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DISTRIBUTION FUNCTION INEQUALITIES
FOR MARTINGALES®

BY D. L. BURKHOLDER
University of Illinois

This is a guide to some recent work in the theory of martingale ine-
qualities. Methods are simplified; some new proofs are given. A number
of new results are also included.

Let Uf and Vf be nonnegative random variables associated with a martingale
f- In many interesting cases, the inequality

P(Vf > 2) = cP(Uf > 2),
which usually does not hold for all 2 > 0, does hold for enough 4 so that
EVf < cEUf

and more. The underlying theory, introduced in [6], has also proved fruitful in
other probability applications; see [5] and [8]. For an entirely nonprobabilistic
application to harmonic functions, see [7].

Our main object here is to simplify some of the ideas and methods of [6] and
to illustrate their use by a number of applications, old and new.

This begins in Chapter II. In Chapter I, some earlier work is simplified; only
a few elementary propositions from standard martingale theory are needed and
these are listed.

Chapter 1

A martingale identity

In this chapter, elementary proofs are given of some of the inequalities for
the martingale square function established in [2]. The key lemma contains an
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20 D. L. BURKHOLDER

interesting martingale identity and a related inequality for nonnegative submar-
tingales. This lemma also makes possible a simple proof of Gundy’s decomposi-
tion theorem for L'-bounded martingales [22] and is used again in Section 18.

1. Notation. Let (2, %, P) be a probability space and .+, .%/}, --- a non-
decreasing sequence of sub-g-fields of 2. In this chapter, f = (f;, f,, ---) is a
martingale or a nonnegative submartingale relative to .7}, %7, --- and d =
(d,, d,, - --) is the difference sequence of f: f, = >ir_,d,, n = 1. The square
function of fis S(f) = [ X, d,’]* and the maximal function is f* = sup, |f,|.
Let S.(f) = [Zka &1 fo* = suPigisa | fuls n 2 1, Su(f) = S(f)s Si(f) =fo =0,

and, if f converges almost everywhere, let f, denote its limit function. For
0 < p < oo, let ||f]l, = sup, |If.l, where [|£,ll, = [E|f,["}%; f is Lr-bounded if
|If1], is finite and is L=-bounded if || f||.. = SUPy<,<. || f]|, is finite.

We shall use the following facts from Doob [15]: If fis L'-bounded and . is
a stopping time, then f converges almost everywhere and ||f,||, < ||f],- (This
is transparent for f of the form

(fl’ . "fn-l’fn’fﬂ’fn’ s ) .

To prove the inequalities of Section 3, we need only consider such f.) If nisa
positive integer and 2 > 0, then

(1'1) ZP(fn* > 2) = S(f,,'>1) Ifnl = ||f||l .

The following is classical: If Xand Y are nonnegative random variables satisfying
(1.2) AP(Y > BA) S afyspy X

for all 2 > 0 and some numbers « > 0, 8 = 1, then

(1.3) Y1, = afrql|X]l, ,

Pr+¢t=11<p< . (Doob gives the proof of this only for a = g =1
but the same proof, which rests on the formula

WYl,> = §& p#2~'P(Y > 2) d2

and Holder’s inequality, applies to the above case. If Y satisfies (1.2), then so
does Y A n, the minimum of Y and n, so (1.3) may be proved under the additional
assumption that ||Y]|, is finite.)

Doob’s inequality

(1.4) AL = 11/~ = qlf15 1<p<oo,

follows immediately from (1.1) and (1.2). An application‘of (1.1) to the submar-
tingale {| f,|?, n = 1} gives

(1.5) | 2P(f* > 2 = /1l l=p<oo.

We shall need these two facts in later chapters.
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2. An identity.

LemMA 2.1. Suppose that f = (f,, f,, - - -) is either a martingale or a nonnegative
submartingale and is L'-bounded. Let n be the stopping time defined by

w(w) = inf{n: |f.(0)] > 4}
where 2 > 0. Then

2.0 IS, NN + (1 fmalls® = 2Eff 0 = 221114

and equality holds on the left in the martingale case.

Recall that inf¢ = co. Here f, = lim,_ f, exists almost everywhere so f,
and f,_, are well defined.

Proor. Notice that |f,_,| < 4, so Ef . f,_, < 4||f.ll: < A]|fll,. By elementary

algebra,
Sia(f) + fass = 2fufoer — 29,
where g, = 37, fi1dy n = 1. Lety = p¢ A n. Then
Eg, = Dia E[fe-i /(1 2 K)E(d,].,-)]1 2 0,

which implies
(2‘2) ES?—I(f) + E vz—l é 2Efva—l
with equality holding in the martingale case. Here we have used the fact that
the indicator function /(2 = k) is .\/,_, measurable, asis f,_,, that f,_,/(z = k)

is bounded, and that E(d,|."v,_,) = 0, k = 2, with equality holding in the mar-
tingale case. Since sup, f2, < 4* and sup, |f,f,.,| < 4* + 4|f,| are integrable,

v-1 =

we may take the limit of both sides of (2.2) to obtain the left side of (2.1).

3. Square function inequalities. We now use Lemma 2.1 to give elementary
proofs of several of the main results of [2].

THEOREM 3.1. If f = (fy, fo - - -) is @ martingale or a nonnegative submartingale,
then

3.1 AP(S(f) > 2) = 3lIf1les A>0.

PrOOF. We may assume that fis L'-bounded. Fix 2and define ;. as in Lemma
2.1. Since S,_,(f) = S(f) on the set {4 = oo} = {f* < 4}, we have

(3.2) AP(S(f) > A, f* = ) = AP(S,.(f) > 4)
< AIS,- NIl 2
= 2|fll-

Therefore,

AP(S(f) > 2) S AP(f* > 2) + 2P(S(f) > 4, f* = 4)
< 11l + 20110 = 31111 -
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THEOREM 3.2. Let 1 < p < oo. There are positive real numbers c, and C, such
that if f = (fy fo - - ) is a martingale then

(3-3) & lISNM = N1, = ClISUNII -

The proof shows the optimum choice of ¢, satisfies ¢,”' = O(ptq); similarly
C, = O(q*p) where, as usual, p' 4 ¢7' = 1.

Lemma 3.1. Let f = (f., fo - - -) be a nonnegative submartingale and n a positive
integer. Then'Y = S,(0f ) V f,* satisfies
(3.4) AP(Y > .32) S 3Swsnfas A>0,
where 0 > 0 and B = (1 + 26%}, and
3-5) 1SN, = 9PHlIfull » I<p<oo.

Proor. First note that (3.4) and (1.3) give

011N, = 1Y, = 3874l 1l -
If & = p~%, then 7 = (1 + 2/p)** < e < 3 and (3.5) follows.
Since 5 > 1, the left side of (3.4) is no greater than
AP(f,* > ) + AP(S,(0f) > B4, fu.* = ).

The first term of this expression does not exceed

S(f,,,'>1)fn é S(Y>l)fn

and we now show the second term does not exceed twice the last integral.
Let g, = I(Sy(0f) > Af, = I.f,. Theng = (g,, g,, - - ) is a nonnegative sub-
martingale; notice I, < /,,, so
E(9y11| 7)) = E(leirfin | S7)

= LE(fi| 570

= Lfi =9
We shall show
(3.6) (S.01) > BAf* S 2} C {Su(0) > 4 0.* £ 4

Using this and (3.2), we obtain
AP(S,(0f) > pA fu* < 2} < AP(S.(9) > 4, 9.7 = 4}
< 2{|gallx
=2§wsnfas

which is the desired inequality. To prove (3.6) we consider the stopping time
r = inf {k: S,(6f) > 4}. Onthesetontheleftin(3.6),1 <7 =<n 9,* = 2, and
“ § < SHOf) = S10f) + 07 + 0 Docuan &0
< 2402+ 6°S,49),
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which implies S,(g9) > 4. For example, the nonnegativity of f implies that
|dil = fi V fiet = f* so that on the set in question |d| < f* < A. Therefore,
(3.6) holds and the proof of the lemma is complete.

Proor oF THEOREM 3.2. We fix n and define nonnegative martingales g and
hb

’ 9 = E(fu* 1570, b= E(f71 ), kz1.
Then g, =f,*, b, =f," fi = 0 — li 1 £ k < n, and S,(f) < S,.(9) + S.(h).
Therefore, by (3.5), we have

IS(Nl5 = 1S, + [1Su(BI,
(3.7 < 9p%(/194/1, + 11Aall,)
< 18p4lIf.ll, »

which implies the left side of (3.3). The right side of (3.3) follows from the left
side by a simple duality argument: We may suppose that ||S(f)||, < co. Since
|f2l < nd* and d* < S(f), this implies that f, is in L. We may also suppose
that ||£,[|,>0. Then||f,||, = Ef,g, where the function g, = sgnf,|f./”"Y/||f.Il,”
satisfies ||g,||, = 1. Let g be the martingale defined by E(g,|.%,), k = 1, and

let (e, e;, - - ) be its difference sequence. Then, by orthogonality, Schwarz’s
inequality, Holder’s inequality, and (3.7), we have

Ilfn”p = Efngn = E Z"’:=1 dkek é ESn(f)Sn(g)
S ISaNDNLISN, = 18¢2p|IS.(NI, -
This establishes Theorem 3.2.

IA

4. Decomposition of an L'-bounded martingale. This is Gundy’s decomposition
[22] simplified; here only one stopping time is used.

THEOREM 4.1. Suppose f = (f,, f,, - - -) is an L'-bounded martingale and 2 is a
positive real number. Then there are martingales X, Y, Z, with corresponding dif-

ference sequences x, y, z, all relative to S, 57, - - -, such that
4.1) f=X+Y+ 2Z,

(4.2) 1X1* < 24011

(4.3) 122 allle = 411/

(4.4) P(Z* > 0) < [|fll/4 -

Proor. Let ¢ = inf{n: |f,| > 2}, and define x, y, z by
x, =d (g >1), n=dlp=1)), z;, =0,
and, for k = 2,
X = dd(p > k) — E(@d I(p > k)| 2)
Yo = dd(p = k) — Ed (¢ = k)| 4,_,),
7, =dI(p < k).
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Clearly (4.1) holds and X, Y, Z are martingales relative to .57}, %7, . ... Note
that ||x,||, < ||, I(# > k)||, < 24, Therefore, by Lemma 2.1,

||Xn”22 = 2lia ||xk||22 = 2k ||dkl(/1 > k)||22
| < 11S,(Dll < 2201/l -
This gives (4.2). Also,
”ZI?:I el = 2 pI Hdkl(/" = k)”,
=2||d, (1 < oo)|l, = 4| f. (1 < o0)]|;
= 411,
P(Z* > 0) < P(p < o0) = P(f* > 2) < |IfIl/2-

S. Remarks. Austin [1] proved that if f is an L!-bounded martingale, then the
integral of S*(f) over the set {f* < 1} is finite. Lemma 2.1 may be viewed as
a refinement of this result.

A slight modification of the present proof of Theorem 3.1 gives 2% rather than
3 in the right-hand side of (3.1); the best constant is not known. For other
proofs of Theorem 3.1 (with less precise information about the best constant),
see.Gundy [22] and Rao [36].

If f is an L>-bounded martingale, then, by the results of Section 3,

(5.1 ISHIl, = O(p?) p— oo
From this easily follows
(5.2) ‘ Ee'S*)) <& oo

for all small positive r. (Expand the exponential function in its power series and
take expectations term by term.) That is, S(f) belongs to exp L? if f is L>-
bounded. This was observed first by Sjolin [41] for the special case in which f
is the sequence of 2"th partial sums of a Walsh series.

Suppose that f is simple random walk stopped at =+2:

fo= Ttz 2 k)x,., n>1,
where x,, x,, - - - are independent with P(x, = —1) = P(x, = 1) = } and
r=inf{n: |32 x| = 2}.
Then an elementary calculation shows

lim inf, .. [|S(f)l|,/p* > ©

so the order of magnitude in (5.1) cannot be improved.

For f the sequence of 2"th partial sums of a Walsh series, (3.3) was proved
by Paley [35]. His results are still fresh and interesting; for example, see Sjolin
[41], Hunt [25], and earlier references given there. Marcinkiewicz and Zygmund
[27] proved (3.3) in case d = (d,, d,, - - -), the difference sequence of f, is inde-
pendent and Ed, = 0, k > 1. Their inequality, valid for 1 < p < oo, is used
frequently. Another proof of (3.3) has been obtained recently by Gordon [21].
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Applications of (3.3) in a general martingale setting can be found in the work
of Chow [9], [11], Millar [32], Doléans [14], Stein [42], etc. Also, see [3], page
1287, but note that the simpler inequality (3.1) can be used there in place of
(3.3).

For applications of the martingale decomposition of Section 4, see Gundy [22],
[23]; for related decompositions, see Chow [10] and Davis [12]; also see Meyer
[29]. A more general decomposition is presented on page 293 of [6]. Theorem
4.1 remains true and is strengthened if (4.4) is replaced by

(4.4 P(sup, E(|2,]| -, > 0) = IfI./4 -
See page 280 of [6].

Chapter 11

' Distribution function inequalities and general integral inequalities

It is helpful to begin this chapter with a particularly easy but important special
case.

6. Brownian motion. Let X = {X(7),0 < t < oo} be one-dimensional Brownian
motion: X is a real process with independent increments, continuous sample
functions, and X{(¢) is normally distributed with EX(t) = 0 and EX*(r) = . Let
ZZ(t) be the o-field generated by {X(s), 0 < s < ¢}. A stopping time 7z of X is a
function from Q into [0, co] such that

{r<t}ez()), t>0.

If 0 < b < o0, let X*(b) = sup,,, | X(6 A 1)].
Consider a non-decreasing continuous function @ on [0, co] with ®(0) = 0.
Suppose that @ satisfies the growth condition

(6.1) O(27) < cD(2) 1>0.

The letter ¢ denotes a positive real number not necessarily the same number
from one use to the next. For example, if 0 < p < oo, then ®(4) = A* defines
such a function.

THEOREM 6.1. If t is a stopping time of X, then
(6.2) cEDQ(r}) < EQ(X*(7)) < CED(7h).
The choice of ¢ and C depends only on the growth constant c .

This is Theorem 7.2 of [6] with ® more general. (The results of [6], [8], and
[7] hold without the assumption made in those papers that @ is the integral of
a function that also satisfies a growth condition.)

The above two-sided @ inequality can be deduced almost immediately, as we
shall see, from the following more fundamental distribution function inequalities.
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THEOREM 6.2. Let 8> 1 and 0 > 0. If t is a stopping time of X, then
52

g —1
52

p—=1y

(6.3) P(ct > BA, X*(r) < 04) <

P(rt > 1), A>0,

(6.4) P(X*(z) > A, o < 82) < P(X*(t) > 1), i>0.

The proofs of these two theorems will be given in Section 8.

7. Lemma for @ inequalities. Assume, as above, that ® is a non-decreasing
continuous function on [0, co] with ®(0) = 0 and that ® satisfies the growth
condition (6.1). Also, to eliminate the trivial case, suppose that @ is not iden-
tically zero. Then @(2) is finite and positive for finite and positive 4.

LemMA 7.1. Suppose that f and g are nonnegative measurable functions on a prob-
ability space (Q, 57, P)yand 8 > 1, 0 > 0, ¢ > 0 are real numbers such that

(1.1 P(g > §4,f < 80) < eP(g > 1), 1>0.

Let y and 7 be real numbers satisfying

(7.2) OB < 7O(),  DEA) < 70(F), 1>0.
Finally, suppose that ye < 1. Then
(7.3) E®(g) < I_T’/_ EQ(f) .

— re

Note that the existence of y and 7 satisfying (7.2) is assured by (6.1). For
example, a possible choice for y is c* where & is the positive integer satisfying
2t < B < 2%and ¢ = ¢yt

O(B2) < B(242) < +D(3), 1>0.

Proor. We may assume in the proof that E®@(g) is finite. For if g satisfies
(7.1), then so does g A n; if (7.3) holds for g A n, n = 1, then it holds for g.

Consider the Lebesgue-Stieltjes measure, also denoted by @, satisfying
$ia,0) dP(2) = ©(b) — D(a), 0<a<bs oo

This measure is positive and o-finite on the o-field of Borel subsets of [0, co).
If & is a nonnegative measurable function on (Q, %7, P), then

O(h) = §io.0 dR(2) = §5 I(h > 2) dD(3) .
Using Fubini’s theorem, we obtain
(7.4) E®(h) = §& P(h > 2)dD(2) .
Condition (7.1) implies that

(1.5) P(g > BA) = P(g > B, f < 82) + P(g > BA, [ > 64)
< ¢P(g > A) + P(f > 82), 1>0.
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Therefore, by (7.4) and (7.2)

(7.6) E®(8'g) < cE®(g) + 7ED(f) .
But
(7.7) EQ(9) = EDQ(BB9) = rEQ(87'9) -

Combining (7.6) and (7.7) and using the finiteness of E®(g), we obtain (7.3).
Later, we shall need several additional properties of @:

(7.8) (4, V 4y) < O(4) + O(4,) ,
(7.9) D2, + 4) < P4 + O(24,) < [P(4,) + D(4,)] .

8. Proofs for Brownian motion. It is now clear how the two-sided ® inequality
of Theorem 6.1 follows from Theorem 6.2 and the above lemma. For example,

to prove the left-hand side of (6.2), let g = r*and f = X*(r). Let 8 > 1 and
select y satisfying (7.2). Choose 4 small enough so that

52
& =
B8 — B —1
Then, by Theorem 6.2 and the lemma,

<7r?

EQ(r}) < < ED(X*(7)) .
T

ProoF oF (6.3). The proof rests on just one fact about Brownian motion be-
yond its sample function continuity: If r is a bounded stopping time of X, then

(8.1) EX*t) = Er .

This is well known and follows at once from Doob’s optional sampling theorem
applied to the martingale {X*(¢) — ¢, t = 0}; see [15], page 380.
It is enough to prove (6.3) for r bounded; if (6.3) holds with ¢ replaced by
7 A n, n = 1, then it holds for =.
Let
p=inf{r: (r A )t > 1},
v =inf{t: (r A 1)} > B2},
o = inf{t: [X(t A t)] > dA}.

These are stopping times of X. Clearly,

Pt} > A, X*¥(r) £ 0A) = P(p £ v < 00,0 = )
SPrcAvAc—TApNe = B2 -1
1
L ——— _E[tANvANo—TtApANG
\ F -7 3
By (8.1),
E[tAvANo—tApuANd]l=EX(tAvAdg)—X(tApAo)].
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By the sample function continuity of X,
Xt AvAa)— Xz ApAo)Z XYt Av A o)< 32,
and the left-hand side vanishes on the set

{p=v={p=0c}={t< 4.
Therefore,
E[X*(t ANv Aa) — XNt A p A o)) £ O*AP(ct > 2).
Combining these estimates, we obtain (6.3).
PrOOF OF (6.4). Here define ¢ and v by
p=inf{t: | X(z A1) > 2}
v = inf{t: |X(r A 0)] > B4},
and letb = 6°2. Ontheset {X*(r) > 4}, these stopping timessatisfy # < v < oo,
|X(z A v)| = B4, | X(r A p)| = 2, so that
P(X*(t) > A, v < 04) < P(|X(r Av) — X(t A p)| = BA — A, ¢ < B)
< P(X(E Ay AB) — X(T A p A B 2 (B — 1))
1 -
(8 — &
Now X is a martingale and Doob’s optional sampling theorem gives here that
{X(z A pp A b), X(t A v A b)) is a two-term martingale. It follows from the or-
thogonality of its increments and (8.1) that
E[X(t AvAb)y — X(t A pp A B = EX¥t Ay Ab)— EX¥t A p A b)
=E[tAvAb—1tApuAND]
S bP(p < )
= O*AP(X*(t) > 2).

< E[X(rt Av Ab)— X(z A pt A b).

This completes the proof of (6.4).

9. Inequalities for the It6 integral and other continuous-sample-function martingales.
Let X be Brownian motion as before and consider the It6 integral

Y(1) = §¢v(s) dX(s) , =0,
where {u(¢), 1 = 0} is a nonanticipating Brownian functional satisfying
P(§ev*(s)ds < 00,1t =2 0)=1.
(For a discussion of the It integral, see [28].) Let
V¥ =sup, [Y(,  S(Y) = [§7 ¥(r) dr]? .

(Note that for the special case v(f) = I(r = 1), these give X*(r) and %, respec-
tively.) Then, for 8 > 1 and ¢ > 0,

5
g —1
and the analogues of (6.4) and (6.2) hold.

0.1 - P(S(Y) > 4, Y* < 01) < P(S(Y) > 2, 1> 0,
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This can be seen in two different ways. The proofs of (6.3) and (6.4) can be
carried over to this case; only slight and obvious modifications are needed. Or
a time substitution can be made to reduce the problem to that of the special
case ¥(f) = I(r = 1) already treated; see Section 2.5 of [28].

Distribution function inequalities and @ inequalities between the maximal
function and the square function of any local martingale with continuous sample
functions follow similarly.

10. General martingales and the problem of jumps. The sample function con-
tinuity of both r — (r A f)t and r — | X(z A f)| is used in an essential way in the
proof of Theorem 6.2. Indeed, the analogue of Theorem 6.2 does not hold for
general martingales. Consider the discrete case (see Section 1 for notation): If
0 < p < 1, there is no real number ¢, such that

SOOI = LIl

for all martingales ' = (f;, f;, - -+). The same is true if the maximal function
and square function are interchanged. The problem is caused by big jumps; see
Example 8.1 of [6]. Since no general ® inequality holds, no distribution function
inequality between f* and S(f) can hold.

However, there are substitute results, obtained by restricting f, as we shall
see in the following two sections and in Section 18.

’

11. Transforms of regular martingales. Let X = (X, X,, - --) be a martingale
(relative to 7], .97, - - -) with difference sequence x = (x;, x,, ---). Then f =
(fi> fo -+ +) is a transform of X if

fo= 2kadi = Do Vi Xy n=1,
where v, is a real .7, _,-measurable function, k > 1.
In this section, we assume that X satisfies

(11.1) E(x}?|.%, ) =1, k>1,
(11.2) E(x)| ) = ¢ k=1.

THEOREM 11.1 Suppose that © satisfies the conditions of Section 7 and f is the
transform of a martingale X satisfying (11.1) and (11.2). Then

(11.3) cEQ(S(f)) < ED(f*) < CED(S(f)) -
The choice of ¢ and C depends only on ¢ ,, and c,, ,,.

This is Theorem 5.2 of [6]. A distribution function inequality holds for each
side. For example, if 8 > 1and 0 < 0 < 8 — 1, then

>, 23>0,
(B—0o—1y
with the choice of ¢ depending only on ¢, ,. Therefore, by Lemma 7.1,
‘ E®(f*) < cEQ(S(f) v v*)
< ([ED(S(f)) + ED(v*)] .

(11.4)  P(f* > B2, S(f) v v* < 82) <
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But it follows easily from (11.1) and (11.2) that
P(v* > 4) < cP(cd* > 1), 21>0

(Lemma 2.5 of [6]). Accordingly, EQ(v*) < cED(cd*) < cED(d*) < cED(S(f))
and this gives the right-hand side of (11.3).

To prove (11.4) we need the following lemma (a special case of Theorems 2.1
and 2.2 of [6]), which is of interest in its own right. It shows how the jumps
of the transform of a regular martingale can be controlled. The regularity con-
ditions (11.1) and (11.2) cannot be relaxed substantially; see Example 8.3 of [6].

LeEmMA 11.1. Suppose that f is the transform of a martingale X satisfying (11.1)
and (11.2) with v = (v, v,, - - -) uniformly bounded by a positive real number b. If

t=inf{n: |f,| > b} or = =inf{n: S.(f) > b}
then
[1f:*]l2 < eb*P(v* > 0) < cb?

with the choice of c depending only on c,, ,,.
Note that f * = f_* = f* on {r = oo}.
ProoF oF (11.4). Let
p=inf{n:|f,] > 4},

v=inf{n:|f,| > B4},
o = inf{n = 0: §,(f) > 04 or |v,,,| > 64}.

These are all stopping times. Let 4 be f started at ¢ and stopped at v A gt
by = Zia I < kS v A o)0x, = ZHo Wi X -
Note that 4 is a transform of X with multiplier sequence w = (w,, w,, - - ) uni-
formly bounded by 62. Let
t = inf{n: S,(h) > 04}.
By Lemma 11.1,
[|h.*||2 £ ca*22P(w* > 0)
< cO?P(p < o0) = cO*AP(f* > 2).
Therefore, using S(k) < S(f) and d* < S(f), we obtain
P(f* > B4, S(f) v v* <2) < P(h* > (f — 0 — 1)A, 7 = )

SPh*>(p—0—- 1

I
(B—0— 1)y2

co?
<__  __P(f*> ).
S([3_5_1)2 >4

IA

|LAIPY
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This completes the proof of (11.4). The dual inequality
(15)  PSU) > Bo[* V0 S 00) S 5= PS>
is proved similarly.

12. Another way to control jumps. Consider a martingalef = (f,,f, - - -) satisfy-
ing |d,| < w, with w, measurable relative to 5%, _;, k = 1. Let ® be as in Section
7. Then
(12.1) EQ(f*) < cEQ(S(f)) + cED(w*)

(12.2) ED(S(f)) < cED(f*) + cED(w*),

with the choice of ¢ depending only on ¢, ,,. These follow from Theorem 3.1
of [5] but a direct proof can easily be given. The proof here illustrates simplifi-
cations possible in the methods of Section 3 of [5].

In view of Lemma 7.1, it suffices to prove the following distribution function
inequality and its dual: If 8 > 1 and 0 < 6 < 8 — 1, then

20

(12.3) P(f*>,82,S(f)VW*§52)§(?62—P(f*>2), 1>0.

1)
To prove (12.3), let
p=inf{n:|f,| >4,
v =inf {n: |f,] > B4},
o = inf{n: S,(f) > 64 or w,,, > 04}.
Then # defined by
h, = Yr (g <k ZvAo)d,
is a martingale such that S(k) = 0 on {¢ = oo} = {f* < 4} and S$*(h) < 26°2°
everywhere: on {0 < ¢ < oo},
S h) < S,Af) = Si(f) + d}F < 08 4w, < 202
and the inequality holds trivially elsewhere. Therefore,
4]l = (IS(A)[l," = 20°2P(f* > 4)
so that, by (1.5),
P(f* > B, S(f) v w* < 8)
S PR* > (B—0— 1))
1 20*
<— | —F=P(f*> 2.
s GosoyE M= G o>
The proof of the dual of (12.3) is similar.
13. Remarks. By using the results of [2] and an approximation argument,
Millar [32] proved an inequality essentially equivalent to (6.2) for ®(2) = 2*
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(I < p < o). Earlier, various students of Skorokhod embedding (including
Skorokhod) had obtained special cases for 2 < p < co; for example, see
Rosenkrantz [37] and Sawyer [40]. Working independently of [6], Novikov [34]
extended Miilar’s result in several directions. His main tool is Itd’s lemma.
For a related approach to (6.2), still in the special case of ® a power, see Getoor
and Sharpe [20], who use some techniques of Garsia.

It is certainly possible to have the choice of ¢ and C in (6.2) depend on the
whole of @, not just on its growth constant ¢ ,,.

For the case ®(4) = 47, choose 8 = 1 4 p~' and 6 = cp~! to obtain

(13.1) ll¥]l, = O(pHIIX*(@), » p—oo.

The order of magnitude is O(p) if r* and X*(r) are interchanged reflecting the
difference between 5* — 1 in (6.3) and (8 — 1)* in (6.4). The order O(p?) in
(13.1) can also be obtained by other methods; see [38] for example.

Here is another distribution function inequality that can be proved with the
methods of Section 8. Let Z be complex Brownian motion: Z = X + iY where
X and Y are independent one-dimensional Brownian motions as in Section 6.
Let u be harmonic in some connected open set D of the complex plane and v a
conjugate in the sense that ¥ = u + iv is analytic in D. For simplicity, suppose
that D contains the origin and F(0) = 0. Let r be a stopping time of Z such
that if + < z, then Z(r) € D; one example is

v = inf{¢t: Z(t) ¢ D} .
Let u* = sup,,.. |u(Z(t))| and v* be defined similarly. Then, for 3 > 1 and
o> 0,
52
(8 —1y
In the proof, one may assume that F is analytic in an open set containing the

closure of D and this closure is compact. Then results of Doob[16]are available:
{u(Z(z A 1)), t = 0} is a martingale and, for ¢ another stopping time,

13.2 P* > B, u* < 64) < P(v* > 1), 1>0.
(13.2) ( ) ( )

(13.3) Ew(Z(z A p)) = EvN(Z(c A p)) .

With (13.3) taking the place of (8.1), the proof of (13.2) has the same pattern
as the proof of (6.4). For further information and for applications of the @
inequality that follows from (13.2), see [8]. The Paley-Zygmund inequality used
there can be avoided as in Section 8 above.

If we take the limit of both sides of (13.2) as 8 — oo, we obtain

P(v* = oo, u* < 0d) =0, A>0.

Therefore, P(v* = oo, u* < oo) = 0; that is v* is finite almost everywhere on
{u* < oo}. This illustrates the kind of local behavior that can be deduced from
distribution function inequalities; see [6] for more examples.
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Chapter 111

Integral inequalities: The convex case

Here @ not only satisfies, as always, the mild conditions of Section 7, but also
is convex. In this case, the big jumps of a martingale can be isolated and
controlled.

14. Davis’s decomposition of a martingale. If f = (f,, f,, ---) is a martingale,
then

(14.1) f=9g+h

where g and 4 are the martingales defined by
9= Dt = Zia e — EOn| 7)1
h, = Troa by = Zia [z + E( ] 57020

e =4 1(|d| <245,
z, = d I(|d,| > 2d}.)),

with

and d,* = sup,g;, |d;| with d, = 0. Davis introduced this decomposition in [13]
and used it to prove

(14.2) cES(f) < Ef* < CES(f) .
Note that |y,| < 2df_, so that
(14.3) o, < 4di_,,

a bound which is .%7,_,-measurable. This gives control of g. The martingale 4
is controlled by

(14.4) i bl = Zealzd + 2k E(lzd | )
which follows from the fact that y, = 0 and, for k =2, E(y,|-“_) +
E(z,| %,_) = E(d,| ~_) = 0. On the set {|d,| > 2d} },

4] + 2d;, < 2/d,| < 24, .
Therefore, |z,| < 2(d,* — d}f_)) and
(14.5) Tz = 24

15. Inequality for the square function in the convex case. The following two-
sided inequality generalizes both (3.3) and (14.2) and is a typical result of [5].

THEOREM 15.1. Let @ be a convex function satisfying the conditions of Section 7.
If f = (fy fo -+ +) is a martingale, then

(15.1) cEQ(S(f)) < EQ(f*) < CED(S(f)) -
The choice of ¢ and C depends only on ¢ .

PrOOF. We shall prove only the right-hand side; the proof of the left-hand
side has exactly the same pattern.



34 D. L. BURKHOLDER

Write f = g + h as in (14.1) and note that

(15.2) [*S9*+ h < g%+ T lby,
(15.3) S(9) < S(f) + S(h) < S(f) + T [b4l -
By (15.2) and (7.9),

(15.4) EQ(f*) < cED(9*) + cEQ(Li, |bu]) -

By the basic inequality (12.1) applied to g,

(15.5) E®(g*) < cED(S(g)) + cED(4d*) .

Now substitute (15.5) into (15.4) and use (15.3) and d* < S(f) to see that

E®(f*) < cEQ(S(f)) + cED(Tii |b4)) -

In view of (14.4) and (14.5), this gives

(15.6) EQ(f*) < cED(S(f)) + cEQ(Ti, E(|2,] | 57,-1)) -
We have not yet used the convexity of @. Using Lemma 16.1, below, we

obtain

(15.7) EQ(T5, E(|2.]| ) < cED(TE., |2.]) -

Combining (15.6), (15.7), and (14.5), we get the right-hand side of (15.1).
16. A convexity lemma. This was introduced in [5].

LEMMA 16.1. Let ® be a convex function satisfying the conditions of Section 7.
Let z,, z,, - - - be nonnegative measurable functions on (Q, 57, P). Then

EQ(X7 E(2]| ) S cEQ(LiL, 2,) -
The choice of ¢ depends only on c .

Recently, Neveu and Garsia have given new, elegant proofs of this. Garsia’s
proof is contained in [19], Neveu’s in [33] and [30]. Neveu shows that the pair

W= 2 E(z,|,.), Z= iz
satisfies
A S(W>X)(W_'2)§ S(W>1)Zs i>0,
and that any pair W, Z of nonnegative random variables satisfying this inequality
must also satisfy
EQ(W) < cED(Z) .

17. Quadratic variation of right-continuous martingales. Is the generality of
Theorem 15.1 ever really needed? Or is it enough to know (15.1) for convex
powers O(4) = 2* (p = 1) and possibly for functions like ®(2) = (24 1)log (4 4 1)?
Consider the following application ftom [5].

Let X = {X(r), 0 <t < 1} be a right-continuous martingale and define S; > 0
by the following approximation to the quadratic variation of X:

SP = X¥tp) + D [X(t) — X(t-0)]
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where0 =1, <1, < .-- < 1,j= 1. Thatis, S; = S(f;) wheref; = (f;1, fjo- - )

n=1lp=
is the martingale defined by f;, = X(¢;,). Assume that¢;, = 1 for k > k; and
lim;_,, sup,,, (t;, — t;,-) = 0.
THEOREM 17.1. The sequence {S;} converges in L' if and only if X* =
SUP<, <1 | X(1)] is integrable.

Proor. If X* isintegrable, then there is a function @ satisfying the conditions
of Section 7 and the following further conditions: @ is convex, lim,_,®(1)/A= oo,
and EQ(X*) < oo (Lemma 5.1 of [5]). Therefore, by Theorem 15.1,

E®(S;) < cEQ(f;*) < cED(X*) < oo .

Thus, {S;} is uniformly integrable. But, by a result of Doléans [14], {S;} con-
verges in probability. Combining these two facts gives convergence in L'.

On the other hand, if {S,} converges in L', then sup; ||S,||, < co. By right-
continuity, X* = lim,_,, f;*. Therefore, by the inequality of Davis,

EX* < liminf,_ Ef;* < csup; ES; < o .

j—oo

Chapter IV

Further results and applications
We begin this chapter by investigating some of the consequences of non-
negativity.

18. Square function inequalities for nonnegative martingales. Let f = (f,, f,, - - )
be a martingale and 4 the stopping time defined by

(18.1) p=inf{n: |f,] > 2}.

As we have seen (Lemma 2.1), S,_,(f) e L* if f is L'-bounded. Much more is
true if f is also nonnegative: S, ,(f) e exp L®

THEOREM 18.1. If f is a nonnegative martingale, 4 is a positive real number, and
 is the stopping time defined by (18.1), then

1

(18.2) E[exp 1S3i(/)] S +——

0<t<1/322.
Closely related to this are the folloWing results, which, for the nonnegative
case, also strengthen earlier conclusions.
THEOREM 18.2. Let B> 1and 0 < 6 < (B — 1)} If f is a nonnegative mar-

tingale, then

PS> BLf* S S 0 PS(H>D,  1>0.

[32_52

By Lemma 7.1, this implies the following general @ inequality.
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THEOREM 18.3. If @ is a function satisfying the conditions of Section 7 and f is
a nonnegative martingale, then
(18.3) EQ(S(f)) < cED(f*) .
The choice of ¢ depends only on c,,.

To prove Theorem 18.1, we need the following elementary lemma.

LemMMA 18.1. Suppose that g is a nonnegative measurable function on a probability
space (Q, 7, P) and a is a positive number such that

(18.4) \eP(g > AdAZ aP(g > a), a>0.

Then g € exp L; in fact,
1

Eer <
1 — at

, O<tr<at.

Proor. Multiply the right-hand side of (18.4) by pa*~! and integrate to obtain
aEg?. Do the same for the left-hand side and use Fubini’s theorem to obtain
Egr+'/(p + 1). Therefore,

Eg**' < a(p + 1)Eg?, p>0.
Let a — 0 in (18.4) to get Eg < a. By induction,
Eg* < a*k! k=0,1,2,....

Therefore,
Ee' = Y 7, t*Eg*/k!

< T (an = (1 — ary.
ProoF oF THEOREM 18.1. Note that

S,f-l(f) = Yl > k)d?

where I(nx > k)d,? = I(f,* < 2)d,? < 2. Let v be the stopping time defined by
v=inf{n: 2, (g > k)d,? > a}
where a > 0. Then, for b > 0,
P(SI(f)>a+b+ ) < Doy P(Siewn (> k) d? > b,y = ).
Integrating with respect to b gives
§7 08 PS2A(f) > $)ds S D5y E[Siens e > ko v = 0) 7.

For fixed n consider the martingale g defined by

Ge=Hp>nv=n)f ., k=1.
Then g is a nonnegative martingale relative to {7, ,,_;, kK = 1}. Let (e, e, ---)
denote its difference sequence and use Lemma 2.1 to obtain

E[ X (e > kv = n)d] < E[Z7. 19" = Ae]
< 2)|jg||, = 22Eg, < 24P(v = n).
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Therefore,

(18.5)  §20 P(Si(/) > 5)ds < 22 Tz, P(v = )
= 2Py < o0) = 24P(S_(f) > a) .

Since '
§a* P(S1i(f) > 5) ds < 2P(S;i(f) > a),

addition gives
§o P(Si_i(f) > 5)ds < 32P(S:_(f) > a), a>0.
Theorem 18.1 now follows from Lemma 18.1.
ProOOF oF THEOREM 18.2. Replace 2 by 62 in (18.1) and (18.5). Then
P(S(f) > BA, f* < d2) < P(S,_.(f) > BA)
and, for a = 2% in (18.5),
(8" — 0* — DAP(S,_o(f) > BA) < §5i¥s0 P(S2_i(f) > ) ds
‘ = 28°2P(S;(f) > %)
< 20°2P(S(f) > 4).

For the case ®(4) = 47, choose 8 =1 + p~! and 6 = cp~* in Theorem 18.2
and Lemma 7.1 to obtain

IS = epHIf*]l, = epqllfl, » I<p<oo.
This gives another proof of part of Lemma 3.1.

19. A square function inequality for martingales of bounded mean oscillation. As
we have seen in Chapter II, an L>-bounded martingale f satisfies S(f) ¢ exp L2.
This is also an easy consequence of Theorem 18.1. Here is a more general result.

THEOREM 19.1. Let f be a martingale with difference sequence d satisfying

(19.1) E[Xi.dl |~ ] <1, nz1.
Then
(19.2) E[exptSY(f)] < (1 — 1), 0O<r<1.

Garsia has also noticed this and has a different proof [18].
Proor. Fora> 0,5 > 0, and r = inf {n: S.X(f) > a}, we have
P(S(f) > a+b) £ Ny A(Dend? > b, = 1)
Integrating with respect to b over (0, o) gives
§2 P(S*(f) > DdA < N5, E[l(z = n) D5, d,7]

= La= Ell(r = mE(Xi., 4] )]
= LS Ell(c = )]
= P(r < @) = P(S(f) > a).

The theorem now follows from Lemma 18.1.
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Let BMO be the linear span of all martingales satisfying( 19.1). Suppose that
fis L>-bounded. Then

E[Zl?=u dlc2 | ‘)/'n] = E[(fm - f'n—l)2 } '“vn]
= 4lfll?
so that fe BMO.

John and Nirenberg defined bounded mean oscillation (for functions) in [26].
This notion plays a fundamental role in the recent work of Fefferman and Stein
[17], who prove, among other things, that BMO is the dual of H'. Also see [18],
[24], [20], and [31].

20. Concave ®. Assume here that @ not only satisfies the conditions of Section
7 but also is concave. Concavity implies ®(21) < 2®(2) so the growth condition
is automatically satisfied. The following result is the concave version of the
convexity lemma of Section 16.

THEOREM 20.1. Suppose that @ is concave as above. Letz,, z,, - - - be nonnegative
measurable functions on (Q, .57, P). Then
(20.1) EQ(XZi 24) < 2EQ(Z7: E(2e| ) -

ProoF. LetZ, = >r 2z, W, = 21 E(2,] ¥,_),0<n< 00, Z=17_,and .
W = W,_. Then
(20.2) E(ZNAZ2E(W AD), A>0.

To see this, let 7 = inf {n = 0: W, ., > 4} and notice that W_< W A 2. In view
of
ZANALZS Z + A(r < o),

(20.2) follows from
EZ = EXy It = k)z,
= E 2ea It z k)E(z, | %, _y)

= EW, < EW A 3)
d
an E[M(z < 00)] = AP(W > 2) < EW A 2) .

Inequality (20.2) is a special case of (20.1) but actually implies (20.1). The
concavity of @ implies there is a nonnegative, non-increasing function ¢ on (0, co)
such that

D) = i p(D) d2 = §1 [p(2) — ¢(c0)]dA + bp(0),  0=<b< o,

where ¢(o0) = lim,_, ¢(4) (see [43], page 24). To prove (20.1), we may assume
that ¢(co) = 0. Integrating by parts and using ¢(co) = 0 and agp(a) < O(a).
we get
Q1) = lim,_p s §5 0(2) d(t A 2)
= 1im, .. [p(B)(* A b) — g(a)(r A @) — §2 (¢ A 2) dp(A)]
= =@ A )de), 0<t< ©.
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Note that —dy(2) defines a positive measure and the formula holds also for r = 0
and t = co. Therefore, by Fubini’s theorem,

ED(Z) = —\= E(Z A 1) dp(3)
< —2§7 E(W A 2)dp(2) = 2EQ(W) .

The above proof can easily be adapted to give other results including the fol-
lowing theorem. Consider the operator

S(f) = [ E(d? | ) -
THEOREM 20.2. Suppose that @ is concave as above. If f = (fi,fs ---) is a
martingale, then

(20.3) EQ((f*)") = SEQ(s(f)) -

For the special case of a concave power, @(1) = 47 (0 < p < 1), this was proved
in [6] by another method. The operator f — f* could be replaced here by the
more general operators of Remark 2.2 in [6].

Proor. Let 5,%(f) = iy E(d}?| ¥5-1), 0 = n < oo,
o r=inf{n =2 0: 57,,(f) > 4},
and denote by f* the martingale f stopped at z: (f*), = ;.. I(r = k) d,. Then
E[(f*)* A 2] = SE[S(f) A 4]
since (f*)' A 2 < [(f)*] + AU(z < o0), Where [|(f)*|l; < 2||f7|l; = 2[|s(/)Il. =
2l|s (Nl $*(f) £ 5°(f) A 4 and
E[Ml(z < o0)] = AP(8(f) > 2) < E[s(f) A 4] .
As in the last proof, (20.3) follows.

21. More about s(f). It is easy to see that an inequality like (20.3) cannot
hold for general @; see Example 8.2 of [6]. However, the following is true.

THEOREM 21.1. If @ is a function satisfying the conditions of Section 7 and f is
a martingale then

(21.1) E®(f*) < cED(s(f)) + cED(d*).
The choice of ¢ depends only on ¢ ,,.

This follows from Theorem 3.1 of [5]; see the remark on the top of page 553
in [4]. Alternatively, the theorem follows at once, by Lemma 7.1, from the
easy distribution function inequality

212) P> pLs(f)vd <oy s— O P >,  1>0,
B—0—-1y
inwhichf>land0<o< g —1.

To prove (21.2), let g = inf{n: |f,| > 2}, v = inf{n: |f,| > B4},
g=inf{n = 0:|d,| > 02 or s,,,(f) > 94},
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and let h be the martingale f started at x and stopped at v A o:
h, = i l(p<k<vAo)d,.
Then the left-hand side of (21.2) is no greater than
P(p < v < 00,0 = 00) < P(h* > (f — 3 — 1)3)

1
é m ||h||22 .
But ||A]|, = [|s(h)||, where s*(h) < sX(/) (¢ < o0) < 622(f* > ). These facts
imply (21.2).
Using the notation of Section 20, we can obtain

21.3) P(Z>ﬁl,WVZ*§52)§ﬁ__—‘;__IP(Z>2), 21>0),

by similar reasoning. This gives another proof of
ED(Z) < cEQ(W) + cED(z*)

for general @; see [4].

Consider the following inequality of Rosenthal [39]: If d = (d,, d,, -- ) isan
independent sequence of random variables, each with expectation zero, and
fo= 2p_,d,n=1, then

(21.4) IAIl,> = ep(Zim EdS)” + ¢, T, Eld,P 2=p< oo,

and the reverse inequality is also true. Using ®(d*) < Y., ¥(|d,|) and Theorem
21.1, we have

(21.5) EQ(f*) = cED(s(f)) + ¢ i EQ(d,])

for all martingales f and all @ satisfying the condition of Section 7. In the in-
dependent case, s*(f) = i, E(d?| ,_,) = Xi, Ed?and (21.4) follows. The
reverse of (21.4) follows from 37, |d,[* < S*(f), ||s(f)l, < ¢,|IS(f)l],» which is

a consequence of Lemma 16.1 (also, see [6]), and Theorem 3.2. Note that only
the reverse inequality requires any restriction of @.

22. Concluding remarks. The methods of Chapter II can be used to give simpler
derivations of the general operator inequalities of [5] and [6].

Many further applications could be discussed, some rather obvious: to Skorok-
hod embedding, square-root boundary problems in random walk, etc. Applica-
tions related to these are described in [6].

Finally, much of the work reviewed here has been joint work with R. F. Gundy;
some also has been joint with B. J. Davis and M. L. Silverstein. To these three,
and to many others who have taken an enthusiastic interest, I express my deep
appreciation.
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