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RECORD VALUES AND MAXIMA

By SiDNEY I. RESNICK ,
Stanford University

{Xn, n = 1} are i.i.d. random variables with continuous df F(x). X; is
a record value of this sequence if X; > max {X;, ---, X;—1}. We compare
the behavior of the sequence of record values {X; L,} With that of the sample
maxima {M,} = {max (Xi, ---, X»)}. Conditions for the relative stability
(a.s. and i.p.) of {X1,} are given and in each case these conditions imply
the relative stability of {M,}. In particular regular variation of R(x) =
—log (1 — F(x)) is an easily verified condition which insures a.s. stability
of {Xz,}, {Mn} and {¥7_, M;}. Concerning limit laws, X L, May converge
in dlstrlbutlon w1thout {M,} having a limit distribution and vice versa.
Suitable differentiability conditions on F(x) insure that both sequences
have a limit distribution.

1. Introduction and preliminaries. Let{X,,n > 1} be asequence of independent,
identically distributed (i.i.d.) random variables with common distribution F(.).
X, is a record value of this sequence iff X; > max {X,, - .., X,;_}. By convention
X, isarecord value. The indices at which record values occur are given by the
random variables {L,, n = 0} defined by L, =1, L, =min{j|j > L,_,, X; >
X;,_,}. We assume throughout that F(.) is continuous in order to be able to
use nonparametric techniques in our analysis.

The emphasis of this paper is on the relationships of the {X, } sequence to the
sequence of maxima {M,} where M, = max {X,, - -, X,}. These relationships are
weaker than expected, even though {X; } is an embedded subsequence of {M,}.

A sequence of random variables {Z,} is relatively stable (henceforth just stable)
if there exist normalizing constants {B,} such that Z,/B, — 1 as n — co. If the
convergence is with probability 1 then {Z,} is almost surely (a.s.) stable while if
the convergence is in measure we say {Z,} is stable in probability (i.p.).

In the following sections we determine stability conditions for {X ,}> {M,} and
{223-1 M;} and show {X, } stable implies {M,} stable but not the reverse. The
approach is to reduce questions about extremes to questions about sums of i.i.d.
random variables. In the last section we discuss the relationship between the
existence of limit laws for {M,} and existence of limit laws for {X L)

A central role will be played by R(x) = —log(l — F(x)) and its inverse
R~(x) = inf {y | R(y) > x}. Both R and R-' are non-decreasing; R maps [ — oo,
oo]onto [0, co]. If y = R(x) then we have R~%(y—) < x < R™Y(y), but for con-
venience we shall simply write x = R7}(y). The asymptotics we deal with will
be unaffected by this convention.
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This significant property of R(x) is that if a random variable X has distribution
F(x), then R(X) is exponentially distributed: P[R(X) < x] = 1 — e~* for x > 0.
The following basic lemma was presented in [16]:

LemMA 1. {X,,n = 1} is ani.i.d. sequence with P[X, < x] =1'—e™*, x = 0.
Then X, = Xpy+ 25 (X, — X, )= 250 Y; where {Y,,j = 0} is an i.i.d.
sequence distributed according to the same exponential distribution.

This lemma and the fact that R is non-decreasing and continuous lead to the
following representations:

(1) R(Xp,) =250 X =R, Y))

where (Y, j = 0} are i.i.d. exponentially distributed random variables.

It is convenient to define the right end x, of a distribution function F(x) as
X, = sup {x| F(x) < 1}.

To every distribution function F(x) corresponds the associated distribution
F@(x) defined to be that distribution whose R-function is R#(x). Formally:
1 — Fox) = e ™ for —oo < x < oo.

The theory of {imit laws for record values is closely related to extreme value
theory (see [16]). The following is pertinent: Let {X,, n = 1} be i.i.d. with
common distribution F(x). If there exist normalizing constants «, > 0, 8,
such that

2) Pla,™ (M, — §,) < x] = F*(a,x + B,) =, G(x)

where G is nondegenerate, then G belongs to the type of one of the three extreme
value distributions [2], [10]:

A(x) = exp{—e7} —o0 < x < o0
¢ (x)=0 if x<o0,
= exp{—x~*} if x=0;
T (x) = exp{—{—x)7} if x<0,
=1 if x=0

where « is a positive constant. Abbreviate (2) by F e DM(G) which indicates
that normalized maxima from F converge in distribution to G.

Similarly {X; } has limiting record value distribution H(-) if normalizing con-
stants @, > 0, b, exist such that

3) PIX,, < a,x + b,]—, H(x)

where H is nondegenerate. Write R € DR(H) to indicate weak convergence of
the record values to H. In [16] it was proved that the limiting record value
distributions are of the form N(—log(—log G(x))) where N is the standard
normal distribution and G is an extreme value distribution. Further R(x)e
DR(N(—log (—log G(x))) iff the associated distribution F'®(x) e DM(G(x)).

The equivalence between record value behavior of a distribution and extreme
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value behavior of the associated distribution is valid also for stability i.p. but
breaks down for a.s. stability.

2. Stability in probability. In this and the following section we assume F has
infinite right end. In the contrary case when x, < co we have M, — x,a.s. and
X L, > Xo a.8.

It is well known ([2], [10]) that {M,} is stable i.p. iff 1 — F(x) is rapidly varying:
@) lim, .. (1 — F(tx)/(1 — F(x)) = 0
for all + > 1. In this case it is always true that M,/R-'(log n) —, 1.

THEOREM 1. The following are equivalent:

(i) There exist B, > 0 such that X; |B, —, 1.
(i) X /R (n) —p L.

(iii) lim,_, {R(tx) — R(x)}/R¥(tx) = oo forall t > 1.

(iv) lim,_, {R(tx) — R(x)}/R¥(x) = oo forall t > 1.

Proor. The equivalence of (i), (ii), (iii) was proven in [16], Theorem 2.1 and
obviously (iii) implies (iv). Given (iv) suppose (iii) does not hold. Then there
exist £ > 1, x, — oo and ¢ < oo such that lim,_ {R(tx,) — R(x,)}/R¥(tx,) = c.
This with (iv) entails lim,_,_, R(x,)/R(tx,) = 0 so that

{R(tx,) — R(x,)}/R¥(tx,) = {R¥(x,) — RA(x,){R¥(tx,) + R¥(x,)}/R¥(1x,)
= (I — o(1)){R¥(tx,) + R¥(x,)} — oo
as n — co which gives a contradiction. This completes the proof.
THEOREM 2. {X } is stable i.p. iff maxima of i.i.d. random variables distributed

according to the associated distribution F'®(x) are stable i.p.; i.e., iff 1 — F'®(x) is
rapidly varying.

Proor. From (iii) of Theorem 1 we have:
oo « {R(tx) — R(x)}/R¥(tx) = {R¥(tx) — R¥(x)H{R¥(1x) 4+ Ri(x)}/R¥(tx) .

Since the second factor is bounded by 2, we must have R¥(fx) — R¥(x) — oo
as x — oo for all + > 1. This is equivalent to F'® satisfying (4). The converse
is almost the same.

CoroLLARY 1. {X } is stable i.p. iff R~*((log x)*) is slowly varying iff R~*(x +
cxt) ~ R7Y(x) as x — oo for all real c.

Proor. A distribution H satisfies (5) iff H=*(1 — x~?) is slowly varying ([2]),
so {X, } is stable iff F'*(x) satisfies (4) iff (R?)~'(log x) = R~((log x)?) is slowly
varying. The second statement of the corollary follows by a change of variable.

TreOREM 3. X, [R™Y(n) —, 1 implies M,/R-*(logn) —, 1, but the converse is
not true.
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Proor. If {X; } isstable i.p. then Theorem 1 (iv) holds, which entails R(tx) —
R(x) — oo as x — oo for all ¢+ > 1. This is equivalent to the rapid variation of
1 — F(x).

As a counterexample to the converse consider R(x) = (log x)?>, x > 1. Then
R7Y(log y) = exp{(log y)}} is slowly varying so that {M,} is stable i.p., but
R~*((log y)*) = y is not slowly varying. Hence {X,,} fails to be stable i.p.

3. Almost sure stability. In discussing a.s. stability of {X, }, it is clear from
Theorem 1 that we need consider no other normalizing constants except {R='(n)}.
For what follows it is convenient to set Z, = (3., Y, — n)/(2nlog log n)}
where {Y;, j = 0} are the i.i.d. exponentially distributed random variables of
representation (1). It follows by the Law of the Iterated Logarithm [12] that

almost surely:

3) limsup,_ . Z, =1, liminf,_,Z, = —1.

Nn—>00 n

THEOREM 4. A sufficient condition for lim,_,, X; [R7(n) = 1 a.s. is:
6) Forall real t: lim,, R7'(s 4 #(sloglog s)})/R~Y(s) = 1.

REMARKS CONCERNING CONDITION (6). Note first that the convergence in (6)
is uniform on finite ¢ intervals. By the inversion technique described in [6] (see
also [2], [4]), (6) is fully equivalent to the more easily verified condition:

(7) Vx> 1: lim,., {R(x) — R(1)}/(2R(?) log log R(f))} = o .

It is clear that (7) implies Theorem 1 (iii), so either (6) or (7) is sufficient for
X, /R (n) —p1. Note if R~ is regularly varying with exponent @, 0 < a < oo
(equivalent to R regularly varying with exponent a~! via [2]), then (6) or (7) is
satisfied.

Proor oF THEOREM 4. Keeping in mind the uniform convergence in (6), we
have:
lim,_, X; /R™(n) = lim,_, R7(X 7, Y;)/R7*(n)
= lim,_, R(n + Z,(2nloglog n)})/R~*(n)
=1 as.

where the first equality follows by (1), the second by the definition of Z, and
the last by (5).

REMARKS. (i) Condition (6) is sufficient but not necessary for a.s. stability.
A counterexample has been constructed by A. A. Balkema and will appear
elsewhere.

(ii) Almost sure stability will not hold if for all x:

lim,_,, R7(t + x(2tlog log 1)})/RY(1) = e** 0<c=Z .
See [6].

(iif) Added information about how close (6) is to a necessary and sufficient
condition is provided by the following reasoning: For any continuous distribution
X, JR7(n) = R™Y(n + Z,(2nlog log n)*)/R~*(n) so that lim sup,_., X; /R7}(n) = 1
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a.s. and lim inf, ., X, /R7(n) < 1 a.s. Hence stability is equivalent to
0= P[X, = (Il 4+ ¢)R7(n) i.0.] = P[X, < (1 —¢)R7Y(n) i.0.],
for all ¢ > 0, which from (1) is the same as:
®)  P[SiY; 2 R(1 + )R7(n + 1)) i0.]
= P[3",Y; < R(1 — )R} (n)) i.0.] =0.

We wish to apply Feller’s general form of the law of the iterated logarithm [7],
but to do this we must suppose the following monotone convergences:

) lim, ... T {R(1x) — R(x)}/R¥(1x) = oo

(10) lim, .. 1 {R(x) — R(x)}/RHx) = oo

for all + > 1 (cf. Theorem 3). Supposing (9) and (10), (8) is equivalent to the
convergence of two series which in turn can be shown equivalent to the con-
vergence of two integrals. The convergence of the integral corresponding to
lim inf, ., X; /R7}(n) = 1 necessitates convergence of the integral corresponding
to lim sup, ., X, /R7(n) < 1. The result is that under (9) and (10) a.s. stability
of {X, } is equivalent to

(11) Ve>0: (= R(y) — R((1 — ¢)y)

- R¥(y)
1 /R(y) — R((1 — ¢ 2
xexp{—?< ) R*((ﬁz) )y)>}d10gR(y)<oo.

However, in the presence of (9) it can be proven that (11) and (6) are equivalent,
which leads to:

PROPOSITION 1. In the presence of (9) and (10) a necessary and sufficient condition
for X JR7(n) — 1 a.s. is (6).

The possibility of other limit points besides 1 for {X; /R~*(n)}is discussed in [6].

For what follows we need the following result [1], [17]: Suppose F(x) < 1 for
all x. Then there exist normalizing constraints ,, n > 1 such that M, /b, — 1
a.s. iff

(12) Forall 0<e<1: (1 — F(1 — ¢)x))'dF(x) < oo.
In this case b, ~ R-'(logn), n — oo.
THEOREM 5. Condition (6) is also sufficient for lim,_., M,/R7'(logn) = 1 a.s.

PrOOF. Let p(n) be the number of record values in {X;, - - -, X,} so that M, =
X1, Aniterated logarithm theorem holds for x(n) (see [14]) and this gives the
representation y(n) = log n + Z,*(2 log nlog log log n)* where limsup, ., Z,* = 1,
liminf _, Z,* = —1, a.s. Hence

M,[R-(log n) = {X,,, /R (u(m)}{R"u(n))/R"(log m)}
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The first factor converges to 1 a.s. by Theorem 4, and the second factor equals
R-Ylogn + Z,*(2 log nlog log log n)})/R~*(log n) which converges to 1 via (6).

REMARK. When (9) and (10) hold, we have by Proposition 1 that
lim,_., X, /R n) =1 as.=lim, ,M,/R(logn) =1 a.s.

ExaMPLES. (i) Let R(x) = (log x)?’, x = e. In Theorem 3 we showed that X,
coming from this R-function are not stable i.p. Hence {X, } is not a.s. stable.
However, (12) reduces to a convergent gamma integral and hence {M,} is a.s.
stable.

(ii) Let N(x) be the standard normal distribution with density n(x) =
(27)~te~**2. Then as is well known: 1 — N(x) ~ n(x)/x as x — co, which entails
R(x) = —log (1 — F(x)) ~ —logn(x) + log x ~ 4x*as x — oo so that R is regu-
larly varying exponent 2. Hence (5) is satisfied, and since R~(x) ~ (2x)? as
x — oo, we have a.s.:

lim,_., X, /(2n)t =1, lim,_, M,/(2logn)t = 1.
The close relationship between record values from the distribution F(x) and
maxima from the associated distribution F“(x) which was shown to hold for

limit laws and stability, now breaks down:

THEOREM 6. Under condition (9) if maxima from F'®(x) = 1 — exp{— R¥(x)}
are a.s. stable, then record values from F(x) =1 — exp{—R(x)} are a.s. stable.
The converse is false.

Proor. According to (12), a.s. stability of maxima from F*)(x) is equivalent to

Ve, 0<e<l: (= exp{—(R¥y) — R¥(1 — ¢)y))}dR}(y) < = .
To show {X, } a.s. stable, we verify (7). Note, however, that a simple proof by
contradiction argument (similar to the one used in Theorem 1) shows that (7) is
equivalent to
) Vx > 1: lim,_, {R(tx) — R()}/(2R(tx) log log R(1x))} = oo .

Suppose for some x > 1, (7’) is false. Then there exist ¢ > 0, y, 1 oo and a,
0 < a < oo such that:

(13) lim, .. {R(y,) — R((1 — €)yu)}(R(y,) log log R(y,))! = « .
We can and do suppose that the sequenée {y.} is so thin that R(y,_,)/R(y,) — 0.
Set h(y)) = {R(y) — R((1 — €)y}/R}(y) so that from (13) we have

h(y.)/(log 10g R(y,))* — «
and hence
h(y,)/log R¥(y,) — 0.
So for given {, 0 < { < 1, we have for sufficiently large n, n > n, say, that

h(yn) < Clog Ri(y,).
Note that Ri(y) — R¥((1 — ¢)y) < h(y). Hence, keeping in mind that (9) entails
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h(y) non-decreasing, we have:

Zw eXp{—(R(y) — RY((1 — €)y))} dR¥(y)
= {2, exp{—h(y)} dR(y)
= 2ivem Sinht
= Xinoa, e M (RY(, 1) — RY(y,))
Z N, e s RO (RY(y, ) — RY(),))

= v, (R¥ (Y1)t = o0
This proves the first assertion.
REeMARK. This assertion can be proved if instead of (9) one assumes that
lim, ., R7'(s + #(s log log 1)})/R¥(s)
exists for all real 7. The significance of this type of assumption is explained in [6].
To show that the converse in Theorem 6 is false, consider the R-function
R(x) = (log x log log x)*, x = e*. Letting M, be the maxima of i.i.d. random
variables drawn from the associated distribution, we can show: (i) {M, @} stable
i.p.; (il) {M,} not stable a.s.; (iii) {M,} stable a.s.; and (iv) {X.,} stable a.s.
The proof of (i) follows by noting that log(l 4 e)xloglog(l + e)x —
log x log log x — co, which implies 1 — F'*(x) is rapidly varying. The verifica-
tion of (ii) comes from showing the integral in (12) diverges. To prove (iv),
show that (7) holds. This is done most easily by verifying the sufficient condition
(see [6] Theorem 2):
lim,_,., xR'(x)/(R(x) log log R(x))} = oo .
Finally (iv) = (iii) by Theorem 5.
We next consider a.s. stability of {};7_, M,}. Our result is related to a theorem
of Grenander [11] concerning stability i.p. of successive sums of minima from
an i.i.d. sequence. An a.s. version of the Grenander result was later proved by

O. Frank [9]. The author is grateful to Dr. H. Cohn for pointing out these
references.

TueOREM 7. If {M,} is a.s. stable, so is {3%_, M }:
limn—m Z?=1 Mj/ZLl R—‘(log =1 as.
If in addition RY(x) is regularly varying exponent a, 0 < a < oo (equivalently

R(x) is regularly varying exponent a7' via [2], Corollary 1.2.1), then a.s.
lim, . >37_, M;/nR~*(logn) = 1.

Proor. The first assertion follows from the following analytical lemma: If
a, >0, b, > 0 for sufficiently large n, 3} a, = co and lim,_,a,/b, = 1, then
lim,_, 37 ,a;/3%_, b, = 1. For the second result note that if R-! is regularly
varying, then R~}(log x) is slowly varying since log x is slowly varying ([2] page
21). Hence

-1 R7(log j) ~ {1 R~*(log x) dx ~ nR-(log n)

as n — oo via [8] page 281 or [2] page 15.
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The Grenander result does not seem to come from these methods, apparently
due to the impossibility of finding constants b, such that M, — b,—0asn— oo
a.s. (or even i.p.—see [10]) for the case of maxima drawn from a negative ex-
ponential distribution. Instead we obtain the following disjoint result:

THeOREM 7'. X, X,, - - are i.i.d. with common continuous distribution F(x).
Define Z, = min {X,, - - -, X} and Q(x) = —log F(x). Suppose Q~*(x) = x~*L(x)
as x — oo where co > a > 0 and L is slowly varying. Then

@) lim,_. Z, /Q'(logn) =1 a.s., and

(ii) lim, ., 3%, Z;/nQ Y(logn) =1 a.s.

4. Comparison of the domains of attraction of the limiting record value distribu-
tions and the extreme value distributions. When will both {X ..} and {M,} have
limiting distributions? That is, for a distribution F(x) with R-function R(x),
when it is true that F(x) e DM(G(x)), for some extreme value distribution G(x),
and R(x) € DR(H(x)) for some limiting record value distribution H(x).

In this section we will designate the three limiting record value distributions
by N(x), Ny(x) and N,,(x) where N(x) is the standard normal distribution,
Nig(x) = N(—log (—log @,(x))), Ny(x) = N(—log(—log ¥ (x))) where @ (x)
and ¥ ,(x) are the extreme value distributions given after (2).

In the case that {M,} has limit distribution G(x) and {X 1, has limit law H(x)
we will say that the pair (F(x), R(x)) is dually attracted to (G(x), H(x)) and write

(F(x), R(x)) € D(G(x), H(x)) .
THEOREM 8. The only possibilities for dual attraction are:
(F(x), R(x)) € D(A(x), N(x))
(F(x), R(x)) € D(A(x), N1o(x))
(F(x), R(x)) € D(A(X), Nyo(x)) -
Thus a necessary condition for dual attraction is that F(x) € DM(A(x)).
Proor. We use freely the facts obtained from the duality:
R(x) € DR(N(—log (—log G(x)))) iff 1 — e~2') e DM(G(x)) .
Suppose R(x) € DR(N,,(x)). Then ([16] Theorem 4.2) for all t > 1:
lim,_,, {R(tx) — R(x)}/R}(x) = alog ¢t
and hence
lim, ., R(tx) — R(x) = oo .
This precludes 1 — F(x) being regularly varying and thus F(x) ¢ DM(®(x)) for
all @ > 0. Also R(x) e DR(N,,(x)) implies that F(x) < 1 for all x and hence
F(x) ¢ DM(¥ ,(x)) since distributions in the domain of W, (x) must have finite
right end.
The demonstration that R(x)e DR(N,,(x)) implies F(x)g DM(®,(x)) and



658 SIDNEY I. RESNICK

F(x) ¢ DM(¥ ,(x)) is almost the same as the previous case. Now assume R(x) e
DR(N(x)). Then 1 — e=**® ¢ DM(A(x)) which implies if the right end is infinite
that e~#*= is rapidly varying:
e-Ri(zz)/e—th) -0
forall + > 1 as x — oco. By Theorem 2 this means that
lim, ., {R(tx) — R(x)}/R¥x) = oo

for all £ > 1 and this precludes the regular variation of 1 — F(x) so that F(x) ¢
DM(®,(x)) for any a > 0. The remaining cases are disposed of in a similar
manner.

Before continuing we make the following conventions: Let F(x) be a distri-
bution with R-function R(x) and right end x, (x, < o). Suppose the first and
second derivatives of R(x) exist in some neighborhood of x, and are denoted by
r(x) and r'(x) respectively. Then

(i) F(x) is a Von Mises function of type A(x) if ultimately r(x) > 0 and if
(1/r(x))’ — 0 or equivalently if r’'(x)/r}(x) — 0 as x — x,.

(ii) F(x) is a Von Mises function of type @ (x) if x, = oo and there exists « > 0
such that xr(x) —» a as x — oco.

(iii) F(x) is a Von Mises function of type ¥ ,(x) if x, < oo and there exists a« > 0
such that (x, — x)r(x) —» a as x 1 x,.

It is known (see [9] or [2] pages 109-112) that (i), (ii), (iii) are respectively
sufficient for F(x) e DM(A(x)), F(x) e DM(® (x)), F(x) € DM(¥ ,(x)).

Returning to the content of Theorem 8 let us show that the intersection of
the domains of attraction of A(x) and the limiting record value distributions is
indeed nonempty. To do this, consider the class of R-functions given by

R (x) = (g log x>a

for x > eand @ > 0, 8 > 0. Call the corresponding distribution F,(x). Then
the following conditions quickly emerge:

(i) For a > 1, F,(x) is a Von Mises function of type A(x).
(if) For a = 1, Fy(x) is a Von Mises function of type @,,(x). This follows
immediately from the fact that xr,(x) = /2.
(iiiy For a < 1, F,(x) ¢ DM(® (x)) for any y > 0 and F,(x) ¢ DM(A(x)).

The first assertion follows quickly by showing 1 — F,(x) is rapidly varying and
hence not regularly varying. The second assertion can be proven by using the
criterion for attraction to A(x) given in [2] page 76 or [13].

From (i), (ii) and (iii) and the Duality Theorem ([16] Theorem 4.1) we have
the following:

(i) For a > 2, R,(x)e DR(N(x)), F,(x) e DM(A(x)).
(i) For a =2, Ry(x) e DR(Ny(x)), Fy(x) e DM(A(x)).
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(iiiy For 1< a <2, Ry(x) & DR(Ny(x)) for any 7, F.(x) € DM(A(x)),
For 1 < a < 2, R,(x) ¢ DR(N(x)).

(iv) For a =1, R,(x) & DR(N,(x)) for any 7, Fi(x) € DM(CI)M(x))
For a = 1, R,(x) ¢ DR(N(x)).

Thus we see that DM(A(x)) N DR(N(x)) = @, and DM(A(x)) N DR(N,,(x)) # @
for any 8> 0 and by symmetry considerations it is clear that DM(A(x)) n
DR(N,,(x)) # @. Further it is possible that {M,} has a limiting distribution but
not {X, }.

Our most precise results about the overlap of these domains of attraction are
contained in the following:

THEOREM 9. Let F(x) be a distribution with R-function R(x) and associated distri-
bution F¥(x) = 1 — e—Bt@),

(i) If R(x) € DR(N(x)) and F‘(x) is a Von Mises function of type A(x), then
F(x) is a Von Mises function of type A(x) and F(x) € DM(A(x)).
(ii) If R(x)e DR(N,,(x)) and F(x) is a Von Mises function of type D, ,(x),
then F(x) is a Von Mises function of type A(x) and F(x) € DM(A(x)).
(ili) If R(x) € DR(N,,(x)) and F(x) is a Von Mises function of type W, (x),
then F(x) is a Von Mises function of type A(x) and F(x) € DM(A(x)).

Proor. Because of the Duality Theorem ([16] Theorem 4.1) it suffices to show:
If F(x) is a Von Mises function of type A(x), @,(x) or ¥,(x) then I — e BU2) jg
Von Mises of type A(x). To prove this when F(x) is a Von Mises function of
type A(x) note (R¥(x))’ = 2R(x)r(x) and

( 1 >’= r'(x) + 1 —0 as x — oo .
(R*(x))’ 2R(x)r*(x)  2R(x)

In the case that F(x) is a @,(x) type Von Mises function we have r(x) ~ ax™.
Hence r'(x) ~ —ax~? as x — oo ([2] page 23). But:

( 1 >' _ ' i 1
(R¥(x)) 2Rr¥(x)  2R(x)
The second term goes to zero and the first term is asymptotic to

——Q'X_2 = — 1 and 0
2R(x)a*x"* . 2aR(x)

as x — oo. The third case is handled in a similar manner and this completes the
proof.

We have already seen that it is possible for {M,} to have a limiting distribu-
tion but not {X, }. The converse situation can hold as well: It can happen that
R(x) € DR(H(x)), for some limiting record value distribution H(x), but F(x) is
not attracted to any extreme value distribution. Thus Theorem 9 cannot be
extended to all continuous distributions. This is surprising in view of the recent
de Haan-Balkema result [5] which states that if F(x) e DM(A(x)) then F(x) is
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close to a A(x)-type Von Mises function F,(x) in the sense that (1 — F(x))/(1 —
F,(x)) — 1 as x — x, (x, is the right end of F(x)).

The following example by Laurens de Haan shows the possibility that R(x) e
DR(N((x)) but F(x) ¢ DM(A(x)) (and hence by Theorem 8 F(x) is not attracted
to any extreme value distribution). By the Duality Theorem ([16] Theorem 4.1)
it suffices to exhibit a distribution F(x) such that F'@(x) ¢ DM(A(x)) but F(x) ¢
DM{(A(x)). Define F'*(x) by 1 — F®(x) = e~®#= where R¥(x) = x* 4 Lx~tsinx,
x Z 1. Then Ri(x) — xt - 0as x — oo s0 | — F@(x) ~ e=* as x — co. Since
the distribution 1 — e=*! is a Von Mises function of type A(x) we have by tail
equivalence [15] that F'®(x) e DM(A(x)).

Since R(x) = x 4 sin x + (sin? x)/4x and R(x) — (x 4+ sin x) — 0 as x — co we
have that F(x) is tail equivalent to F,(x) = 1 — exp{—(x + sin x)} and F(x)e
DM(A(x)) iff Fy(x)e DM(A(x)). Hence it suffices to show F,(x) ¢ DM(A(x)).
Proceeding by contradiction we have that if F,(x) e DM(A(x)) then there exists
an auxiliary function f(f) = 0 such that

lim,_,, R,(t + xf(1)) — R(t) = x
for all x where R,(f) = —log (1 — Fy(r)). The above relation must hold along
the sequence #, = 2nr where by the periodicity of sin x we have that R,(¢, +
xf(t,)) — Ry(t,) = xf(t,) + sin xf(1,). Take a further subsequence ¢,’ such that

f(t,)) = c€[0, co]. A contradiction is obtained by showing the incompatibility
of the following relations:

R(t," + xf(t,")) — Ry(t,’) — xc + sin xc

Ryt + xf(1.))) — Ry(t)) —> x .
If ¢ = 0 or co the contradiction is clear (interpreting lim, _., xf(z, + sin xf(z,) = oo
for the case ¢ = o0). If 0 < ¢ < oo we have for all x that x = xc 4 sin xc or
sin x¢ = x(1 — ¢) which is not true. This completes the counterexample.

To close this discussion of limit laws we present some results about the shape
of R(x) when R(x) is attracted to some limiting record value distribution.

TueEOREM 10. Suppose R(x) € DR(H(x)) where H(x) is one of the three limiting
record value distributions. Then there exists a type-A(x) Von Mises function F*(x)
with corresponding R-function R*(x) such that

F*(x) e DM(A(x)) and R(x) ~ R*(x)
as x — x, (x, is the right end of the distribution).

Proor. If R(x) € DR(N,,(x)) then by duality we have:

R(x) ~ R*(x) = (izf_ log x>2

(see Remarks following Theorem 4.2, [16]). Tt is quickly checked that this R*(x)
isa Von Mises function of type A(x). Similar techniques prove the result when
R(x) € DR(N,,(x)) so now suppose R(x) € DR(N(x)) and the right end of F(x) is x,.
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Duality shows that F'¥(x) e DM(A(x)) and hence from [5] F'®(x) is tail equiva-
lent to a A(x)-type Von Mises function; i.e., there exist ¢(x), r(x) such that
¢(x) — 1 and r'(x)/r*(x) — 0 as x — oo and

I — F9(x) = ¢(x) exp{— V.. r(t) dt} .
Set R*(x) = ({*. r(f) df)*. Since
Ri(x) = —log (1 — F9(x)) = —logc(x) + (% r(t) dt ~ {2 r(z)dt

we must have
R(x) ~ (§2. r(1) dr)’ = R*(x) .

But 1 — exp{—{*., r(¢) dr} is a Von Mises function of type A(x) and hence by
Theorem 9 so is R*(x). The proof is complete.
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