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SUBGROUPS OF PATHS AND REPRODUCING KERNELS'

By RaouL LE PAGE
Columbia University and University of Colorado

The following generalizations of certain theorems due to G. Kallianpur
and to Jamison and Orey are proved for an arbitrary Gaussian measure P
on a space of real functions: if the reproducing kernel Hilbert space H is
infinite dimensional then P(H) = 0; if a subgroup G of the space of real
functions (under addition) is measurable with respect to the P-completion
of the Borel product sigma-algebra, then P(G) = 0 or P(G) =1 and in the
latter case H C G.

Interesting relationships exist between the reproducing kernel Hilbert space H
of (any) real and Gaussian random function X and the X-induced probability
measure P defined on sets of the completed Borel product sigma-algebra .
Among these relationships are the following:

(a) P(H) = 0 if H has infinite dimension.

(b) P(G) > 0 implies H C G, for G an additive subgroup of functions.

(¢) Ge.# implies P(G) = 0 or P(G) = 1, for G an additive subgroup of
functions.

While some of these results have been known or suspected in special cases (see
[2] for specific reference to Cameron and Graves), only recently have results ap-
proaching the generality of (a), (b), (c) been achieved. In particular the earliest
rigorous proof of (a) in a general setting is Kallianpur’s [3]. In this paper we
prove (b) and (c) by methods which are of independent interest in the study of
Gaussian measures. An outline of the way in which these methods yield the
strongest form of (a) will be presented.

Throughout this paper X = (X(f), t € T) is a real Gaussian family of random
variables indexed by a set T. Without loss of generality we understand these
to be the coordinate evaluation functions defined by (X(¢))(f) = f(?), for every
teT, feRT. We let & stand for the product Borel sigma-algebra of R” sets,
and denote by P the unique probability measure defined on &, with respect to
which X has the desired Gaussian law. The P-completion of .5, will be denoted
by .7 Let H be the reproducing kernel Hilbert space of the covariance function
T'(s, £) = § xr (X(5) — m(s))(X(t) — m(t)) dP, (s, t) € T X T, where m(f) = { pr X(1) dP,
teT, (see [5] page 84). As is well known, H is isometrically isomorphic to a
linear subspace L~ of L,(P) under the linear extension of the association I'(¢, «) <
X(t) — m(t), teT, first to finite real linear combinations and thence to H
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(equivalently Ly(P)) limits. If e H we let its companion in L~ under this iso-
morphism be denoted by 4~.

PROPOSITION 1. If A€ &, P(A) > 0, he H, then for all r in a real neighbor-
hood of zero rh e A © A (the set of differences).

Proor. We may suppose ||#|| = 1. The Gaussian random functions Y =
X — h~h, k~h are uncorrelated and therefore mutually independent. Applying
to A€ % a standard result of product measures ([5] page 74) we conclude that
almost every Y-section is measurable, and if P(4) > 0 then for at least one y € R”
(it’s all we need) the event {y + h~h e A} has positive probability with respect to
the standard normal distribution of k~. Therefore the Lebesgue measure of
B = {r: y + rhe A4} is positive. A result of Steinhaus ([6] page 99) applies to
say that B O B (the set of differences) contains an open interval about zero.
This implies the result for 4O 4. []

CoroLLARY 1. If Ge & and G is a group under pointwise sum, then P(G) > 0
implies H C G.

ProOF. Supposeh € H. If P(G) > 0 then from Proposition 1 there is an integer
n > 0for which hjne GO G. If G is a group, G = GO G, s0 hjne G. By sum-
ming n of these elements &/n, conclude that since G is a group A e G. []

PROPOSITION 2. If Ae & and A = A@ H (the set of sums) then P(A) = 0 or
P(4) = 1.

ProoF. Since & is the completed sigma-algebra generated by {h~: ke H} we
may choose a (possibly empty or finite, but at most enumerable) orthonormal
set {#,: ke K} C H such that 4 belongs to the completion of the sigma-algebra
generated by {h,~: k € K}, (see [5] page 81). Arguing as in Proposition 1, the
Gaussian random functions Y, = X — > %=r h,~h, and Y %=r h,~h, are defined
for {h, ---, h,} C {h,: ke K}. If dimension H is zero, then K is necessarily
empty, but in this case X is almost surely a constant and therefore P(4) = 0 or
P(A) = 1. If dimension H is positive but finite, then for n = dimension H, Y, is
almost surely constant (in fact itequalsm)and if 4 = 4@ Hthen 4 = (X e 4) =
(Y. + Xkt hi~hy, € A) = (Y, € A) almost surely, and the last of these has prob-
ability either zero or one. Finally, if dimension H is infinite, we may choose K.
an infinite set, and 4 = (X € A) = (X, € .4) almost surely for every n. This places
A in the completed tail sigma-algebra of the independent sequence {k,~: k > 1}.
By the ordinary zero or one law ([5] page 128) we conclude P(4) =0 or
P(A)=1.[

COROLLARY 2. If G is a group under pointwise sum and G ¢ &, then P(G) = 0
or P(G) = 1. In the latter case H C G.

Proor. If G is a group and G € &, then by Corollary 1, P(G) = Oor H C G.
If H C G then, H being a group, -G = G @ H and so by Proposition 2, P(G) = 0
or P(G) = 1. In the case P(G) = 1, we have H C G by Corollary 1. []
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In[4], astrengthening of Proposition 2 has been shown to imply the equivalence-
singularity dichotomy for Gaussian measures. Jamison and Orey [1] have proved
a special case of Corollary 2 when T = [0, 1], X has continuous sample functions
almost surely, and m = 0. In their paper they raise the question of whether the
condition of sample continuity may be removed. This is answered affirmatively
by Corollary 2. Closer to Corollary 2 are twin results due to G. Kallianpur [2].
The first is Corollary 2 under the additional hypotheses that T is a separable
metric space, I' is continuous, and G is closed under multiplication by rationals.
The second removes the hypothesis of closure under multiplication by rationals,
but requires G € 5.

When H has infinite dimension and m = 0, Kallianpur has in [3] proved under
mild smoothness and separability hypotheses that He &% and P(H) = 0. The
methods of this paper apply also to the proof of (a). Suppose {t,: k = 1} c T and
{h.: k = 1} C Hisan infinite orthonormal sequence derived from {I'(z,, +) : k = 1}
by Gram-Schmidt orthonormalization in H (such a choice is always possible
since {I'(¢, »): te€ T} span H). Then forallj > 1, if m = 0,

P(X(t;) = limsup, ., 2 k=F b, hy(t;)) = 1 and
{lim sup, .. 242t b~k € H} C {27, B < oo} .

Therefore the set in R”, on which X agreeson {t,: k = 1} with an element of H,
has probability zero. Therefore P(H) = 0. The case m % 0 is similar.
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