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A NOTE ON EMPIRICAL PROCESSES OF
STRONG-MIXING SEQUENCES

By CHANDRAKANT M. DEO
University of California, Davis

It is shown that a theorem of Bilingsley ((1968) Convergence of Proba-
bility Measures, Wiley; Theorem 22.1) about weak convergence of empirical
processes of ¢-mixing sequences also holds for a class of strong-mixing
sequences.

1. Introduction and main theorem. Let {£,: —oo < n < oo} be a strictly
stationary sequence of random variables. Denote by _*, and _#,* the o-fields
generated by random variables {§,: n < k} and {§,: n = k} respectively. Let
¢, =1, @y, = 1 and for n = 1 define

(1.1) ¢, = sup{|P(E,| E,) — P(E,)|: E, e A, E;e #,7}
and
(1.2) a, = sup {|P(E,E,) — P(E,)P(E,)|: E, € A", E,e #,}.

In the definition of ¢, we are adopting the convention that P(E,|E;) = 0 if
P(E) = 0. Clearly a, < ¢,. If ¢, — 0 the sequence {£,} is called ¢-mixing and
if @, — 0, {§,} is called strong-mixing.

Suppose now that 0 < &, < 1, and &, has a continuous distribution function
F on [0,1]. Let {F,(f): 0 < r < 1} be the empirical process for &, §,, -- -, &,,
ie., F, () =n 3" I (&) where I, (-) is the indicator function of the
interval [0, f]. Normalize F,(¢) as

(1.3) Y,(f) = nd(F,(t) — F(1)), 0<r<1.

Then the stochastic process {Y,(f): 0 < ¢ < 1} has sample paths in the Skorohod
space D[0, 1] of right-continuous functions on [0, 1] with left-limits. For
0 < r < 1, define the function g, by

(1.4) 9:(%) = Iio,n(x) — F(1) -
Then Billingsley (1968), Theorem 22.1, has established the following result.

THEOREM (Billingsley). Let§&,have continuous distribution function Fwith F(0) =0
and F(1) = 1 and suppose further that {§,} satisfies the mixing condition

(1.5) Sintp,t < oo

Then the sequence {Y,(f): 0 < t < 1} of normalized empirical processes converges
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weakly in D[0, 1] to a Gaussian random function {Y(f): 0 < t < 1} specified by

(1.6) E(Y()) =0
and
(1.7) E{(Y(5)Y(n)} = E{9,(§0)9.(§0)} + =1 E{9.(50)9:(§0)}

+ 251 E{9.(60)9:(60)} -

Furthermore, the series in (1.7) converges absolutely and the sample paths of Y are
continuous with probability one.

The object of this note is to show that Billingsley’s above-mentioned theorem,
established for p-mixingsequences, remains true for some strong-mixing sequences.

THEOREM 1. Billingsley’s theorem above remains true if the condition (1.5) is
replaced by

(1.8) et < o for some 0< 1<%,

Section 2 is devoted to the proof of Theorem 1. In Section 3 we give some
examples of stationary sequences which satisfy the conditions of Theorem 1 but
which are not even ¢-mixing. Such sequences, therefore, are not covered by
Billingsley’s theorem nor Sen’s (1971) extension of it.

2. Proof of Theorem 1. We begin with some lemmas for strong-mixing
sequences.

Let ||+||, denote the L -norm of random variables.

LemMma 1. (Davydov). Let {£,} be a strong-mixing stationary sequence. Let r,,
ry, ry be positive numbers such that r,™* + r,™* ++ r;7t = 1. Suppose that X and Y
are random variables measurable with respect to the o-fields _#7°.,, #, respectively
and assume further that ||X]|, < oo, [|Y][,, < co. Then

(2.1) |E(XY) — E(X)E(Y)| < 10,73/ X], [ Y]], -

Proor. This lemma is due to Davydov (1970). The statement on page 492
in [2] however contains a misprint and there is no proof of the lemma given in
[2]. We give a proof here for the sake of completeness.

If a, = 0 then _Z°,, _#,~ are independent and in that case both sides of
(2.1) are zero. We assume, therefore, that a, > 0. Let M = a,"/"1||X]|, and
N = a,”V1||Y]|,,. Let Xy, Y, denote X and Y truncated at M and N respectively,
ie, Xy = Xlyyzu and Yy = Yly oy, Also write X, = X — X, and ?,, =
Y — Y,. We have, then

|E(XY) — EXO)E(Y)| = |E((Xy + X)(Yy + 1))

(2'2) - {E(XM) + E(‘X}M)} X {E(YN) + E(YN)}l
<T+4+ I+ I+ 1V
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where
I = |E(X, Yy) — E(Xy)E(Yy)|,
= IE(XMYN) - E(XM)E(YN)I ’
T = |E(X,M Yy) — E(X}M)E(YN)l >
Iv = IE(X,M YN) - E(X,M)E(YN)I .
Now by Theorem 17.2.1 of [3], we have

(2.3) I < 4MNa, = 4o, X],,[|Y]l., -
Also it is easy to see that

(2.4) L < 20,78 X][,.[[Y]ly, -

and

(2.5) I < 2a,73|X]|,,|[Y]],, -

To handle IV, let us define r by ;7! + r,7* = r~1. Then,
IV < B, P, + EIX, B2,
Now,
E|X, ¥, < M-*N-"HE(X]"|Y]")
< M—"BN-HX]|7 ||Y]];,, by Holder’s inequality
= a7 | X[, || Y], -
Also it is easy to see that
E\Xy[E|Py| < a2 X]],,|IY]l,, -
Thus
(26) IV < 20,7 X]], || ]l, -
The proof of the lemma is now complete from (2.2), (2.3), (2.4), (2.5) and (2.6).
LEMMA 2. Let {§,} be a stationary, strong-mixing sequence of random variables
satisfying
(2.7) E$,) =0, ] < CZL o0, as. and Ja,<oo.
Then the series l
(2.8) E(€) + 2 X E(6o€s)

converges absolutely.

Let ® denote the sum of the series (2.8). Then 0 < ¢ < oo andn=t 3%_, &, has
limiting normal distribution with mean O and variance ¢*. [Normal distribution with
o = 0 is understood to be unit mass at 0.]

Proor. This is Theorem 18.5.4 of [3]. The case ¢* = 0 is handled by noting
that if ¢ = 0 then E(S,2/n) — 0 and so S,/nt — 0 in probability.
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LemMMA 3. Let {€,} = {(£.©, §,, - - -, £, )} be a stationary, strong-mixing se-
quence of d-dimensional random vectors satisfying

(29 E¢)=0, |49 <C<o as, 1<j<d, and Y a, < oo.

Then n~* 3%_, &, has limiting d-dimensional normal distribution with mean 0 and
covariances given by

(2.10) 0, = E{Eo(i)so(j)} -+ ZI?:I E{eo(i)ek(i)} -} Z;:;I E{&k(i)eo(j)} s
1<ij<d.
The series in (2.10) converges absolutely.
PROOF. See paragraph 3, page 177 of Billingsley (1968). Lemma 3 follows
from Lemma 2 by an application of the Cramér-Wold technique.
The next lemma is basic and is comparable to Lemma 1, page 195 of [1].

LemMA 4. Let {£,} be a stationary, strong-mixing sequence of centered, Bernoulli
random variables, i.e., P{§, =1 —n}=n=1— Pl§,= —a}, 0 <7 < 1. Let
Sp = 211§ Furthermore let 3 n*a,}=* < oo for some 0 < t < L. Then

(2.11) E(S,f) = 2400{n’z"" + nz*T)[ 317, (k + 1)’a,}=°]
where 7 is defined by
(2.12) 7y =24+ )" orequivalently 2y + (3 —7)=1.

Proor. Note that 2 < y < 4 and
Eflr =a(1l —a)}{(l —ay 42} <z(l—n) < 7.
Now following the proof of Lemma 22.1, page 195 of [1],

(2.13) E(S,*) < 4ln 30 |E(§0€:604 i€ in il
where the indices satisfy
(2.14) Lj,k=0, i+j+k<n-—1.

Now by Lemma 1,
[E[Eo(§: 615 €irium)]l = 100 ~7(|E0| [ 1166045 € v sl

(2.15) =< 10a 7€, 1161,

< 10ajptn¥r ,
Similarly

(2.16) |E[(§0€:€: )60 j0a]l < 10a,t-7227
Using Lemma 1 again.
(2.17)  [E[Eo)Ears€irinn)] = [EGENIEESD] + 10a 716160l
=< 100a == n*/r 4 10a-7n?7 .
Hence, by (2.13), (2.15), (2.16) and (2.17), we have
(2.18) E(S,") = 2400n{z*" T, bo; @b a7 4 7T Y5 g b0}
where indices satisfy (2.14). ’
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Now
(2.19) Diesi ot ot < T [N, a7
= Do atT
And
(2.20) Diksi T = N5+ Dt
= N+ et

Using the bounds (2.19) and (2.20) in (2.18) we get the required result.

OUTLINE OF PrOOF OF THEOREM 1. We simply indicate the modifications to
be made in the well-written proof of Theorem 22.1 of [1]. Same notation is used.

The first part of the proof which shows that we can, without losing generality,
assume that &, is uniformly distributed on [0, 1] remains unchanged.

The second part of Billingsley’s proof shows that the finite-dimensional distri-
butions of {Y,(f)} converge to those of {Y(¢)}. Using our Lemma 3 the same
arguments apply here.

It remains to show that given ¢ > 0, » > 0, we can find § >0, 0<d < 1
such that P{w(Y,, ) = ¢} < 7 for all sufficiently large n.

Applying our Lemma 4 to {g,(§,) — g,(§,)} we get

E{| 2= (980 — 9.6 = Ku(w']r — 57 + n[t — s*7)
where K, depends on the a-sequence only.

Therefore if ¢ < 1, and ¢/n < |t — 5|7 we get

2K,

(2.12) E{|Y,(f) = Y, ()"} = =2t — 57

Our (2.21) replaces (22.15) of [1].
Now by our (2.21) and Theorem 12.2 of [1] we get

@222)  Plmaxe, |Yy(s + ip) — Y] 2 2) < 1x miiphe.

where K, depends only on the a-sequence. This replace (22.16) of [1]. From
here to (22.19) of [1] everything remains unchanged. We need to change (22.19)
of [1] to

and (22.20) of [1] then is changed to
(2.24) PlSUPusissrmy | Yolt) = Yo(o)] Z 46} < T2 morpr.

Now choose 1 > d > 0 so that (K,/e7*)0*77* < 7. Such a choice of d is possible
because 4/y — 1 > 0. It then follows that

(2.25) P{SUP,gizars [Ya(r) — Ya(s)| 2 4¢} <99,
provided there exists a p and an integer m such that (2.23) holds and mp = d.
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But this is equivalent to requiring the existence of an integer m such that
(0/e)nt < m < (d/e*)n2. Since y > 2 this is clearly possible for all sufficiently
large n. Rest of the proof is same as in [1] and Theorem 1 is completely proven.

3. Examples. In this section we give some examples of stationary sequences
to which Theorem 1 applies but which are not ¢-mixing.

It is known (see e.g. Theorem 17.3.2 of [3]) that a stationary Gaussian sequence
is p-mixing iff it is m-dependent for some m and this is the case iff its spectral
density f(2) is of the form

CRY fQ2) = |P(e)]*, -z
where P(z) is a polynomial of a complex variable z.

Let now {£,} be a stationary Gaussian sequence with spectral density f(2) such
that (i) f(2) # 0, —7 < 2 < = and (ii) f(1) has bounded seventh derivative or
more generally has a sixth derivative which satisfies Holder condition of some
order 8 > 0. It then follows from Lemma 10.6 of [5] or Theorem 8, page 253
of [4] that the a-sequence defined for {£,} as in (1.2) satisfies the condition (1.8).
If now, moreover, f(4) is not of the form (3.1) then {£,} is strong-mixing satisfying
(1.8) but is not p-mixing. Let now ® be the cumulative distribution function
of the standard normal distribution and let {{,} be a stationary Gaussian sequence
which is not ¢-mixing but which satisfies (1.8). Define

€= 0%, —oo<n< .

Then {£,} is a stationary sequence of random variables which satisfies all the
conditions of our Theorem 1 but which is not ¢-mixing. This is clear in view
of the fact that @ is one-one so that both {{,} and {£,} have the same a-sequence
and the same g¢-sequence. As a specific example let {{,} be a stationary,
Markovian, Gaussian sequence with spectral density

fA =0 —=p)1 —2pcosi+p)t, —r<i<zand 0<p<I.

Then {®({,)} is a stationary sequence of uniformly distributed random variables
which is not ¢-mixing but to which our Theorem 1 applies.
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