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A CONTINUUM OF COLLISION PROCESS LIMIT THEOREMS!

By RICHARD GISSELQUIST

Let {x;(#):i=---—1,0,1, ...} be a collection of one-dimensional
symmetric stable processes of order y€ (0, 1] with the property that the
starting positions -+ < x_1(0) < x0(0) = 0 < x;(0) < --- form a Poisson
system with rate one. By generalizing the order preserving property of
elastic collision, these can be used to define a set of collision processes
{yi()}. It is shown in this paper that for large values of A, the finite
dimensional distributions of yo(A4¢#)/4%/2r approach the Gaussian distribution
with mean zero and covariance r(t, s) = c(f/7 + s¥/7 — |t — s|1/7).

0. Introduction. A collision path y,(¢) is a function generated by a collection
of functions {x,(f)} which are thought of as colliding elastically. A collision
process is formed if {x;(f)} is a collection of stochastic processes. The limit
theorem presented in this paper (Theorem 2.2) gives a continuum of limit results
for collision processes which interpolates between the limit results for two cases
previously described in the literature [3], [6]. Section 1 contains the analysis
necessary for the definition of collision processes. Section 3 contains the proof
of the result stated in Section 2.

1. Definition and existence of collision processes. If two identical point masses
traveling in one dimension collide elastically, they simply exchange trajectories.
If, instead of two, there are 2n 4 1 point masses, the effect of elastic collisions
will be to keep the middle particle on the middle trajectory. The following
definition is the obvious way to generalize this notion to the case where there
are an infinite number of paths x,(f) and the theorem from Harris [3] assures
that the definition is non-vacuous.

DeriNITION 1.1, Let {x,(f): i = 0, =1, ...} be a collection of real-valued
functions of a nonnegative real variable. The set {y,(f): i = 0, +1, - ..} of col-
lision paths generated by {x;(#)} is defined for nonnegative ¢ by

yi(t) = limn—m med (xi—n(t)’ ] xi+n(t)) .

THEOREM 1.2. Let {x,(#)} and {y,(t)} be as in the above definition. Let {x,(f)}
satisfy: .
(A1) x;(0) < x;,4(0) fori= ... —1,0,1, ... and x,(0) = 0.
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(A2) For each iand t, inf_ ., x,(v) and supy., x,(t) exist and satisfy
lim,_ inf,_ ., x;(r) = oo and lim,_,_,, supyg., Xi(f) = —oco .

(A3°) If i+ j, then {t: x,(f) = x,(t)} does not contain a nondegenerate interval.
(A4°) For each i, x,(t) is continuous for t = 0.

Then the collection {y,(#)} is well defined and is the unique set of functions with
the following properties:

(B1) y,(0) = x;(0) fori = ..., —1,0, ....

B2) y() = yiu(t)fori= ..., —1,0,1, ... and for r = 0.

(B3) Foreachr=0lim,_inf_ ., y,(r) = oo and lim,_,__, sup,..., yi(r) = —oo.

(B4) The union of the graphs of the y; is identical to the union of the graphs
of the x;.

(B5°) For i+ j, {t: yi(t) = y;(#)} does not contain a nondegenerate interval.

(B6°) The y,(¢) are continuous in 7.

In order to apply this machinery to a wider class of initial functions x,(r), we
wish to drop the continuity requirement (A4°). Obviously (B6°) goes with it.
However, the following example indicates that uniqueness is lost if these two
conditions are simply discarded. Define x,(f) = i and z,(f) = i 4 [¢] where [ ]
denotes the greater integer function. Let y,(¢) be defined by Definition 1.1, i.e.,
yi{(f) = i. Now both {y,(r)} and {z,(¢)} satisfy (Bl) through (B5°) above. We
approach the problem with the following definition.

DEerFINITION 1.3. Let x,(f) be a collection of functions. The discontinuities of
{x;(1)} are said to be semi-isolated in i if for any given ¢, only a finite number of
the x; are discontinuous at ¢,.

The condition that the discontinuities are semi-isolated in i will be denoted by
(A4) when referring to the initial trajectories {x;(f)} and (B6) when referring to
the collision paths {y,(r)}. Condition (A3°) will be replaced by

(A3) for i+ j, {t: x;(f) = x,(t)} is nowhere dense.

The analogous condition for the collision paths will be denoted (B5). Now the
desired theorem reads

THEOREM 1.4. Let {x,(1)} satisfy (A1)—(Ad4). Then the collection {y,(t)} is well
defined and satisfies (B1)—(B6). Further, if {z,(f)} is any other set of functions
satisfying (B1)—(B6), then {t: y,(t) + z,(t)} is nowhere dense for each i.

The proof that the definition is meaningful and that properties (B1)—(B4) hold
is unchanged from Harris’. We state below two needed facts and give proofs of
the remaining properties. For all positive n and for 7€ [0, T

(1.1a) med (x;_,(?), - - -, X;4,(f)) = min,, inf,_,_, xi(t) = a(T) > —o0
and

(1.1b) med (x;_,(#), « « 5 X;0(f)) < Max;g; supyg,cr X;(T) = Bi(T) < oo .



COLLISION PROCESS THEOREMS 233

Further, there exists an integer k such that

(1.2) med (x;_,(), + -+, X;4()) = med (X;__a()s - -+, Xipgsn(F))

where ¢ and n are as before. Harris actually proved a more geneéral version of
(1.2) based on the k + [ + 1-tuple (x;_,(¢), - - -, X;,,(¢)) where k and [ are allowed
to increase independently.

For (B5) it suffices to show that for a fixed value of i, E={t: t < T, y,(f) =
Yi+1(9)} is nowhere dense. By (1.1), (1.2) and (A2) it is possible to find a k such
that for t < T

Yi(t) = med (x;_4(1), - -+, X;14(2))
Yirr(t) = med (xX;_411(2)s - -+ 5 Xiypua(2))
Xipper(D) > Bisi(T)
and
X () < ay(T) .
One then has that
Ec Uit Uit t S T, x,(1) = x,(0)}

Thus E is contained in the union of a finite number of nowhere dense sets, and
is itself nowhere dense.

We next prove that (B6) holds. Let ¢, be arbitrary. Suppose first that all the
x; are continuous at #,. Then for any j, it is possible to choose a k by (1.2) such
that in a neighborhood of ¢,, y; will be the median of a finite collection of func-
tions (x;_,(f), - -+, x;4,(f)). Since each x; in this collection is continuous at #,
y; also is.

If, on the other hand, a finite number of the x; say Xip o0 ey X; , ATC discon-
tinuous at #,, then set

k = lim max,_,, {]' yj(t) = x‘r(t) for some
te(ty—¢&, ty+¢) and r=1,2,...,n}
and
I =limmin,_,{j: y;(r) = x; (+) for some
te(ty—ety+¢) and r=1,2,...,n}.

Since the discontinuities of the x; at #, are finite by (A2) and since all but a finite
number of the y; will be outside a bounded set by (B3), we see that k and [ are
finite integers. Let i be an integer not in [/, k]. In some ¢-neighborhood of ¢, y,
can be expressed as the median of an odd number of functions. But all discon-
tinuities at ¢, in this set of functions will either be above y,(¢) if i < [ or below
yi(#) if i > k. Therefore, y, will be continuous at #,. 4

To show uniqueness, suppose that {z,(¢)} is another set of functions satisfying
(B1)—(B6). Let G = interior (closure {r: z,(f) # y;(r)}) and assume G + Q.
Let ¢, = inf G. Because of the semi-isolated condition on the discontinuities and
because the union of the graphs of the z; is the same as the union of the graphs
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of the y,, it is possible to choose integers k and &’ such that the following con-
ditions hold:

@) yiu(to) = 2 ()

(b) yiu(t) > max {y;(t,), z:(t,)}

(c) the functions y;, y,.1, Zy, 2,4, are all continuous at ¢,
(d) yiu(t)) < Yiwa(te) and z,.(t) < z,44(%)-

Similarly, we may choose / and / such that y,, z,, y,_;, and z,,_, satisfy con-
ditions (a)—(d) with the inequality signs reversed and with “max” replaced by

min
Choose ¢ > 0 such that

e < max {|yu(t) — Yen(t)ls [2e(te) — Zi1a(to)ls
|yit)) — yica(to)ls 120 (%) — 20 _1(0)[} -

Choose ¢ such that 0 < |t — | < 6 implies that the value at ¢ of each of the
above functions (i.e., y,, - - -, z,,_;) is within ¢ of its value at ¢, We now restrict
our attention to the rectangle

R={(x,8): xe(y(t) + & y(t,) —¢) and te(t, — 9, t, + ) n [0, c0)}.

in which the y-indices run from [/ to k and the z-indices from /’ to k’.
Define

= {t: te(’o—a’ t0+ 5) n [0’ °°)’}’n(t) ¢)’m(’) fOI' n #: m; n,me{la “’,k}
and z,(t) # z,(t) for n £ m;n,me{l', ---, k'}}.

Note that, by (Al) and (B1), zero will be in I if z, — § < 0 and that by (BS) I'
is the complement of a nowhere dense set. Choose t,eI' n {¢t: ¢t < t,and y,(¥) =
z,(t)}. Such a point exists because, if , > 0 then {r: t < ¢, and z,(f) = y,(¢)} is
also the complement of a nowhere dense set and, if #, = 0, then ¢, = ¢,.

Now in the cross section of R given by R n {(x, #,)}, the indices of y, and z,
are determined by (B2) and (B4). This gives k = k"’ and [ =1'. Lett,eI' n
{t: t = t,}. Because of (B4), the point (a, #,) where

a=sup{x: (x,t)eR and x = x,(t,) for some i},

is equal to (y;(t,), t;) and (z,(t,), t,) for some j and j’. But j (respectively j’)
must be the maximum y index (z index) in the rectangle R. So a = y,(1,) = z,(t,).
Similarly y,(t,) = z,(t;). As we previously counted out from y,(t,) = z,(t,) at t,,
we can now count in from y,(t,) = z,(t,) and y,(t,) = z,(t,). Thereare k — [ — 1
indices to be assigned to k — [ — 1 distinct points y,(,) and to k — [ — 1 distinct
points z,(#,). If this assignment is to satisfy (B2), we must have y,(t,) = z,(t,).
Since I' n {¢: t = #} is the complement of a nowhere dense set in (f,, #, + 9)
this contradicts the original assumption that G ++ @ and completes the proof.
It is easy to see that complete uniqueness is not given without a further
restriction. For an appropriate example, suppose that {x;(f)} is a collection of
continuous paths, exactly two of which cross at #, i.e., x; (to) = x;,(t) for iy # i,.
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There are exactly two subscripts j and j + 1 such that y;(t) = y;..(t) = x;(f)-
We may redefine y; (%) by setting it equal to y,,,(t,) without violating (Bl1)—
(B6). However, the following obvious corollary gives complete uniqueness in
the case which will be of interest to us in the next section. '

CoRroLLARY 1.5. Let {x,(1)}, {y:«(?)} and {z,(t)} be as in the above theorem. If
each x; is right-continuous, then each y; is right-continuous. If further each z; is
right-continuous, then y,(t) = z,(t) for each i.

2. Statement of results concerning collision processes. In applying the above
theorem we shall assume that the starting positions x;(0) are arranged such that
%,(0) = 0 and such that x,;(0) and x_,(0) for i = 1,2, ... form independent
Poisson systems with rate one on (0, co) and (— oo, 0) respectively. This assump-
tion has two advantages besides the fact that it seems natural. First, it allows
certain computations to be done as integrals instead of sums as would be the
case with non-random initial conditions. Also, according to a theorem of Doob
([1] page 405), if each increment x,(f) — x,(0) for i = +1, +2, ... has a distri-
bution which is independent of i, of the other increments and of the starting
positions {x;(0): j = +1, 2, ---}, then the points {x,(r):i= +1, +2, ...}
again form a Poisson process with rate one.

There are two continuous collision processes which have been described in the
literature. Because it will make sense later, we will identify these as the y =2
and y = 1 cases.

In the y = 2 case, the {x;(#)} is a collection of Wiener processes, stable pro-
cesses of order 2. This situation was first described by Harris [3]. He showed
that for large ¢, y,(f) was normally distributed with mean zero and variance O(t?)
In a private communication, Spitzer showed that this fact and independent incre-
ments in the limit indicated a limiting covariance for y,(A4r)/4* of the form
r(t, s) = c(t* + st — |t — s|}).

For the case y = 1, {x,(f)} is a collection of straight line processes, x;(f) =
x;(0) + v;t where the v; are independent random variables with mean zero.
Since P[x,(ct) < a] = P[x,(t) £ a/c] = P[v, £ a/(ct)], the distribution function
F, of x,(r) satisfies F,,(x) = F,(xc~?). Thus {x,(f)}is, in a trivial sense, a collection
of stable processes of order one. This situation was investigated by Spitzer in [6]
where he showed that lim,_,, y,(A4f)/A* was a Wiener process. The convergence
involved was weak convergence on the function space C[0, 1].

The extension of these results that we have in mind has now been clearly hinted
at. We proceed as follows.

THEOREM 2.1. Let the set of initial positions {x,(0)} be Poisson distributed as
outlined above. Let {x,(f) — x;(0)} be a set of independent, identically distributed,
symmetric stable processes of order y € (1, 2], which are taken to be separable and
right-continuous. Then with probability one the set of paths {x,(f)} satisfies
(Al)—(A4).

Proor. Note that (Al) is trivial. The assertion that inf,_ ., x;(r) and
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SUPo<. <. X;(7) exist holds because x;(f) is a separable martingale ([1] page 361).
To show the second half of (A2), assume first that lim,_,, inf . ., x,(t) = m < oo.
By translation, we may assume m < 0. Let B, be the event that inf,__, x,(r) < 0.
Clearly, lim,_, inf,__ , x;,(r) = m < 0 implies that B, happens for infinitely many
k. By the Borel-Cantelli lemma Y7, Pr[B,] = oco.

Because the paths x;(7) satisfy the strong Markov property and have symmetri-
cally distributed increments, the paths satisfy a reflection principle, i.e.,

Pr[B,] < 2 Pr[x,(1) < 0].
This gives that Y7, Pr[x,(f) < 0] = oo.
Since the initial points x,(0) form a Poisson process with rate one, and since
the paths have identical distributions F,

2 Prx(n) <0] = X, F(—x(0)) -

This is a random variable, call it X, which depends on the Poisson process x,(0).
By Campbell’s theorem ([2] page 176),

E[X]= (¢ F(—s)ds < o

because the stable distribution of order y has finite absolute first moment when
7 > 1. Thus X is almost surely finite, a contradiction which completes the proof
of (A2).

Because the sum of two independent stable processes x;(f) — x;(?) is, after cen-
tering, distributed the same as x,(2¢), (A3) will hold if the zero set I" of a stable
process is nowhere dense. By right continuity, if ¢ is the limit point, from the
right, of points in I', ¢ will also be I'. Therefore if I' is dense in any open set
O, T will contain O and have positive measure. But by Fubini’s theorem

ELAT n [0, M])] = Z[§3" Apair=014A())]

= ¢ & [Xraiy=0 4A(1)
= (¥ Prx(f) =0]da(r) =0

where 4 denotes Lebesgue measure. A positive random variable with zero expec-
tation is zero with probability one, therefore I' is nowhere dense.

For a proof of (A4), let J; ,(f) be the number of discontinuities of magnitude
larger than 1/n in the path x,(s) for se [0, f]. Following Doob ([1] page 423),
J; .(f) is a Poisson process with some parameter A(n). Accordingly, when i + j,
Ji () 4+ J;..(¢) is a Poisson process with parameter 24(n). The event that x,(¢)
and x,(7) both have discontinuities at the point ¢, is the event that, for some n,
Ji (1) + J; (¢) has a jump of two units, an event of probability zero ([1] page
399). Thus the probability that any two paths will have discontinuities at the
same value of ¢ is bounded above by

T e 5 PO [ (0) + J; (1) has a two unit jump] = 0.

Thus, with probability one, the discontinuities in {x,(r)} are “isolated in i” and
consequently semi-isolated in i.
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THEOREM 2.2. If {x;(f)} is a collection of stable processes as in Theorem 2.1, then
lim,, Pry(48)/A* < a;,i =1,2, -- -, n]
is a Gaussian distribution with mean 0 and covariance
2.1) r(t, s) = C,2r)~ /1 4 sV1 — |t — s5|'7)
where C, is a constant which will be defined in the proof.

This theorem will be proved in the next section using a generalization of
Spitzer’s proof for the uniform velocity case [6]. It should be noted that the
Gaussian process with covariance given by (2.1) can be realized with continuous
sample paths ([S] page 98). Further, formula (2.1) with y = 1 is the correct
covariance for the uniform velocity case. However, when {x;(¢)} is a family of
nontrivial stable processes of order one, i.e., Cauchy processes, the proof of (A2)
in Theorem 2.1 fails and the constant C, in (2.1) is infinite. The establishment
of tightness and weak convergence is still missing from this limit theorem.
Spitzer was able to establish tightness by using the fact that uniform velocity
processes x;(f) = x,(0) + v; ¢ cross a straight line x = M only once. Stable pro-
cesses, of course, can cross a straight line many times.

3. Proof of Theorem2.2. Leta = (a;,---,a,) € Rrandt=(t,,---,1,) € [0, co)"
be given position and time vectors. The vector 2 = (4,, - - -, 4,) € R* will also be
used below. The symbol R(t) will denote an n X n matrix function of t defined by

C
R(t) = v _(tMVr 4 ¢tV — |t, — t.|V7).
(O = o5 07 + 17— s = 1)
We will use V(t, @) and W(t, &) to denote the vector-valued function defined by
(€Y Mt @) = (v, @) = (Lo Ky epsag)

Wi(t, @) = (w(t;, a;)) = (— Zit-w X[zk<t)>a]) .
These two functions are related to the distribution of y,(¢) through the equality
of the following two events: {y,(;) < a;} and {v(;, a;) + W(t;; ;) + Apagepsa = 1}
(see Harris [3] Theorem 5.1).
Next we note that by the technique of subordination ([2] page 336), we may
take

(3.2) Fyy) = §& Nu(»)Un(ds)
where F,(+) is the distribution function for the increments x;(t 4 s) — x;(s) of
our stable processes, where N,(+) is the normal distribution function with mean
zero and variance s, and where U,(.) is the distribution function for a positive
stable process of order y/2. By using (3.2) the y = 2 case will be the key to our
calculations. For y = 2, let U, denote the point mass at .

The proof will consist of evaluating the characteristic function

L[exp{id—4 - (V(At, A7a) + W(At, Aa))}].
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Following Spitzer ([6] formula 2.13), we have
—log Eexp{iA~TA(V + W)}]
=0 Yol + (0 030 2, A7) + 30 D520 45 A7V
— exp{i 17, 2; A"V} dP dx
(3.3) + 58 Sa 1 + (=1 D 4 A7) + $(—i B3, 4, A7)
— exp{—i 37, 4; A"V*J .} dP dx
+ (=) §5 S0 Dia &, A7, — J) dP dx
+ 358 $a (T3 4, A7) + (X720 4, 47,)" dP dx
where {, - - - dP denotes the integral over all sample paths with respect to the

measure determined by the stable distributions F,. The symbols /; and J, denote
functions defined on this space of sample paths by

I; = Alz(At) —20) Sa ;a2 —z]
and
Jj = Xiz(4tp)—2@zajdl/2+2] *

The proof that the first, second, and third integrals on the right side of (3.3)
are given by O(A7'*7), O(A7*1) and —il - @ 4+ O(A~'") respectively for large 4
is the same as the proof in Spitzer. The integral {, - - - dP in this case involves
only the (one-dimensional) distribution {, - - . F,(dy) and the result depends on
the fact that F, has a finite first moment.

The final integral in (3.3) can be expressed as a sum involving terms of the form
(3.4) 2,2, A7V 2 S I, 1, dP dx .

Assume that t; > #,, let t = ¢, and let s = t; — #,. Now (3.4) becomes
A; 2, A7V §F P[x(A(t + 5)) — x(0) < a; AY* — x and
x(Af) — x(0) < a, A% — x| x(0) = x]dx A
= A 4, AT §2dx § T B (dy)F (@ AT — x — y)
= ;4 A7V N dx \Z% F (dy)F ,(—x — y) + O(A7V7) .
The error term in the last line is bounded by
A;2, A7V §2 P[—x < x(Af) — x(0) £ a 47 — x]dx
= 2, 3§27 R () dy — §L. Fy(y) dy) = O(4)
Upon application of (3.2) and Fubini’s theorem and after ignoring the O(A4-2r)
error term (3.4) may be written as
432 §5 Use(du) §7 Uy@o){§7 dx §225 AVIN,(—x — y)N,(dy)}
= 4; 4 \7 Uy(du) §5 Ufdv){§7 dx §=% N,(—x — y)N,(dy)} -
Looking first at the part in brackets, denote this by ¢(s). We have
o(u) = §5dx §25 No(—x — y)N,(dy)
= §5 Ny(dy) §t Nu(x) dx
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after some rearranging. Further, since the normal density satisfies the heat
equation,

¢'(u) = 1/(AQ2m)H[(u + v)7 — 7] ‘
Thus ¢(#) = 1/(2(27)})((u + v)* — ut + C). The constant is evaluated by noting
that, for u = 0,

9(0) = §& N,(dy) - y = v}/(2m)*.
Therefore p(u) = 1/(227)}) (vt + (u + v)} — u?).
Applying this in the computation for (3.4) given that
;A ATV §2 o I T, dP dx
= O(A7) 4 2; 4, §5 Uy(du) §7 U(dv)[1/2Q2m)H)(v* 4 (2 + v)t — u})]
= O(A7) 4 2, 4,(C,JRRRDN/T + (r + 7 — 57)
by the stable property.
The value of the constant C, is given by

C, = {5 wtUy(aw) .

A calculation for
Aj A, A7V §o §oJ;J, dP dx

proceeds similarly to the same result. After replacing ¢ and s by #, and #; — ¢,
respectively, one sees that the final integral in (3.2) has as a limit when 4
approaches infinity the value

3 21m1 L 4 (G QoD (M + 17 — |1 — 47) = $AR(HAT .

The proof that this calculation implies the desired result is the same as in
Spitzer [5].
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