A NOTE ON EMPIRICAL PROCESSES OF STRONG-MIXING SEQUENCES

BY CHANDRAKANT M. DEO

University of California, Davis

It is shown that a theorem of Bilingsley ((1968) Convergence of Probability Measures, Wiley; Theorem 22.1) about weak convergence of empirical processes of φ -mixing sequences also holds for a class of strong-mixing sequences.

1. Introduction and main theorem. Let $\{\xi_n: -\infty < n < \infty\}$ be a strictly stationary sequence of random variables. Denote by $\mathscr{M}_{-\infty}^k$ and \mathscr{M}_k^∞ the σ -fields generated by random variables $\{\xi_n: n \leq k\}$ and $\{\xi_n: n \geq k\}$ respectively. Let $\varphi_0 = 1$, $\alpha_0 = 1$ and for $n \geq 1$ define

(1.1)
$$\varphi_n = \sup \{ |P(E_2 | E_1) - P(E_2)| : E_1 \in \mathcal{M}_{-\infty}^0, E_2 \in \mathcal{M}_n^{\infty} \}$$

and

(1.2)
$$\alpha_n = \sup\{|P(E_1E_2) - P(E_1)P(E_2)| : E_1 \in \mathcal{M}_{-\infty}^0, E_2 \in \mathcal{M}_n^\infty\}.$$

In the definition of φ_n we are adopting the convention that $P(E_2|E_1)=0$ if $P(E_1)=0$. Clearly $\alpha_n \leq \varphi_n$. If $\varphi_n \to 0$ the sequence $\{\xi_n\}$ is called φ -mixing and if $\alpha_n \to 0$, $\{\xi_n\}$ is called strong-mixing.

Suppose now that $0 \le \xi_0 \le 1$, and ξ_0 has a continuous distribution function F on [0,1]. Let $\{F_n(t): 0 \le t \le 1\}$ be the empirical process for $\xi_1, \xi_2, \dots, \xi_n$, i.e., $F_n(t) = n^{-1} \sum_{i=1}^n I_{[0,t]}(\xi_i)$ where $I_{[0,t]}(\bullet)$ is the indicator function of the interval [0,t]. Normalize $F_n(t)$ as

(1.3)
$$Y_n(t) = n^{\frac{1}{2}}(F_n(t) - F(t)), \qquad 0 \le t \le 1.$$

Then the stochastic process $\{Y_n(t): 0 \le t \le 1\}$ has sample paths in the Skorohod space D[0, 1] of right-continuous functions on [0, 1] with left-limits. For $0 \le t \le 1$, define the function g_t by

$$(1.4) g_t(x) = I_{[0,t]}(x) - F(t).$$

Then Billingsley (1968), Theorem 22.1, has established the following result.

THEOREM (Billingsley). Let ξ_0 have continuous distribution function F with F(0) = 0 and F(1) = 1 and suppose further that $\{\xi_n\}$ satisfies the mixing condition

$$\sum n^2 \varphi_n^{\frac{1}{2}} < \infty.$$

Then the sequence $\{Y_n(t): 0 \le t \le 1\}$ of normalized empirical processes converges

Received October 21, 1972; revised January 15, 1973.

AMS 1970 subject classifications. Primary 60G15, 60F15.

Key words and phrases. weak convergence, empirical processes, strong-mixing sequences.

870

weakly in D[0, 1] to a Gaussian random function $\{Y(t): 0 \le t \le 1\}$ specified by

$$(1.6) E(Y(t)) = 0$$

and

(1.7)
$$E\{Y(s)Y(t)\} = E\{g_{s}(\xi_{0})g_{t}(\xi_{0})\} + \sum_{k=1}^{\infty} E\{g_{s}(\xi_{0})g_{t}(\xi_{k})\} + \sum_{k=1}^{\infty} E\{g_{s}(\xi_{k})g_{t}(\xi_{0})\}.$$

Furthermore, the series in (1.7) converges absolutely and the sample paths of Y are continuous with probability one.

The object of this note is to show that Billingsley's above-mentioned theorem, established for φ -mixing sequences, remains true for some strong-mixing sequences.

THEOREM 1. Billingsley's theorem above remains true if the condition (1.5) is replaced by

(1.8)
$$\sum n^2 \alpha_n^{\frac{1}{2}-\tau} < \infty \quad \text{for some} \quad 0 < \tau < \frac{1}{2}.$$

Section 2 is devoted to the proof of Theorem 1. In Section 3 we give some examples of stationary sequences which satisfy the conditions of Theorem 1 but which are not even φ -mixing. Such sequences, therefore, are not covered by Billingsley's theorem nor Sen's (1971) extension of it.

2. Proof of Theorem 1. We begin with some lemmas for strong-mixing sequences.

Let $||\cdot||_p$ denote the L_p -norm of random variables.

LEMMA 1. (Davydov). Let $\{\xi_n\}$ be a strong-mixing stationary sequence. Let r_1 , r_2 , r_3 be positive numbers such that $r_1^{-1} + r_2^{-1} + r_3^{-1} = 1$. Suppose that X and Y are random variables measurable with respect to the σ -fields $\mathcal{M}_{-\infty}^0$, \mathcal{M}_n^{∞} respectively and assume further that $||X||_{r_1} < \infty$, $||Y||_{r_2} < \infty$. Then

$$|E(XY) - E(X)E(Y)| \le 10\alpha_n^{1/r_3}||X||_{r_1}||Y||_{r_2}.$$

PROOF. This lemma is due to Davydov (1970). The statement on page 492 in [2] however contains a misprint and there is no proof of the lemma given in [2]. We give a proof here for the sake of completeness.

If $\alpha_n=0$ then $\mathscr{M}_{-\infty}^0$, \mathscr{M}_n^∞ are independent and in that case both sides of (2.1) are zero. We assume, therefore, that $\alpha_n>0$. Let $M=\alpha_n^{-1/r_1}||X||_{r_1}$ and $N=\alpha_n^{-1/r_2}||Y||_{r_2}$. Let X_M , Y_N denote X and Y truncated at M and N respectively, i.e., $X_M=XI_{[|X|\leq M]}$ and $Y_N=YI_{[|Y|\leq N]}$, Also write $\hat{X}_M=X-X_M$ and $\hat{Y}_N=Y-Y_N$. We have, then

(2.2)
$$|E(XY) - E(X)E(Y)| = |E\{(X_M + \hat{X}_M)(Y_N + \hat{Y}_N)\} - \{E(X_M) + E(\hat{X}_M)\} \times \{E(Y_N) + E(\hat{Y}_N)\}| \le I + II + III + IV$$

where

$$\begin{split} \mathbf{I} &= |E(X_M Y_N) - E(X_M) E(Y_N)| \; , \\ \mathbf{II} &= |E(X_M \hat{Y}_N) - E(X_M) E(\hat{Y}_N)| \; , \\ \mathbf{III} &= |E(\hat{X}_M Y_N) - E(\hat{X}_M) E(Y_N)| \; , \\ \mathbf{IV} &= |E(\hat{X}_M \hat{Y}_N) - E(\hat{X}_M) E(\hat{Y}_N)| \; . \end{split}$$

Now by Theorem 17.2.1 of [3], we have

$$(2.3) I \leq 4MN\alpha_n = 4\alpha_n^{1/r_3}||X||_{r_1}||Y||_{r_2}.$$

Also it is easy to see that

(2.4)
$$II \leq 2\alpha_n^{1/r_3} ||X||_{r_1} ||Y||_{r_2}.$$

and

(2.5)
$$III \leq 2\alpha_n^{1/r_3}||X||_{r_1}||Y||_{r_2}.$$

To handle IV, let us define r by $r_1^{-1} + r_2^{-1} = r^{-1}$. Then,

$$IV \leq E|\hat{X}_{M}\hat{Y}_{N}| + E|\hat{X}_{M}|E|\hat{Y}_{N}|.$$

Now,

$$\begin{split} E|\hat{X}_{M}\,\hat{Y}_{N}| & \leq M^{-r+1}N^{-r+1}E(|X|^{r}|Y|^{r}) \\ & \leq M^{-r+1}N^{-r+1}||X||_{r_{1}}^{r}||Y||_{r_{2}}^{r}, \quad \text{by H\"older's inequality} \\ & = \alpha_{n}^{1/r_{3}}||X||_{r_{n}}||Y||_{r_{0}}. \end{split}$$

Also it is easy to see that

$$E|\hat{X}_{M}|E|\hat{Y}_{N}| \leq \alpha_{n}^{1/r_{3}}||X||_{r_{1}}||Y||_{r_{2}}.$$

Thus

(2.6)
$$IV \leq 2\alpha_n^{1/r_3}||X||_{r_1}||Y||_{r_2}.$$

The proof of the lemma is now complete from (2.2), (2.3), (2.4), (2.5) and (2.6).

Lemma 2. Let $\{\xi_n\}$ be a stationary, strong-mixing sequence of random variables satisfying

(2.7)
$$E(\xi_0) = 0$$
, $|\xi_0| \leq C \leq \infty$, a.s. and $\sum \alpha_n < \infty$.

Then the series

(2.8)
$$E(\xi_0^2) + 2 \sum_{k=1}^{\infty} E(\xi_0 \xi_k)$$

converges absolutely.

Let σ^2 denote the sum of the series (2.8). Then $0 \le \sigma^2 < \infty$ and $n^{-\frac{1}{2}} \sum_{k=1}^n \xi_k$ has limiting normal distribution with mean 0 and variance σ^2 . [Normal distribution with $\sigma^2 = 0$ is understood to be unit mass at 0.]

PROOF. This is Theorem 18.5.4 of [3]. The case $\sigma^2 = 0$ is handled by noting that if $\sigma^2 = 0$ then $E(S_n^2/n) \to 0$ and so $S_n/n^2 \to 0$ in probability.

LEMMA 3. Let $\{\xi_n\} = \{(\xi_n^{(1)}, \xi_n^{(2)}, \dots, \xi_n^{(d)})\}$ be a stationary, strong-mixing sequence of d-dimensional random vectors satisfying

$$(2.9) \qquad E(\xi_0) = 0 \;, \qquad |\xi_0^{(j)}| \leq C < \infty \quad \text{a.s.,} \quad 1 \leq j \leq d \;, \quad \text{and} \; \; \sum \alpha_n < \infty \;.$$

Then $n^{-\frac{1}{2}} \sum_{k=1}^{n} \xi_k$ has limiting d-dimensional normal distribution with mean 0 and covariances given by

$$\begin{array}{ll} (2.10) & \sigma_{ij} = E\{\xi_0^{(i)}\xi_0^{(j)}\} + \sum_{k=1}^\infty E\{\xi_0^{(i)}\xi_k^{(j)}\} + \sum_{k=1}^\infty E\{\xi_k^{(i)}\xi_0^{(j)}\}\,, \\ & 1 \leq i,j \leq d\,. \end{array}$$
 The series in (2.10) converges absolutely.

Proof. See paragraph 3, page 177 of Billingsley (1968). Lemma 3 follows from Lemma 2 by an application of the Cramér-Wold technique.

The next lemma is basic and is comparable to Lemma 1, page 195 of [1].

LEMMA 4. Let $\{\xi_n\}$ be a stationary, strong-mixing sequence of centered, Bernoulli random variables, i.e., $P\{\xi_0 = 1 - \pi\} = \pi = 1 - P\{\xi_0 = -\pi\}, \ 0 < \pi < 1$. Let $S_n = \sum_{i=1}^n \xi_i$. Furthermore let $\sum n^2 \alpha_n^{\frac{1}{2}-\tau} < \infty$ for some $0 < \tau < \frac{1}{2}$. Then

$$(2.11) E(S_n^4) \le 2400 \{n^2 \pi^{4/\gamma} + n \pi^{2/\gamma}\} [\sum_{k=0}^{\infty} (k+1)^2 \alpha_k^{\frac{1}{2}-\tau}]^2$$

where γ is defined by

(2.12)
$$\gamma = 2(\frac{1}{2} + \tau)^{-1}$$
 or equivalently $2\gamma^{-1} + (\frac{1}{2} - \tau) = 1$.

Proof. Note that $2 < \gamma < 4$ and

$$E|\xi_{\rm 0}|^{\rm r}=\pi(1-\pi)\{(1-\pi)^{\rm r-1}+\pi^{\rm r-1}\}\leqq \pi(1-\pi)\leqq \pi\;.$$

Now following the proof of Lemma 22.1, page 195 of [1],

(2.13)
$$E(S_n^4) \leq 4! \ n \sum |E\{\xi_0 \xi_i \xi_{i+j} \xi_{i+j+k}\}|$$

where the indices satisfy

$$(2.14) i, j, k \ge 0, i+j+k \le n-1.$$

Now by Lemma 1,

$$|E[\xi_{0}(\xi_{i}\xi_{i+j}\xi_{i+j+k})]| \leq 10\alpha_{i}^{\frac{1}{2}-\tau}||\xi_{0}||_{7}||\xi_{i}\xi_{i+j}\xi_{i+j+k}||_{7}$$

$$\leq 10\alpha_{i}^{\frac{1}{2}-\tau}||\xi_{0}||_{7}||\xi_{i}||_{7}$$

$$\leq 10\alpha_{i}^{\frac{1}{2}-\tau}\alpha^{2/\gamma}.$$

Similarly

$$|E[(\xi_0 \xi_i \xi_{i+j}) \xi_{i+j+k}]| \leq 10 \alpha_k^{\frac{1}{2} - \tau} \pi^{2/\gamma}.$$

Using Lemma 1 again.

$$\begin{aligned} (2.17) \qquad |E[(\xi_0 \xi_i)(\xi_{i+j} \xi_{i+j+k})| &\leq |E(\xi_0 \xi_i)| |E(\xi_0 \xi_k)| + 10\alpha_j^{\frac{1}{2}-\tau} ||\xi_0 \xi_i||_{\gamma} ||\xi_0 \xi_k||_{\gamma} \\ &\leq 100\alpha_i^{\frac{1}{2}-\tau} \alpha_k^{\frac{1}{2}-\tau} \pi^{4/\gamma} + 10\alpha_j^{\frac{1}{2}-\tau} \pi^{2/\gamma} \,. \end{aligned}$$

Hence, by (2.13), (2.15), (2.16) and (2.17), we have

(2.18)
$$E(S_n^4) \leq 2400n\{\pi^{4/7} \sum_{i,k \leq j} \alpha_i^{\frac{1}{2}-\tau} \alpha_k^{\frac{1}{2}-\tau} + \pi^{2/7} \sum_{j,k \leq i} \alpha_i^{\frac{1}{2}-\tau}\}$$
 where indices satisfy (2.14).

Now

(2.19)
$$\sum_{i,k \leq j} \alpha_i^{\frac{1}{2}-\tau} \alpha_k^{\frac{1}{2}-\tau} \leq \sum_{j=0}^{n-1} \left[\sum_{i=0}^{\infty} \alpha_i^{\frac{1}{2}-\tau} \right]^2 = n \left[\sum_{i=0}^{\infty} \alpha_i^{\frac{1}{2}-\tau} \right]^2.$$

And

(2.20)
$$\sum_{j,k \leq i} \alpha_i^{\frac{1}{2}-\tau} \leq \sum_{i=0}^{n-1} (i+1)^2 \alpha_i^{\frac{1}{2}-\tau} \leq \sum_{i=0}^{\infty} (i+1)^2 \alpha_i^{\frac{1}{2}-\tau}.$$

Using the bounds (2.19) and (2.20) in (2.18) we get the required result.

OUTLINE OF PROOF OF THEOREM 1. We simply indicate the modifications to be made in the well-written proof of Theorem 22.1 of [1]. Same notation is used.

The first part of the proof which shows that we can, without losing generality, assume that ξ_0 is uniformly distributed on [0, 1] remains unchanged.

The second part of Billingsley's proof shows that the finite-dimensional distributions of $\{Y_n(t)\}$ converge to those of $\{Y(t)\}$. Using our Lemma 3 the same arguments apply here.

It remains to show that given $\varepsilon > 0$, $\eta > 0$, we can find $\delta > 0$, $0 < \delta < 1$ such that $P\{w(Y_n, \delta) \ge \varepsilon\} \le \eta$ for all sufficiently large n.

Applying our Lemma 4 to $\{g_t(\xi_n) - g_s(\xi_n)\}$ we get

$$E\{|\sum_{i=1}^{n} (g_{t}(\xi_{i}) - g_{s}(\xi_{i}))|^{4}\} \leq K_{1}(n^{2}|t - s|^{4/7} + n|t - s|^{2/7})$$

where K_1 depends on the α -sequence only.

Therefore if $\varepsilon < 1$, and $\varepsilon/n \le |t - s|^{2/\gamma}$ we get

(2.12)
$$E\{|Y_n(t) - Y_n(s)|^4\} \le \frac{2K_1}{\varepsilon} |t - s|^{4/\gamma}.$$

Our (2.21) replaces (22.15) of [1].

Now by our (2.21) and Theorem 12.2 of [1] we get

$$(2.22) P\{\max_{i \leq m} |Y_n(s+ip) - Y_n(s)| \geq \lambda\} \leq \frac{K_2}{s^{24}} m^{4/7} p^{4/7}.$$

where K_2 depends only on the α -sequence. This replace (22.16) of [1]. From here to (22.19) of [1] everything remains unchanged. We need to change (22.19) of [1] to

$$\left(\frac{\varepsilon}{n}\right)^{r/2} \le p < \frac{\varepsilon}{n^{\frac{1}{2}}}$$

and (22.20) of [1] then is changed to

$$(2.24) P\{\sup_{s \le t \le s + mp} |Y_n(t) - Y_n(s)| \ge 4\varepsilon\} \le \frac{K_2}{\varepsilon^5} m^{4/7} p^{4/7}.$$

Now choose $1 > \delta > 0$ so that $(K_2/\varepsilon^{-\delta})\delta^{4/\gamma-1} < \eta$. Such a choice of δ is possible because $4/\gamma - 1 > 0$. It then follows that

$$(2.25) P\{\sup_{s \le t \le s+\delta} |Y_n(t) - Y_n(s)| \ge 4\varepsilon\} < \eta\delta,$$

provided there exists a p and an integer m such that (2.23) holds and $mp = \delta$.

But this is equivalent to requiring the existence of an integer m such that $(\delta/\varepsilon)n^{\frac{1}{2}} < m \le (\delta/\varepsilon^{\gamma/2})n^{\gamma/2}$. Since $\gamma > 2$ this is clearly possible for all sufficiently large n. Rest of the proof is same as in [1] and Theorem 1 is completely proven.

3. Examples. In this section we give some examples of stationary sequences to which Theorem 1 applies but which are not φ -mixing.

It is known (see e.g. Theorem 17.3.2 of [3]) that a stationary Gaussian sequence is φ -mixing iff it is *m*-dependent for some *m* and this is the case iff its spectral density $f(\lambda)$ is of the form

(3.1)
$$f(\lambda) = |P(e^{i\lambda})|^2, \qquad -\pi \le \lambda \le \pi$$

where P(z) is a polynomial of a complex variable z.

Let now $\{\xi_n\}$ be a stationary Gaussian sequence with spectral density $f(\lambda)$ such that (i) $f(\lambda) \neq 0$, $-\pi \leq \lambda \leq \pi$ and (ii) $f(\lambda)$ has bounded seventh derivative or more generally has a sixth derivative which satisfies Hölder condition of some order $\beta > 0$. It then follows from Lemma 10.6 of [5] or Theorem 8, page 253 of [4] that the α -sequence defined for $\{\xi_n\}$ as in (1.2) satisfies the condition (1.8). If now, moreover, $f(\lambda)$ is not of the form (3.1) then $\{\xi_n\}$ is strong-mixing satisfying (1.8) but is not φ -mixing. Let now Φ be the cumulative distribution function of the standard normal distribution and let $\{\zeta_n\}$ be a stationary Gaussian sequence which is not φ -mixing but which satisfies (1.8). Define

$$\xi_n = \Phi(\zeta_n), \qquad -\infty < n < \infty.$$

Then $\{\xi_n\}$ is a stationary sequence of random variables which satisfies all the conditions of our Theorem 1 but which is not φ -mixing. This is clear in view of the fact that Φ is one-one so that both $\{\zeta_n\}$ and $\{\xi_n\}$ have the same α -sequence and the same φ -sequence. As a specific example let $\{\zeta_n\}$ be a stationary, Markovian, Gaussian sequence with spectral density

$$f(\lambda) = (1 - p^2)(1 - 2p\cos\lambda + p^2)^{-1}, \quad -\pi \le \lambda \le \pi \text{ and } 0$$

Then $\{\Phi(\zeta_n)\}$ is a stationary sequence of uniformly distributed random variables which is not φ -mixing but to which our Theorem 1 applies.

REFERENCES

- [1] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.
- [2] DAVYDOV, Yu. A. (1970). The invariance principle for stationary processes. Theor. Probability Appl. 15 487-498.
- [3] IBRAGIMOV, I. A. and LINNIK, YU. V. (1971). Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen.
- [4] IBRAGIMOV, I. A. and ROZANOV, YU. A. (1970). Gaussian Stochastic Processes. Izdatelstvo Nauka, Moscow (in Russian).
- [5] ROZANOV, YU. A. (1967). Stationary Random Processes. Holden-Day, San Francisco.
- [6] Sen, P. K. (1971). A note on weak convergence of empirical processes for φ-mixing random variables. Ann. Math. Statist. 42 2131-2134.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA DAVIS, CALIFORNIA 95616