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ON EQUIVALENCE OF PROBABILITY MEASURES!

By CHARLES R. BAKER

University of North Carolina at Chapel Hill

Let H be a real and separable Hilbert space, I' the Borel ¢-field of H
sets, and g4 and g, two probability measures on (H, I'). Several sufficient
conditions for equivalence (mutual absolute continuity) of ¢ and p» are
obtained in this paper. Some of these results do not require that s and
2 be Gaussian. The conditions obtained are applied to show equivalence
for some specific measures when H is Ly[T].

0. Introduction. Conditions for equivalence of probability measures on the
Borel ¢-field of a Hilbert space have been the subject of much research during
recent years [4]-[8], [13]-[17]. For two Gaussian measures y,, y,, either ¢, and
¢, are equivalent (mutually absolutely continuous, denoted by g, ~ u,) or else
¢, and g, are orthogonal (¢, | u,), and general necessary and sufficient con-
ditions for equivalence have been obtained (e.g., [13]).

When one or both of the measures is not Gaussian, few conditions for equiv-
alence are known. Moreover, even when both measures are Gaussian the general
conditions for equivalence are often difficult to verify, requiring one to prove
existence of a Hilbert-Schmidt operator with prescribed spectral properties.

In this paper, several conditions for equivalence are given. Most of these
conditions are stated in terms of sample function properties. Several results do
not require that both measures be Gaussian; when the two measures are Gaussian,
the sufficient conditions given here may often be easier to verify than those pre-
viously obtained.

1. Definitions and problem statement. Let H be a real and separable Hilbert
space with inner product (., ) and Borel ¢-field I'. Let (Q, 8, P) be a proba-
bility space, and suppose that § and N are B/I' measurable mappings (e.g.,
S-Y(A) € g for all 4eT) of Qinto H. Following Mourier [10], a 3/I" measurable
mapping of Q into H will be called a “random element” in H. Let (H x H,
I' x I') be the usual product measurable space; I' x I' is the smallest o-field
containing all measurable rectangles 4 x B, 4, BeT.

Define the map (S, N): Q —» H x H by (S, N)(w) = (S(»), N(w)); this map is
B/T' x I' measurable, since for 4, B, in I

{w: (S(w), N(w))e A x B} = {w: S(w)e A} N {w: N(w)e B}.
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EQUIVALENT MEASURES 691

Hence (S, N) induces from P a measure yg,y on (H x H,I' x I') defined by
ts.y[C] = P{ow: (S(w), N(w))e C}, CinT x I'. Further, S and N induce mea-
sures yu; and p,, respectively, on I'; e.g., for 4 in I', puy(4) = P[S~*(A4)]. Sand
N are independent if and only if ug, = ps® gy, where p; ® py[A4 x B] =
¢s(A)py(B), 4, B, in .

Consider the map f: H x H— H, f(x,y) = x + y. fisclearlyI' x I'/T mea-
surable. Hence S + N is 8/I"' measurable, and induces a measure g, , from P,

tsinlA] = pslfT(A] = Plo: (S(0), N(@)) e f7(4)}.

Let v denote any fixed element of H. Define f,: H— Hby f,(y) =v +Y; f,
is the section of f at v, therefore is I'/I' measurable and for 4 in I we define
the measure 1, , y by gy, 5(4) = pxlfi7(4)]-

The problem considered in this paper is that of obtaining sufficient conditions
for equivalence of x, and y,,. Several of the conditions obtained are stated
in terms of the measures g, 5, v H.

2. Covariance operators; Gaussian measures. Suppose E||S(®)||* < oo; then there
exists [10] an element mg of H and an operator Ry in H such that {my, u) =
E{(S(w),u), {(Rgu, v) = E{(S(w) — mg, u) - {(S(w) — mg, v), for all u, v in H.
The operator R is a “covariance” operator; i.e., it is linear, bounded, non-
negative, self-adjoint, and trace-class.

If E||N(w)||* < oo, then Sand N have a “cross-covariance” operator Ry : H— H,
defined by (Rgyu, v) = E(S(®) — mg, v){N(w) — my, u) for all u, v in H; more-
over, Ry, = R VR,*? for a bounded linear operator V, with |[V]|| < 1 [2]. Rgy
is thus trace-class, and R,s = R{,, where * denotes adjoint.

S'is said to be a Gaussian element, and g, a Gaussian measure, if (S, u) is a
Gaussian random variable for all u in H. p, then has a covariance operator Ry
and a mean element myg, and E||S(o)||* < oo [10].

When g, and y, , are Gaussian measures, a number of conditions for equiv-
alence have been given by various authors; the conditions most useful for our
purposes are the following ([13], [16] Chapters 19 and 20).

LEMMA 1. py ~ pg,y if and only if
(a) my is in the range of Ry};
(b) Re,y = Ry}WRyt + Ry, where W is a Hilbert—Schmidt operator that does
not have —1 as an eigenvalue.
In dealing with the equivalence of Gaussian measures, one often needs the
following results on the range of square roots of covariance operators [1]:
LEMMA 2. Suppose R, and R, are covariance operators. Then
(1) range (R,*) C range (R,) if and only if the following (equivalent) conditions
are satisfied:
(@) R} = R,}G for G linear and bounded,
(b) R, = R}}QR,} for Q linear and bounded,
(¢) <{Ryu,u) < k{R,u,u) for all w in H and some finite scalar k.
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(2) range (R.}) = range (R}) if and only if the following (equivalent) conditions
are satisfied:

(@) R = R,}G, for G linear and bounded with bounded inverse
(b) R, = R,}QR,} for Q linear and bounded with bounded inverse.

Note that one can use part 2b of Lemma 2 to restate part b of Lemma 1 as
follows:

(i) Range (R,}) = range (R}, ,), and
(i) Rg,y = Ry}(I + W)R,}, with W Hilbert-Schmidt.

3. Applications. In most applications H is L,[T] (Lebesgue measure) for some
compact interval T of the real line. In such cases, S and N are random func-
tions corresponding to measurable stochastic processes (S,), (N,), whose sample
functions belong almost surely to L,[T]. It is easy to verify that a measurable
stochastic process (S,) with sample functions a.s. in L,[T] is a 8/T' measurable
function; one uses the facts that (S, u) is 8/B[R] measurable (B[R] = Borel sets
of the real line) for all w in L,[T], and that T is the smallest o-field such that
all bounded linear functionals on L,[T] are I'/B[R] measurable.

4. Equivalence conditions for independent S, N. In this section it is assumed
that pg v = ps ® py.

THEOREM 1. If p, v ~ py a.e. dugy(v), then pg, y ~ py.

Proor. For 4in T,

tsin(A) = sl [T(A)] = 15 @ pal f71(A)]
(*) = $u el fi7(A)] dps(v)
= S v n(A) dpg(v) -

Suppose p,,y ~ py a.e. dug(v). Then, py(4) = 0= p,, y(A4) = 0 a.e. dug(v) —
tsin(A) =0, from (*). Also, pg y(A) =0= py, 4(4) =0 ae. dpg(v) =
uy(A) = 0. Hence pg, y ~ py. (Note that p,, v | p a.e. dpg(v) does not imply
Usen L py, since the set A, satisfying p,,.(A4,) =1 — py(4,) = 0 can vary
with v.)

Although the above result assumes that z, , = pg ® 1y, it can be applied to
yield conditions for equivalence when S and N are not independent. For ex-
ample, suppose that N = N, + N,, where N, and N, are 8/I' measurable trans-
formations inducing measures ey, and gy If py vo= py ® py, and g Ny =
ts ® py,, one can use the above result to determine if p, ~ p vy and pg v~ gy,
If both these equivalences hold, then pg,, ~ gy. This simple modification
should be useful in many applications, especially in practical signal detection
problems, where the noise usually contains an additive Gaussian component that
is independent of the signal and of the remainder of the noise.

In order to apply Theorem 1, one must first determine sufficient conditions
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for p,,y ~ py, v€ H. Several such conditions are known when p, is Gaussian,
and are utilized to obtain the following corollary.

COROLLARY. Suppose that p is Gaussian with ||my|| = 0, and ps \, = ps @ py.
Then pg,y ~ py if any of the following conditions is satisfied:

(1) verange (Ry?) a.e. dug(v);

(2) E||S(w)|]* < oo, mg € range (Ry?), and Ry = Ry WR,} with W trace-class;

(3) His L,[T] for a compact interval T, p, is the measure induced by a measur-
able mean-square-continuous stationary stochastic process with rational spectral density
Ry, E||S(0)|]* < oo, and

(a) there exists a rational spectral density function R, such that {Rgu,u) <
k §=. Ry(2)[8(A)* dA for all win H (t is the Fourier transform of u,
u(t) = 0 for t ¢ T) and some finite scalar k, with

- Ry(2)

R <

(b) mygerange (R,?).

(4) Hisasin (3), py is induced by a measurable mean-square continuous stationary
stochastic process with a spectral density function, RN, and

12 VA0 <o ae. dpug(y).
~(4)
Proor. (1) From Lemma 1, v in range (Ry}) = g,y ~ tn-
(2) Let {4,}, {e,} be the nonzero eigenvalues and an associated set of or-
thonormal eigenvectors of R,. Then

v (S(@), €,)° _ <y [(Rse,, €,) | (mg, e,
B2 A - Z‘{ A + A }

n n n

and (2) follows, since S(w) € range (R,*) almost surely.
(3) According to Hajek [7],

= R

Ry(2)

di < oo

implies that R, = R,*WR,}, W trace-class. By Lemma 2, the condition
(Rsu, uy < k §=, Ry(2)|6(4)[* d implies that range (Rs*) C range (R,}), and this
last condition implies (Lemma 2) that R¢¢ = R3*G for G bounded; while the
representation R, = R,!WR,* with W trace-class implies R;} = R,*Q, Q Hilbert—
Schmidt. Hence Ry = R,*QGG*Q*R,*, and QGG*Q* is trace-class, so that (3)
follows from (2).

(4) The integrability condition implies [9] that v e range (R,?) a.e. dug(v).
To see this, note that by Lemma 2, v is in range (R,?) if and only if there exists
a finite scalar k such that (v, u)* < k(Ryu, u), alluin H. The condition given
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in (4) implies that
s < (= VAP yror
v,u)? < S““’R—(Z)d {Ryu, u) a.e. dugv),
N
so that v e range (R,?) a.e. dug(v).

Kadota and Shepp [8] have proved part (1) of the above corollary for H =
L,0, 5], b < oo, under the additional assumptions that x, has continuous
covariance function and R, is strictly positive definite. An inspection of their
proof shows that it requires the additional hypothesis that (S, 4+ N,) is con-
tinuous in probability. Part (1) of the corollary was previously stated for pg, y
absolutely continuous with respect to py (¢s,y € py) by Pitcher [12].

The proof of Theorem 1 also yields the following result: If g,y < py a.e.
dps(x), then g, v < pys if py € pxiy 2-€. dpg(X), then py < g,y

In most practical signal detection problems, one can assume the presence of
an additive component in the noise process (N) that is Gaussian, stationary,
zero-mean, and independent of the remainder of the noise and of the signal pro-
cess (S). Moreover, this component has a spectral density function that is con-
stant out to a “very high frequency.” This process, due to thermal noise in
electronic equipment, is commonly called “white noise,” and one can show
formally that orthogonality is impossible when the “very high frequency” is
assumed to be infinite. Parts (3) and (4) of the above corollary give mathe-
matical meaning to this result. The result given in (4) has previously been used
by Root ([16] Chapter 20) to conclude that orthogonality is impossible when
white noise is present and the signal process consists of a single (known) function.

Theorem 1 is stated for translates of measures on a real separable Hilbert space,
H. This is the most useful form, since for a Gaussian measure # on H necessary
and sufficient conditions for equivalence of x to a translate of x are wellknown.
However, inspection of the definitions and the proof shows that Theorem 1 holds
for any pair of probability spaces (X, 8, 1), (Y, &, py), and any B x F | F
measurable function f;i.e., (15 ® py) o [ ~ py if py o i ~ py a.e. duy(x),
where f,(y) = f(X,¥)-

5. Dependent S, N. When the assumption that pg , = u#s ® gy is not valid,
the equivalence of f,, and p, is not implied by p,,y ~ gy a.e. dug(v). Asa
counter-example, suppose that y, is Gaussian and that S(w) = kR,"?N(w), for
p a positive integer and some scalar k.’ S is then Gaussian, and for p = 1 or 2,
S(w) € range (R,"?) a.e. dP(w), implying p,, y ~ pya.e. dug(v). Onehas Ry, , =
RK*R,¥? + 2kRyY? 4 IRy, From Lemma 1 and Lemma 2, pg, , | py if
and only if k°R,*? + 2kR,"* 4 I has zero as an eigenvalue; this will occur if
and only if k = —2,7"/» for some nonzero eigenvalue 4; of R,. As a specific
example, pg, v | py if His L,[0, 1], py is Wiener measure, and

S @) = —((2n + 1)*/4)7* §i §, Ny(@) dvdu = —((2n + 1)/4)z[Ry N](o) ,

for any integer n.
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6. Dependent S, N; Gaussian measures. In this section, it is assumed that g, xg,
and yg, v are Gaussian. As previously noted, this implies the existence of co-
variance operators Ry, Rg, and R, , and mean elements m,, mg, and mg, ,; we
assume |lmy|| = 0. Let p,, denote the Gaussian measure defined by

/*‘(S+N)(A) = Sf-l(A) dps ® Uy for Ael

(f(u, v) =u + v). g,y has covariance operator Ry + R, and mean element
mg. Finally, we assume that the range of R, is dense in H; in cases where this
is not satisfied, one can obtain the results given in this section by defining H to
be the closure of range (R,). We proceed to obtain some new sufficient con-
ditions for equivalence of pg, , and p,.

LEMMA 3. Suppose pg{range (R,*)} = 1. Then Ry = R,}*WR,} for a covariance
operator W, and mg € range (R,}).

Proor. By the Corollary to Theorem 1, pgfrange (Ry)} = 1 = pg,n) ~ fn;
from Lemma 1 this implies Ry = R,*WR,*}, W Hilbert-Schmidt, and mg e
range (R,?). Let g = R, *m;.

Since pg is Gaussian, (S, u) is a Gaussian random variable for all ue H.
Define Y: Q — H by

Y(0) = Ry~tS(w) for S(w) e range (R,)
=0 for S(w) ¢ range (R,).

Forany 4eT’, R}{A] = {x:x = Rytuforue A} is an element of T, since R,
is one-to-one [11]. Moreover, Y-{(A4) = {0: S(w) e Ry}[A]} if 0e 4; if Oc 4,
then Y-Y(A) = {0: S(») € R,}[4]} U {0: S(v) ¢ range (Ry})}. In either case,
Y~i(4) e B, so that Y is B/T' measurable and thus induces from P a measure g,
on (H,TI'). For any u in H we show that (Y, u) is a Gaussian random variable;
first, note that there exists {u,} such that R,tu, — u. Using Rg = R AWR}, W
bounded, and mg; = R,!g, one has that (S, u,> — (Y, u) almost surely and in
Ly(Q, 8, P). Hence (Y, u) in a Gaussian rv for all u in H, p, is Gaussian with
covariance operator R, and mean element m,, Ry = R,*R, R}, and mg = R yimy.

THEOREM 2. If ps{range (Ry})} = 1, then pg,  ~ p, if and only if range (RY, ) O
range (R,?).

PROOF. pgrange (Ryt)] = 1 implies, by Lemma 3, that mg € range (R, )
and Ry = R,*WR,}, W trace-class. From Lemma I, Usiy ~ py if and only
if Rg,y = Ry} + Q)R,*, where Q is Hilbert-Schmidt and does not have
—1 as an eigenvalue. Ry = R,}*WR,* implies Rg¢ = R,*G, G Hilbert-Schmidt;
hence

Rs.n = Rs + Rsy + Rys + Ry = RN’![W + GV + V*G* + I]RN% >

W + GV 4 V*G* is Hilbert-Schmidt, so that +x ~ py if and only if Z does

where V' is an operator of norm < 1 satisfying Ry, = RgVR,} [2]. Now Z =
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not have —1 as an eigenvalue. From Lemma 2, this is precisely the condition
for range (R, ,) D range (R,?).

The results summarized in Lemma 2 can be used to determine whether
range (Ryt) C range (RY,,), and thus pg,, ~ p,, whenever p;, , ~ p, a.e.
dpg(v). The following corollary gives two additional conditions for g, , ~ py-

COROLLARY. pi5,y ~py if pg{range (Ry*)} = 1 and either of the two following
conditions is satisfied:

(@) There exists no non-null w in H satisfying GG*u = V*Vu = —GVu =
—V*G*u = u, where G, V are operators satisfying R¢t = R,*G, Rgy = R} VR,H,
[IVI] = 1 (this condition is also necessary for pg,y ~ tty).

(b) There exists a scalar k < 1 such that for all u in H, either

(Rsu,u) < k{Ryu,u) or (Rsyu, u)? < k{Rgu, up{Ryu, u) .

Proor. (a) From the theorem, it is sufficient to show that the stated con-
dition is necessary and sufficient for range (R}, ) D range (R,), or, by Lemma
2, for (I + GG* + GV + V*G*)ju = 0 to imply |ju|| = 0. If ( + GG* + GV +
V*G*)u = 0, then |[u|* + ||G*u|]* + 2{G*u, Vu) = 0. The LHS of this last
equality is Z [jul]* + ||G*ull* — 2||G*ul| || V| = [} + [|G*u]* — 2]|G*ul|[ju]| =
(Il — [|G*u][)* = O, with equality throughout if and onmly if G*u = — Vu
and [|G*ul| = |ju]|. Further, [jul* + [|G*ull* + 2(G*u, Vu) = [ju|f* + [|G*u]} —
2/|V*Gul[[jul| = [lulP + [|G*ul}* — 2||G*ul| |lu]| = (fu]] — [|G*ul)y: = 0, with

equality throughout if and only if ||G*u|| = |ju|| and V*G*u = —u. Hence,
if G*u = —Vu and V*G*u = —u only for u = 0, range (R}, ,) D range (R,?).
It is clear that V*G*u = —u and G*u = —Vu together imply (I + GG* +

GV 4 V*G*)u = 0, so that the condition is also necessary for range (R§+N) o)
range (R,1).
(b) The conditions given in (b) are obvious consequences of (a).

REMARK. The usual conditions that one must verify in order to show p, ~
Vs are (from Lemma 1 and Lemma 2) (a) range (R}, ;) = range (R,}), (b) mg e
range (Ry?), and (c) R, R,, yR,~* — I has a bounded extension to H which is
Hilbert-Schmidt. The significance of Theorem 2 is that conditions (b) and (c)
need not be verified if one knows that gg[range (R,*)] = 1. Moreover, one need
not prove that range (R%, y) C range (R,*). The proof that us[range (R )] =1
can often be made by examining the S sample functions, and this can be a great
deal easier than proving that range (R, y) Crange (R,*)and that R, 'Ry, y R, —1I
has a Hilbert-Schmidt extension.

Finally, we note that if yg[range (R,*)] = 1, then one has g,y ~ z for all
real scalars a except those in a countable set .o, .97, which can be empty,
consists of those scalars « such that a’GG*u = —aGVu = —aV*G*u = u for
some non-null win H, where G and ¥ are as defined in Theorem 2. The possible
limit points of .9 are +oco. This follows from (a) of the Corollary and the
fact that G is compact.
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7. Examples. Suppose that H is L,[0, b], b < co, and that p, is Gaussian
with null mean function and covariance function defined as follows:

(1) Ry(t, s) = min (¢, s);

(2) Ry(t,s) = b — max (1, 5);

(3) Ry(t,s) =b — |t — 55

(4) R(t,s) =el=*l a > 0;

(5) Ry(t, s) = §=..e**~2R(2) dA, where R is a rational spectral density func-
tion with denominator of degree exactly two greater than the degree of the
numerator;

(6) Ry(t,5) = Ry(t, s) + V4 §s K(u, v) du dv, where K(u, v) is a product-measur-
able function satisfying §} §¢ K*(u, v) dudv < oo, §$u, §} K(¢, s)ju,dsdt > 0 for
all w in L0, &], K(u, v) = K(v, ) for u, v in [0, 8], and R(t, s) is any one of
the functions defined in (1)~(5).

Suppose that y is induced by the stochastic process (S,) defined by

(@) Sy(@) = i Y,(@)ds
(b) S(w) = §; Y,(w)ds, or
(€) S(®) = ¢(®) + §i Y,(w)ds, all ¢ in [0, 5],

where in (a), (b) and (c) (Y,) is a measurable stochastic process with sample
functions almost surely in L,[0, b]. c is an a.s. finite random variable.

Assume that one of the following two conditions is satisfied: (A) Sand N are
independent; (B) xs and p, v are Gaussian, and the extensions of R, *RgR, %,
—Ry*RysRy* and —R, *Ryy R,~* do not have a common eigenvector cor-
responding to the eigenvalue 1. One then has the following results:

I. For S defined as in (a), N defined by (1), (3), (4), (5), or (6), with R,
defined for i = 1,3,4 or 5, pg,y ~ ty-
II. For S defined as in (b), N defined by (2)-(6), with R, defined for i =
2,3,40r 5, pgn ~ ty- )
II. For S defined as in (c), N defined by (3)-(6), with R, defined for i =
3,40r5, ps,x ~ pty-

These results are unchanged if any of the N covariance functions are multiplied
by a positive real scalar. (The result given in I for the Wiener process (covari-
ance function R,) corresponding to assumption a is well known [17].)

To obtain the preceding results, let R; denote the integral operator with kernel
R(t, s). The range space of R;* can be described as follows [3]:

(1) R} has range containing all absolutely continuous functions on [0, 5]
that vanish at 0 and have L,[0, 5] derivative.

(2’) Range (R,}) contains all absolutely continuous functions on [0, b] that
vanish at b and have L,[0, 5] derivative.

(3'-5") R}, R} and R} have the same range; their range space contains all
absolutely continuous functions on [0, ] having L,[0, 5] derivative.
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(6’) Range (Rst) = range (R;}) wheni =1, 3,4 or 5; for i = 2, range (R¢}) C
range (R.?).

The results stated in I-III now follow directly from the corollaries to the two
theorems. ’

Suppose that R, is as defined above, except now the integral operator K having
K(t, 5) as kernel may be negative. If I 4+ K is positive, then R, is still a covari-
ance operator for i = 1 and 3. If I 4 K is strictly positive, then the results
stated under I, II and III above remain valid for R, defined by these two ker-
nels. One obtains this by noting that 7 + K strictly positive implies range (Rs!) =
range (R;}) fori = 1 and i = 3 [3].
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