

�np̂i − 1�∣∣A�j�
i �x�∣∣

= Op
[{
n−1D�p̂�h−�2j+1�}1/2 + n−1D�p̂�h−j−1

]

= Op
(
h�5/4�−j

)
�

(5.25)

uniformly in x ∈ � . Here we have used (5.24) and the fact that

D�p� �
n∑
i=1

min
{�npi − 1�� �npi − 1�2}�(5.26)

[InthecaseD = Dρwithρ = 1,anadditionalfactor
1+�log �npi−1��I�npi > 2��
should be adjoined to the right-hand side of (5.26). This does not influence
(5.25), however.] Taking j = 0 in (5.25) we obtain one of the results in part (c).

On this occasion the weights p̂i are are identical to n−1�1+'� [for a random
variable which plays much the same role as ' at (5.23), but is generally dif-
ferent from that quantity] for indices i that are distant Op�h1/2� from x0. To
derive a bound for ', let there be just N indices i such that p̂i = n−1�1 + '�,
and let � denote the set of the other N1 ≡ n − N indices. The fact that∑
i p̂i = 1 implies that

N'+ ∑
i∈�

�np̂i − 1� = 0�(5.27)

from which, since N1 = Op�nh1/2�, it follows that

�'� ≤N−1 ∑
i∈�

�np̂i − 1�

≤N−1
[{
N1

∑
i∈� ��np̂i−1�≤2

�np̂i − 1�2
}1/2

+ ∑
i∈� ��np̂i−1�>2

�np̂i − 1�
]

= Op
(
n−1)[{nh1/2D�p̂��1/2 +D�p̂�

]
= Op

(
h2)�

using (5.24) to obtain the last line. Under the assumptions for part (c), g
is locally cubic in a neighborhood of x0, and the cubic has vanishing first
and second derivatives at x0. It may be shown from this approximation that∑
i∈� �np̂i−1� = op�nh2� rather than simply Op�nh2�. Therefore, ' = op�h2�.

✷
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APPENDIX

Pairwise weighting. In the definition of ĝ�·�p� at (2.2) the weights pi
are applied primarily to the response variables. An alternative approach is to
apply them to the data pairs �Xi�Yi�. This is not really feasible for Priestley–
Chao and Gasser–Müller methods, but for Nadaraya–Watson and local linear
methods it is potentially attractive. The pairwise-weighted versions of these
estimators are, respectively,

ĝNW�x�p� =
∑
i piKi�x�Yi∑
i pi Ki�x�

�

ĝLL�x�p� =
S2�x�p�T0�x�p� −S1�x�p�T1�x�p�
S2�x�p�S0�x�p� −S1�x�p�2

�

where

Sk�x�p� =
n∑
i=1

pi
�x−Xi�/h�kKi�x��

Tk�x�p� =
n∑
i=1

pi
�x−Xi�/h�kKi�x�Yi�

As before we would choose p to minimise D�p� subject to the constraint of
monotonicity.

Implementation is straightforward in the case of Nadaraya–Watson estima-
tors, but for local linear estimators it is made awkward by the relative com-
plexity of the second derivative. This is the main reason we did not develop
the pairwise-weighting method further in this paper. Its main advantage is
that it is equivariant under translation. However, as reported in Section 3,
the simpler approach suggested at (2.2) is virtually translation-equivariant in
practice; even very large translations do not have a perceptible influence on
the shape of the estimate.
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González-Manteiga, W., Cao, R. and Marron, J. S. (1996). Bootstrap selection of the smooth-
ing parameter in nonparametric hazard rate estimation. J. Amer. Statist. Assoc. 91
1130–1140.

Hougaard, P. (1988). A boundary modification of kernel function smoothing, with application to
insulin absorption kinetics. In Compstat Lectures 31–36. Physica, Vienna.

Hougaard, P., Plum, A. and Ribel, U. (1989). Kernel function smoothing of insulin absorption
kinetics. Biometrics 45 1041–1052.

Kelly, C. and Rice, J. (1990). Monotone smoothing with application to dose-response curves and
the assessment of synergism. Biometrics 46 1071–1085.

Mammen, E. (1991). Estimating a smooth regression function. Ann. Statist. 19 724–740.
Mammen, E. and Thomas-Agnan, C. (1999). Smoothing splines and shape restrictions. Scand.

J. Statist. 26 239–252.
Mammen, E. and Marron, J. S. (1997). Mass centred kernel smoothers. Biometrika 84 765–777.
Mammen, E., Marron, J. S., Turlach, B. A. and Wand, M. P. (1999a). A general framework for

constrained smoothing. Unpublished manuscript.
Mammen, E., Marron, J. S., Turlach, B. A. andWand, M. P. (1999b). Monotone local polynomial

smoothers. Unpublished manuscript.
Marron, J. S., Turlach, B. A. and Wand, M. P. (1997). Local polynomial smoothing under qual-

itative constraints. In Graph-Image-Vision (L. Billard and N. I. Fisher, eds.) 647–652.
Interface Foundation of North America, Fairfax Station, VA.

Mukerjee, H. (1988). Monotone nonparametric regression. Ann. Statist. 16 741–750.
Müller, H.-G. (1997). Density adjusted kernel smoothers for random design nonparametric

regression. Statist. Probab. Lett. 36 161–172.
Müller, H.-G. and Song, K.-S. (1993). Identity reproducing multivariate nonparametric regres-

sion. J. Multivariate Anal. 46 237–253.
Patil, P., Wells, M. T. and Marron, J. S. (1994). Some heuristics of kernel based estimators of

ratio functions. J. Nonparametr. Statist. 4 203–209.
Pearson, G. W. and Qua, F. (1993). High precision14C measurement of Irish oaks to show the

natural14 variations from AD 1840–5000 BC: a correction. Radiocarbon 35 105–123.
Poiner, I. R., Blaber, S. J. M., Brewer, D. T., Burridge, C. Y., Caesar, D., Connell, M.,

Dennis, D., Dews, G. D., Ellis, A. N., Farmer, M., Fry, G. J., Glaister, J., Gribble, N.,
Hill, B. J., Long, B. G., Milton, D. A., Pitcher, C. R., Proh, D., Salini, J. P.,
Thomas, M. R., Toscas, P., Veronise, S., Wang, Y. G. and Wassenberg, T. J. (1997).
The effects of prawn trawling in the far northern section of the Great Barrier Reef.
Final report to CBRMPA and FRDC on 1991–96 research. CSIRO Division of Marine
Research, Queensland Dept. Primary Industries.

Ramsay, J. O. (1988). Monotone regression splines in action (with comments). Statist. Sci. 3
425–461.

Ramsay, J. O. (1998). Estimating smooth monotone functions. J. Roy. Statist. Soc. Ser. B 60
365–375.

Schlee, W. (1982). Nonparametric tests of the monotony and convexity of regression. In Non-
parametric Statistical Inference II (B. V. Gnedenko, M. L. Puri and I. Vincze, eds.)
823–836. North-Holland, Amsterdam.



MONOTONE NONPARAMETRIC REGRESSION 647

Turlach, B. A. (1997). Constrained smoothing splines revisited. Technical report SSR97-008,
Australian National Univ., Centre for Mathematics and Its Applications.

Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall, London.

Centre for Mathematics
and its Applications

Australian National University
Canberra, ACT 0200
Australia
E-mail: halpstat@pretty.anu.edu.au

huang@maths.anu.edu.au


