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PROPERTIES OF OPTIMAL EXTENDED-VALUED
STOPPING RULES FOR S, /n? .

By MicHAEL J. KLASS
University of California, Los Angeles

Let Xi, Xz, --- be i.i.d. nondegenerate mean zero random variables
with common distribution function F such that EXi*log* X; < co. Let
Sn=2X1+ -+ + Xa and T be the collection of randomized extended-
valued stopping rules. For fe€ Tw, define E(S:/t) = E(Si/t)l{t<w}. There
exists ¢ € Teo such that E(S:/c) = supier., E(Ss/t) < co. We wish to deter-
mine whether or not P(r = o) > 0. Let b-1(x) = l/(S;" (y/x)log (y/x) dF(y)).
We find that P(X, = b(n)i.0.) = 1=>P(r < ) =1. As a corollary, if
E(X1")* < co for some a > 1, P(r < o) = 1. Conversely, if P(|Xu| = b(n)
i.0.) =0, then P(r = o) > 0. Moreover, if g(n) / and 3 ;_; g2")! < oo
then P(|X,| = b(n)g(n)i.0.) = 1 = P(r < co) = 1. Examples satisfying these
latter conditions are given. An outgrowth of this work is that for any i.i.d.
sequence {X,} of mean zero random variables and ¢ < %, P(S» = cE|S%|
i.0.) = 1. The importance of this result stems from the fact that we may
also have Sx(log n):/n — — oo in probability (see [15]).

In order to be completely rigorous, a section was included which pro-
vides a useful characterization of the general form of the class of optimal
rules for sequential decision problems.

0. Introduction. Imagine that one is playing a game in which he is allowed
to view sequentially random variables X, X,, - - - which are independent and
identically distributed with common distribution function F and mean zero.
He is allowed to stop viewing at any stage n, based only upon X;, ---, X,, in
which case he is rewarded S,/n, where S, = X, + ... + X,. Should he continue
forever, (he should live so long), he receives zero.

Combining the works of D. L. Burkholder [1], B. J. McCabe and L. A. Shepp
[17], and D. O. Siegmund [20] Theorem 4, it is found that a necessary and
sufficient condition which guarantees that there exist an optimal strategy with
finite expected payoff is that EX,* log* X, < co. Burgess Davis [8], and R. F.
Gundy [12] have obtained similar results. Somewhat prior to these papers,
Y. S. Chow and H. Robbins [3] proved the existence of a unique minimal op-
timal rule for the case in which F concentrates on two points and found that its
form was: stop at the first n such that S,'> a,, where {a,} is a strictly increasing
sequence of positive constants. A. Dvoretzky [11] and H. Teicher and J.
Wolfowitz [24] derived the same results for random variables with finite variance.
A by-product of papers[3], [11], and [24] is that in the cases treated, the minimal
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optimal rule stops with probability one. A recent paper, combining the disser-
tations of M. E. Thompson, A. K. Basu, and W. L. Owen [23] establishes that
for a certain class of random variables with infinite variance (those with a finite
absolute moment of order 8 > 1 whose truncated variance is of dominated
variation of order v > 1), the minimal optimal rule stops with probability one.
Most recently, B. Davis [7] proved the same result under the hypothesis that
the random variables have a finite absolute moment of order 8 > 1. Heretofore,
the question of whether there are nondegenerate distribution functions F for
which an optimal rule has positive probability of never stopping was open. The
intrigue of this problem stems from the fact that S, > 0 infinitely often, so that
if one desires he can alway_s obtain a positive return; so how can the optimal
rule have positive probability of never stopping? In this work, results are ob-
tained which provide a very general criterion for determining whether or not a
given df F gives rise to an optimal rule which stops with probabiiity one. Addi-
tionally, a broad class of random variables is found which yields an optimal
rule with positive probability of not stopping.

The primary results obtained in this paper are predicated upon knowledge of
the form of the optimal rule for sequences

a+S8, a+ a+ S,
nt+1 n+2’ n+k’ ’
where a is a fixed constant, n a nonnegative integer, S, = X, + ... 4+ X,.

Hence, Section 1 has been devoted to a treatment of the existence and nature
of optimal rules for problems of a most general type. The results of Section 1
relating to proving the existence of an optimal rule under assumptions A4, and
A, are drawn from the class notes of T. S. Ferguson. It is believed that Theorem
6 provides a practical means of identifying the form of the class of optimal rules.
Indeed, it proved to be the means of characterizing optimal rules for the problem
at hand. The fact that the minimal semi-optimal rule (see Definition 4) is optimal
should clarify what the author felt was an obscurity in Dvoretzky’s derivation
of the form of the minimal optimal rule on page 488 of [11], beginning with
“The analysis of - -.”.

Assume that F is nondegenerate and that EX;*log* X, < co. As previously
indicated and verified in Section 2, thpre is a strictly increasing sequence of
positive numbers {a,} which characterizes the collection of extended-valued op-
timal stopping variables in the sense that any extended-valued stopping variable
= such that both

@ r=n=S,=a,a.s., and
(b) Pc<7) =1
hold, is optimal, where
T, =1st k: S, > a, if such k& exists

= oo otherwise.
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For a given F as above, either all optimal rules stop with probability one or
they all have positive probability of never stopping, according as P(S, = a, i.0.)
is one or zero. For x > 0, and provided P(X > 1) > 0 for all ¢, the function

/(52 L 10g 2 ar(y))

is a continuous strictly increasing positive function and hence is the functional
inverse of a continuous strictly increasing function 5(x). We find in Section 3
that if P(S, = a,i.0.) = 0, then P(X, = b(n)i.0.) = 0. A corollary establishes
that whenever E(X,*)'** < co for some ¢ > 0, all optimal rules stop with proba-
bility one. The condition P(X, = b(n) i.0.) = 0 is not sufficient to guarantee
that P(S, = a,i.0.) = 0. Some assumptions must be made regarding the negative
part of the X, distribution. We find in Section 4 that P(|X,| = b(n)i.0.) = 0 =
P(|S,| =z a, i.0.) = 0, in which case P(r = o) > 0. In Section 5 it is shown
that if g(n) is an increasing positive function such that y7=_, 1/g(2") < oo, then

P(|X,| = b(n)g(n) i.0.) =1 = P(S, > a, i.0.)=1.

Relations between a,, b(n) and E|S,| can be found in Sections 4 and 7. For
instance, a, > 1E|S,| and if P(S, = a, i.0.) = 0 then 1 < lim inf,__, a,/(b(n)) <
limsup, _...a,/(b(n)) < 8 so that limsup, ., E|S,|/(b(n)) < 32. H. M. Taylor [22],
L. H. Walker [25], and L. A. Shepp [19] have demonstrated that a,/n* tends to
a finite nonzero limit whenever 0 < EX;> < oo, a result which has been extended
by W. L. Owen [18] in case X, is in the domain of normal attraction of a stable
law of order 1 < @ < 2 to the statement that lim,_, a,/n" exists and is finite
and nonzero. The author conjectures that lim, ., a,/E|S,| exists and is a finite
nonzero number provided only that 0 < E|X,[*** < oo for some ¢ > 0. In Section
7 it is shown that under the latter hypothesis, 1 < lim inf, ., a,/E|S,| < co. One
can also show that if P(|X,| = b(n) i.0.) = 0, then lim sup,_., a,/E|S,| = .

In Section 6, a multitude of distributions F is exhibited that have the property
that for 0 < ¢ < 1,

1 = P(S, > cb(n) i.0.) > P(X, > cb(n) i.0.) = 0.

However, in [13] page 259, Feller erroneously claimed that whenever (a) EX, = 0
(b) E|X,|* = oo for some « < 2, and (c) {c,} is a sequence of positive constants
such that for some

>0, SN\ and cﬂ;_e ' then P(S,> ¢, i.0) = P(X, >c, i.0.).

In Sections 8 and 9 it is demonstrated that for « > 4, a = 1, all optimal rules
for §,/n* having finite expected return stop with probability one. In Section 9
it is also proved that for ¢ < 1,

EX, =0 — P(S, = cE|S,| i.0)=1.

This improves the result of C. Stone [21] that P(lim sup,_,, S,/n* = ) = 1.
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1. Existence and nature of the class of optimal extended-valued stopping
rules. Let X, X,, ... be random variables defined on a probability space (Q,
F, ). Let &, be the Borel field generated by X,, ---, X, and an arbitrary
collection of random variables which are independent of X, ,, X, ,, ---. We
assume that &%, ¢ <, ,,. Let &, = \, <Z,.

DerINITION 1. Let ¢ be a random variable defined on (Q, &, &%) which
takes values in {1, 2, ..., co}. If {t = n}e <7, for every n (and consequently
{t = oo} € 7., then t is said to be an extended-valued stopping rule with respect
to the Borel fields <%, - .., &Z,. Let T, be the collection of extended-valued
stopping rules with respect to <7, ..., &..

DeriniTION 2. Given a stopping rule problem with observables X;, X;,- - - and
returns Y, Y,, - .-, Y, where Y, (0) = Y, (X (o), -+, X,(0)) for 0 €Q, an ex-
tended valued stopping rule r is said to be regular if for each n > 1,

1) EY |%)=Y, as. on {r > n}.
Equivalently, 7 is regular if for any n > 1 and any <, -measurable set A Z {r > n},
2) EY 1, = EY,1,.

Thus if 7 is regular, one does not suffer by continuing whenever ¢ instructs

one to do so. The term admissible as used by Chow, Robbins, and Siegmund

[4] page 64, is synonymous with our term regular, which is to be found both in
T. S. Ferguson’s notes and de Groot [9].

DEFINITION 3. <t is strictly regular if for each n > 1 the inequality in (1) is
strict a.s. on {r > n}. Equivalently, ¢ is strictly regular if for each n > 1 and
any <%,-measurable set A C {r > n} such that P(A) > 0, the inequality in ()
is strict.

In what follows, let 4, be the assumption that
(3) Esup,... Y, < oo
and let A4, be the assumption
@) Y, = limsup,_. Y, a.s.

A, will allow us to interchange expectation and summation and when used in
conjunction with 4, will guarantee the existence of an optimal extended-valued
stopping rule. 4, also guarantees that our integrals are well defined.

To avoid trivialities, we always assume

%) A4;: for some teT,, EY,> —oco.

LemMA 1. Assume A,. Lette T, be given such that EY, > —oo. Then 3 strictly
regular ' € T, >

(6) EY, = EY,.

Moreover, if t is not regular, we have strict inequality in (6). Note also that t' < t

= b
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Proor. We define extended-valued stopping rules # and ¢ inductively. For
nz=1,

(7) [th=n={t=nt=nU{t,=nt>nEY,|Z) <Y,
{=n={ZzZnt=nu{'Znt>nEY, Z)Y,}.
Clearly, t,and ¥ € T, and ¢’ < 1, < r. Using the identity {r > n} = {r = n}{r =n}*
for = € T,, one easily derives equivalent definitions of #, and #'; namely, for n > 1,

(7a) h>m={nznt>nEY|Z)=zY,)
{t>n={=nt,>nEY, |Z)>Y,}.
Put &%, = Q. Let A be a <%, -measurable set for some k¥ = 0. Assume P(A) > 0
and A C {¢ > k}.
EIA Yz' - Zk<n§°° El(t'='n)A Yn
= Ek<n§°° El(t’:n)A Y,l
=El,Y,.
If kK = 1, then from (7a), E1,Y, > E1,Y,. Hence ¢ is strictly regular.
Similarly, E1,Y, = E1,Y,. Letk = Oand A = Q. Then EY, = EY, = EY,.
Suppose ¢ is not regular. Then 3k > 13 P{t > k, t, = k} > 0. By (7),
EY, 1 > EY,1

t *{ty=n} = ttity=n} *
For n = k, this inequality is strict. Therefore
EY, =z EY, > EY,.

CoRrOLLARY 1. Assume A, and A,. If e T, and EY, = sup,.,_EY,, then t is
regular.

LemMA 2. Assume A,. Let te T, be regular and let t' ¢ T,, be any rule such that
P(trt <t)=1. Then EY, = EY,..

Proor.
EY, = Ylicnso EY 1 (yiyy
g Zlgnéw EYn 1(2’=n)
= EY, .
LeEMMA 3. Assume A,. Let ' and t" be (strictly) regular extended-valued stopping

rules. Then t = max (¢, t") is also a (strictly) regular extended-valued stopping rule
and

(8) EY, = max (EY,, EY,.) .
Proor.
{t=n={("=nn{"=nhuv{r=nn{t"=n}es,

therefore te T,.
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Let A be a &Z,-measurable set such that P(A) > 0Oand A C {t > n} n {¢' < n}.
EY,1, = EY, 1,(>)= EY,1,.
Similarly, if A  {t > n} 0 {#” < n}, A e <8, and P(A) > 0, then
EY,1, (>)z EY,1,.
Let Ae &z, A = {t > n} n {t'" > n}, P(A) > 0.
EY, 1, 1(t">t’) = Dn<kseo EYy 1{t">k,t’=k)A
= 2in<ksw EY) 1{t">k,t’=k)A
= EY, lAl{t”>t’}
EY 1, =EY 1,1,_,+ EY,1,1,..,,
> EY, 1,1y + EY, 1,10y,
=EY,1,
(>)g EY'/LIA'
Since {t>n}={t>nn{<nphu{t>nn{"<n)u{>n}n{t>n},

we have shown that ¢ is (strictly) regular. Clearly P(¢ < f)=land P(t" <) = 1.
Apply Lemma 2 to obtain (8).

THEOREM 1. Assume A, and A, hold. Then there exists vc T, such that
EY, = sup,., EY,.

ProoF. Let M = sup,., EY,. A4;=M < oco. If M = —o0,setr = 1. Thus
suppose M is finite. Recalling Lemma 1, 3 strictly regular 7,€ 7,5 EY, >
M —nt Puter, =1t,r, =max(r,_,,t,) = max(t, -+, t,)and ¢ = sup, ,.

By Lemma 3, ¢, is strictly regular and EY, = EY, > M —n'. ¢, /'z.

{T k} = U::l n:;):m {Tn = k} c "%c
therefore z ¢ 7, = EY, < M.

n—00

M =lim,_ ., EY, < Elimsup,,,Y
= Elimsup,_., Y. 1.« + Elimsup, . Y. 1, _,
= EY. 1l.ccy + Elimsup,_ .. Y. 1._,
é Ele{r<OO) + EYOO 1(r=oo} (by AZ)
=EY.< M. therefore EY, = M.
DEFINITION 4. ¢ e T, is semi-optimal iff given any teT,, n =1, and B,-
measurable set A C {¥ =1, t > n}3 P(4) > 0,
%) EY,1, Z EY,1,.
v is strictly semi-optimal iff the inequality in (9) is always strict.
LeEMMA 4. Assume A;. Suppose At € T,, which is optimal in the sense that EY , =
sup;cr, EY, < co. Then t is semi-optimal.
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Proor. If 7 is not semi-optimal, then3re T, 0 < n < oo, and a £Z -measur-
ableset A C {r =n, t > n}>

EY,1, > EY_1,.
Put?v =<1, 4+ ¢1,. YeT.,.

EY, = EY 1, 4+ EY,1,
>EY 1,4+ EY_ 1, (since [EY_1,] < o0)
= EY_ = < contradiction.

Thus 7 is semi-optimal.
LemMmA 5. Ift € T, is semi-optimal and t € T, is strictly regular, then P(t< ') =1.

Proor. Let 4, = {#/ = n, t > n}. Suppose for somen > 1, P(4,) > 0. Since
¢’ is semi-optimal, (8) gives

EY,1, = EY,1, .

n

t being strictly regular, we have
EY,1, > EY,1, — < contradiction.

therefore P(4,) = 0Vn = 1.
Hence
P(t>1)=P(U,A4,) =0
=Prst)y=1.

THEOREM 2. Assume A, and A;. Then t € T, is an optimal extended-valued stop-
ping rule iff © is a regular semi-optimal extended-valued stopping rule.

Proor. Suppose z is optimal. Corollary 1 gives the fact that r is regular,
while Lemma 4 implies that  is semi-optimal. Now assume that ¢ ¢ T, is both.
regular and semi-optimal. If r is not optimal, 37 ¢ T, such that EY, > EY..
3 strictly regular te T3 EY, = EY, > EY.. By Lemma 5§, P(t < ) = 1.

We now invoke Lemma 2 to obtain EY, > EY, > EY.. — — contradiction.
Therefore = is optimal.

The next two definitions and subsequent results (Theorems 3 to 6) are of in-
terest in that they enable one to identify.certain rules as being optimal without
requiring one to carry out the verification of the fact that they are both regular
and semi-optimal.

DEFINITION 5. A (strictly) semi-optimal rule r e T, is minimal (strictly) semi-
optimal iff for every (strictly) semi-optimal 7€ T, P(r < t) = 1; or equivalently,
iff given te T, such that P(r < ) > 0 it follows that r is not (strictly) semi-
optimal.

CoMMENT 1. Assuming existence, uniqueness of minimal (strictly)semi-optimal
rules is a direct consequence of Definition 5.
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THEOREM 3. Assume A,, A, and A,. There exists a unique (up to equivalence)
minimal semi-optimal rule t € T,,. Furthermore, v € T, is minimal semi-optimal iff
t is optimal and strictly regular.

Proor. Combining Theorem 1 and Lemma 1, there is a strictly regular r ¢ T,
such that 7 is optimal. By Lemma 5, for every semi-optimal rule 7 ¢ T, we have
P(t = v) = 1. Thus ¢ is a minimal semi-optimal rule. This establishes existence
of minimal semi-optimal rules and the implication  optimal and strictly regular =
= minimal semi-optimal. Uniqueness of minimal semi-optimal rules and existence
of an optimal strictly regular rule enables us to prove the reverse implication.

DEFINITION 6. A regular rule v e T\, is said to be maximal regular iff for every
regular te T, P(r = t) = 1; or equivalently, iff for every te 7. such that
P(r < t) > 0, tis not regular.

ComMmENT 2. Uniqueness (up to equivalence) of maximal regular rules follows
directly from Definition 6.

THEOREM 4. Assume A,, A, and A, hold. Then there exists a unique (up to
equivalence) maximal regular v € T,, and  is optimal.

Proor. By Theorem13z,¢e T, > r,isoptimal. From Corollary 1, z,is regular.
If there exists a maximal regular r e T,,, P(r, < r) = 1; so Lemma 2 = EY, =
EY, =sup,.,,EY, = EY = t is optimal.

To complete the proof of this theorem it will suffice to construct a maximal
regular rule. Moreover, in this attempt we may restrict our attention to the
collection ¢ of optimal rules. We must take care to insure that the rule we
construct is in 7, and hence measurable.

Let o, , ={te: P(t > n) = r}

Letr, =sup{r: &, , + @}

Fix k = 1. We assert that Vvn > 1, (Ni=1 Tjrjere) F D+ Orppere + @ I
N3 e # D I € 21T pmape A€, iy Let &= max(7, 1),
Being optimal, both ¢ and ¢ are regular so (Lemma 3) ¢ is regular and optimal.
=t1el.

Lett,eT,5P(t = t) = 1. Then P(t > [) = P(t, > I) for each .

For 0 <I<n, Pt>1)=P(t >1)=r,—1/k. For Il=n, P(t>n)=
P(t">n)zr, — 1k=1te -1}, Hence Ynir, e N, T} Let
T, =1, 7, = max(c,_;, t,) = max (¢, ---,t,). Letc =sup,r,.

fr=n=UsuNicaltn=nC A, —zeT.,.
EY = EY 1 cay + EY 1oy
= Elim sup, YT%I(K“,, + EY 1.
= limsup, EY, 1., + Elimsup, Y_ 1. _,

,rj—l/n‘

= limsup, EY_ .
By Lemma3,EY, = EY _ = EY =EY,,EY, =sup.,,EY, since t, € 2.
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Therefore,
sup,., EY, = EY_ > EY,
Fix k = 1. Choose n > k.
Pt > k)= P(c,>k)=Pt,>k)y=r,—1/n=Pc >k >r,.

= SUp;e,, EY, =t O.

By construction of r,, te &7 = P(t > k) < r,. Therefore P(r > k) = r,.
te’ =t is regular. If r is not maximal regular 3/ ¢ T, > P >7)>0
where ¢ isregular. Let ¢ = max(c, ). EY, Z EY, = te. P(t = 7) = land
0 <k < 0Pt >r=k)>0.
P(t > k) = P(t > k) + P(t =k, t > k)
>Pr>ky=r,.
But P(t > k) > r, = t ¢ ¢’ by construction of r, — « contradiction. Therefore

 is maximal regular.

THEOREM 5. Assume A,, A, and A,. <, €T, is minimal strictly semi-optimal iff
t, is maximal regular. Such a rule <, exists, is unique (up to equivalence), and is
optimal.

Proor. Imaximal regular ¢ e T, (Theorem 4). If r is not strictly semi-optimal,
dteT,, 1 = k < oo, and a g-measurable set 4 < {¢ = k, t > k} > P(4) > 0
and

EY.l, < EY,1,.
Let =<1, + ¢1,. ¢ eT,and P(Y > ) > 0. Evaluating EY,,
EY, = EY_l,, + EY,1,
=>EY 1, + EY_1,
=EY,_.

The optimality of « now forces ¢’ to be optimal and hence regular, but then
v is not maximal regular. — < contradiction. Therefore ¢ is strictly semi-
optimal.

Now let 7€ T, be any strictly semi-optimal rule. Let A4, = {r = k, ¢ > k}.
If P(A4,) > 0 for some k > 1, then

EY, 1, >EY 1, =t isnotregular — « contradiction.
Therefore P(r > 1) = P(U, 4,) = 0 or
Pe<n=1.
= ¢ is minimal strictly semi-optimal.

Since minimal strictly semi-optimal rules and maximal regular rules are unique
up to equivalence whenever they exist, the entire theorem follows.

THEOREM 6. Let A, A,, and Ay hold. Let 7, and t, be the minimal semi-optimal
and minimal strictly semi-optimal rules, respectively. Let ¢ be the collection of
optimal extended-valued stopping rules.
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Then
O ={teT,:t isregular and P(t = 7,) = 1}
and
O ={teT,:t issemi-optimal and P(t < ;) = 1}.

Proor. Let te T, be optimal. Then ¢ is semi-optimal. 7, is minimal semi-
optimalso P(t = 7,) = 1. Also,te = tisregular. — & C {re T, tisregular
and P(t = r,) = 1}. Lemma 2 is sufficient to guarantee the reverse inclusion.

Now let ¢t e T, be semi-optimal and assume P(t < ;) = 1.

Ele = 2isnsw EYr111t=n) = isese EYnl{t=n)
=EY,=tel.

Therefore {t e T, : t is semi-optimal and P(t < 7)) = 1} € &

Finally, let € 7. Then tis regular. By Lemma 3, ¢ = max (¢, r,) is regular.
7,ismaximal regular = P(t = 7;) = 1 = P(t < ;) = 1. tisoptimal = ¢ is semi-
optimal =

& ={teT,: t is semi-optimal and P(r < ;) = 1}.

2. Form of optimal rules for £(S,/t). With the tools involving the nature of
optimal rules at our disposal, we are ready to attack the problem which prompted
this research, that of determining when (optimal) rules for maximizing E(S,/)
stop with probability one.

For the remainder of this paper, unless explicitly stated to the contrary, we
assume that {X,} is a sequence of nondegenerate independent identically dis-
tributed random variables with mean zero. Our returns Y,, = y,(x,, - - -, x,) will
have the form (b + x;, + --- + x,)/(c + n) for some ¢ > 0 and & real (c and b
are fixed for all n). By the strong law of large numbers, ¥, — 0 a.s. So we
define Y, = 0. For teT,, EY, is unambiguously defined and equals EY,1,,_.,,.
Define S, = X, + ... + X,.

LemMA 6. If for some ¢ > 0, breal,and t' € T,,, E(b + S,)/(c + t') = b/c then
AteT,>

(10) t<oco=S8 > —b and
(11 gb+Si b
¢+t c

Proof. Sett = ¢ if ¥ < co and S, > —b; t = co otherwise.

LEMMA 7. Letc > 0, b real and t € T, satisfy (10) and (11). Assume also that
P(t < c0) > 0. Then if ¢, = c and b, < b we have

(12) gt S b

G+t

with strict inequality if b; < b or ¢; > c.
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Proor. We may restrict our attention to the set where t < co. On this set,
e(b 4 S,)/(c + t) is a strictly increasing function of ¢ > 0. Therefore

6=cnpg @l +S) S peb+S) S, pbtS S b

o+t c+t o+t ¢
with strict inequality for ¢, > c.

Now take the derivative of E(b + S,)/(c, + ) — b/c, with respect to b to obtain
E(1/(c; + 1)) — 1/e, < 0; therefore
by<bopli TS b bS8 b

a+t o e+t ¢
The result now follows immediately.

REmMARK 1. Lemma 7 is a slight modification of the statement of Lemma 5
of Dvoretzky [11] and the proof, while substantially the same, is in a more
accurate order.

Henceforth unless specifically stated to the contrary, we make the additional
assumption that £X;* log* X; < co, where for a random variable Z,

7t =27 if Z=0 and logt Z =log Z if Z=1
=0 if Z<O0 =0 otherwise.

All logarithms are taken with respect to the base e.
The latter assumption was found by D. L. Burkholder [1], to be necessary
and sufficient to guarantee that

(13) Esupns_"< 0o,
n

while B. J. McCabe and L. A. Shepp [17] demonstrated that the condition
EX;*log* X, < co was also equivalent to the statement sup,.,  E(S,/t) < co.
(Note: [1]and [17] also show that EX,* log* X, is equivalent to (a) Esup X, /n < co
and to (b) sup,.,_ E(X,/t) < oo.)

Fix a, n where n > 0. Let Y, = (a + S,)/(n + k), k=1,2,...,Y,=0.
Y, =0=Ilim,, Y,. Therefore

A, holds. Esup, Y, < Il + Esup, % < oo by (13).
n
Thus 4, is valid. Define
14 M = sup,., E a+5 .
(14) (@) Piere "t
Applying Theorem 1, 37(a, n) € T,, such that
(15) ECTS: _ M a).

n+4t

LemMA 8. M, (a) is a positive continuous strictly increasing function of a for each
n=0.
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Proor. Fix a. Let
t=minf{k: S, > —a}
= oo if §,< —aVvk
X, is nondegenerate, so P(t < co) = 1.

16 Mya)=E*T5 50,
(16) @z ESES s
so M, (a) is a positive function. Consider »fixed. For b < a, 3, by (15), 7, e T,
and 7, € T, 5 M, (b) = E(b + S.,)/(n + 7,) and M, (a) = E(a + S.)/(n+7,).

s b+ S —b
M@ — M) <EST e g2 T % _p?

n+t, n+4 7, n+ e,
(17) M,(a) — M,(b) < Z - i)
e
o M,(a) — M,(b) >0 due to the fact that
(19) M,(b) > 0= P(t, < o0) > 0.

(18) says that M,(a) is a strictly increasing function of a, which coupled with
(17) establishes the continuity of M, (a).

LEMMA 9. If 30 < n < ny < --- and {b,,} such that M, (b,,)=b,,[n,, then
Vn = 1, there exists a unique number a, such that
a
(20) M,(a,) = %=
n
Proor. Fix k = 1. For 0 < j < n,, 37, e T, such that

(i) M;(b,,) = (b, + S:)/(J + ;) (see (15));
(i) 7; < o0 =1b, + S, > 0 (see (10));
(iii) P(r; < o0) > 0. (see (19)).
If for some 0 < j < n,, My(b,,) > b, /j, then by Lemma 7

b b . by, + 5.
g < E ™k + Sr, < E_"k + "k — Mnk(bnk)

n, n, +t; n, + Ty,
= < contradiction. Therefore Yn > 1135,'5 M,(b,") < (b,//n). Let g,(x) =
M, (x)—(x/n)-g, is continuous. g¢,(0) = M,(0)>0. g,(b,") = M,(b,")—(b,'[n)< 0.
Thus there exists an a, such that g,(a,) = 0, or M,(a,) = (a,/n). Ifda,’ < a,>
M,(a,)) = (a,’/n), then M,(a,) — M,(a,)) = (a, — a,))/n > (a, — a,")/(n + 1),
contradicting (17). Hence a, is unique. Moreover, M,(a,) > 0 = a, > 0.

REMARK 2. Observe that Lemma 7 yields: a < a, = M,(a) > a/n whereas
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a>a, = M,(a) < a/n, wherever a, exists. Furthermore, if a, and a,,, are de-

fined, then if M,(a,,,) > a,, +1/n then M, \(a,,;) > (a,..)/(n + 1), contrad1ct1ng
the construction of a,, M, (a,.,) < (a,.)n=a,.,>a,

In order to estabhsh the existence of {b, } as in Lemma 9 we need some
elementary estimates.

LemMA 10. Let {X,} be i.i.d. with mean zero. Then E|S,| = o(n).
Proor. Fixe > 0.

Sisymsern Su dP = 11§15 nsum X, dP = 0(n) because P (% > —;) 0.

Therefore § s /nsem (1S,]/n) dP — 0 as n — oo;

S
ELfl_l = S(]Snl/nSe/z} I—J ap + S(|Sn|/">5/2) L_l

Lemma 11, Let {Z,*} be a submartingale. Then for any u > 0,

n
P(max,, = EZ,

See Doob [10] page 314 .
ProoF. Let Ay ={0|Z, = u, Z, < ufori < k)
A ={o|max,, Z(0) = u} = U, A
P(A) = X P(A) = Spy§a, 1 dP
Z, z,t
< Tt fy, 24P S Tia a2 ap

Z t

+
Uu

= {4

Lemma 12. Let {X,} be i.i.d. nondegenerate mean zero random variables. Fix
a > 0. Define

t,=1st k:S,> an if such k exists
= oo otherwise.
Then E(n + t,)™* = o(n7Y).
Proor. 1,eT, and P(z, < o) = 1.
1 . P(t, = k) P(t, = k)
E = —r__ 7 A S A
n + t,n Ic l + k + Zk>M'n —I— k

o Pty = k) P(t, = k)
Z n +Zk> nm
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éP(t _<__Mn)_l_ 1

n Mn

— P(max;_,, S; > an) + L

n Mn

+
< ESiw 1 by Lemma 11
an? Mn

<MES,| 1
“an n Mn

Fix ¢ > 0. Choose M so large that M~! < le. lim, (M/a)(E|S,|/n) = 0 by
Lemma 10 = E(n + t,)"* < ¢/n for n large. []

We are now prepared to establish the existence of a unique root a, of the
function

(21) 9u(2) = M,(2) — z/n..

LemMmA 13. Let {X,} be i.i.d. with mean zero and EX,*log* X, < oo, then for
each n > 1 there is a unique number a, such that M, (a,) = (a,)/n.

Proor. Referring to (13), 3K < o0 30 < sup,.,,, E(S,)/t < K. Put b, = 4Kn.
b, + S,
n+4rt, '

If M,(b,) < b,/n for infinitely many n, we are done (by Lemma 9). Otherwise
ANsn = N = M,(b,) > b,/n. Lemma 7 gives

1z, e T, > M,(b,) = E

a
n4 k
(22) ?1<EM§Mn<éz),
2n n+7, 2

— E(bn/z) + Srn* .

n+ 7,*
Let 4, , = {r,* = k, S, < b,/2}. We show P(4,,) =0 for n = N, k > 0. By
(22),

(23)  sup,e,  E (

M, (a) > for a< o, and

I, f e T3 M, (’%)

(64/2) + Sc i
n+rt,* 4+t
M since b_" S, <b
> n + k 2 + k= Yn-
We must conclude, therefore, that if for some n > N there is a k > 0 such that
P(A, ) > 0, z,* is not semi-optimal. — (by Lemma 4) z,* isnot optimal. =
contradiction. Therefore

X1 =Xy, v, Xk = X, An,k)

(24) ¥ < oo =S, > %” a.s.
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Now
ECHD A+ Ser b ogp U o g Sa
n+4 t,* 2n n+4 7,* n4 t*
_2KknE_ Y Sk K
n+4 7,*
N N SN
n+7,*" 2n
Let
t,=1st k:S, > 2Kn if such k exists
= oo otherwise.
1 1 1
Pit,<7,*)=1 from (24) = E = F — .
(= =) % n4t, n+f”*>2n
We now invoke Lemma 12, obtaining
1 1 —_
E = o<—> . = <= contradiction.
n-+t, n

Now apply Lemma 9 to obtain the result asserted.?

Intuitively, our considerations illustrate that if we have accumulated amount
a > a, by time n, we should continue. whereas if we have accumulated a > a,
by time n, we should stop. We are indifferent if a = aq, at time n. We state
this more explicitly and precisely.

THEOREM 7. Let {X,} be i.i.d. nondegenerate mean zero random variables with
the property that EX* log* X, < oo and let {a,} be the unique sequence of numbers
defined in accordance with (21). Then up to equivalence the collection C, ,, of extended-
valued stopping rules which maximize E(a + S,)/(n + 1) over all t ¢ T,, can be defined
as follows: teC,, iff reT, and

i) a+ S8, >a,,=1=k
(i) a4+ S, <a,,;forj=1,2, ..., k=1>k;
iii) a4+ S, Za,,;forj=1,2, .-k —1l,a+S,=a,,,andt > k—1t =k
J +3 ] k +
with probability P, (determined by the mean of a zero-one valued random variable

2 Lemma 13 can be proved without Lemmas 10-12 as follows: There exists ¢ € T 3 E(S:/7) =
SUPteTo, E(St/t). 30 < m < nz < --- such that P(c =mn) > 0. (If not, IN < o3Pt £ N) +
P(r = o) = 1. Letting

= if t=N
=1st k> N:Sp>0 if z>N

/€ T and E(S:’/c’) > E(S:/z) unless P(r = c0) = 0. But if P(r = 00) =0 then we cannot
have P(r < N) =1 because 7 < oo = S§. > 0 (since ¢ is optima1)=>P(Uj5’=1 {S;>0)=1=
P([']?’=l {X; =< 0}) = 0, which is impossible since EX; = 0). Let B, = {b: P(t = nx, S: = b) > 0}.
P(z = ni) > 050 By is nonempty. Choose by € By. ¢ is semi-optimal so sup;e 7o, E(St4c/(t +7) |7 =
ng, Sz) = Suy/ni. Therefore (Lemma 7 and (15)) My, (br) < bi/nk from which Lemma 13 follows
from Lemma 9.
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W, which is independent of {X, ., X,,,, - - -} but otherwise W, is arbitrary) and
T > k with probability 1 — P,.

Proor. Letr, bethefirstksa + S, > a,,,,ifsuch k exists; 7, = ‘co otherwise.
7, is strictly semi-optimal. Givente T3 P(t < 7;) > 0,3k 3 P(r; > t = k) > 0.
o> k=a+ S, < a,,, — tis not strictly semi-optimal; therefore z, is minimal
strictly semi-optimal = z, € C, ,, (see Theorem 6).

Let

T, =k if a4+S8,=2a,,, a+S;<a,,; for j<k
= oo if nosuch k& exists
7, is semi-optimal.
Lette T2 P(t <7y > 0.
0<k<0dP(ry>t=k)>0.

7y > k=a+ S, < a,,, = tisnot semi-optimal — , is minimal semi-optimal —
(see Theorem 3 or 6) 7, is optimal or 7, € C, .

A moment’s reflection will convince one that those ¢ e T., which are semi-
optimal and for which P(¢ < 7,) = 1, since they must also satisfy P(t = 7,) = 1,
are in C,,. Furthermore, the only te C, , are semi-optimal rules such that
P(t < 7)) = 1. By Theorem 6, all optimal rules are contained in C,, (up to
equivalence) and every rule in C, , is optimal.

Note. 1t is necessary that W, be independent of {X,,,, X,,, ---} to insure
that ¢ is a bona-fide member of T.,.

Except for two auxiliary lemmas and a corollary, we can finally proceed with
our analysis of when P(z < oo) = 1, where E(S,/r) = sup,.,_E(S,/t),andr e T.,.

3. A necessary condition for optimal rules to assume the value 4 oo with
positive probability.

LemMA 14. Let{Z,} be any sequence of random variables and let {b,} be a sequence

of positive reals satisfying only b, < b,,,Vn and lim,_,, b, = co. Then P(Z, = b,
i.0.) = P(max;., Z;, = b,i.0.) and P(Z, > b,i.0.) = P(max,., Z; > b,i.0.).

Proor. Let
A={w|Z,(w) = b, i.0.}
B = {0|max,., Z, = b, i.0.}.
Clearly AC B. Wlogassume B = . LetweB. fwg AIN < c0o3n = N=
Z,(w) < b,.
Let M = max{Z(®), - -+, Zy(®)}. M < co. AN’ 3b,, > M.
weB=13n" = Namax,, Z(w)=b, =2by, > M.
Hencedk < n' s Z(w) =2 b, = b, =k < N= Z,(0) < Mbut Z,(0) = b, = =
contradiction, therefore
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The second assertion is proved similarly. We prove this lemma because we
will require the use of a corollary.

COROLLARY 2. Let {Z,} be a sequence of random variables and {b,} a sequence
of positive real numbers such that b, < b, ,,Vnandlim,_,b, = co. Then P(Z, = b,

n+1l n—oo Yn
i.0.) = 0 =lim,_, P(max;_, Z, = b,) = 0, and

P(Z,> b, i.0.) = 0= lim,_, P(max,_, Z;, > b,) =0.
Proor.

P(max;e, Z; = b,) < P(Ur-, {max,., Z; = b,})
— lim, ., P(max,, Z; = b,) < lim, .. P(UZ-, (Max;., Z; = b,))
= P(max,_, Z, = b, i.0.)
= P(Z,=b, i.0.) by Lemma 14
=0.

The other assertion is proved analogously.

We now reemphasize that {X,} will denote a fixed sequence of nondegener-
ate independent identically distributed mean zero random variables satisfying
EX;*logt X; < co. We let (Q, .57, P) be the probability space on which {X)
is defined and let F be the distribution function of X;. {a,} will be the unique
sequence of roots of the functions

S z
L(Z) = sup;. E<Z+ ‘)-—__,
9.(2) Prera B~ -
Recall §, = X, + ... + X,. Remark 2, following Lemma 9, affirms that

(25) 0<ag<<a < -,

Our next goal is to determine what P(S, = a, i.0.) = 0 implies about F. Toward
this end, define

L=k if S, Za,,, S;<a,; for j<k

= oo if nosuch k& exists.

Theorem 7 can be utilized to verify that

(26) E_Suw _ sup,e,. E S
n-+t° n+4t
Define
t,=1st k:S,=a,., — ia,
= oo if no such k exists.
Again by Theorem 7,
1 S. 1 S
(27) 2% T 0w SUPer.. 2% o

n+t' n+t
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Lemma 15.
ESn+ <E Stno < ?l
n

2n n+4t°

ProoOF.
an + St an

S, o
E_"'» sup,.,. E -
n+tn°< Peere, n+4t n

Now for the left-hand inequality: Fix n > 1. Let

t=1st k=n:S >0 if such k exists
= oo otherwise.

X, is nondegenerate so P(t' < oo0) = 1,

ESu sup,.,. E S >E S
n+ tr° n4t n4t
o S, dP S, St
= 2len S(ﬂ:k;nk_l_ A > S(t’=n)2—ndP =E on
Lemma 16.
@ < E_Sut_
8n n+t'
Proor. Case 1. a, < 4ES,*.
+
4 BT g Sw by Lemma 15.
81— 2n n+t0°

Case 2. a, > 4ES,*. Remark 2 following Lemma 9 gives

@/2) + S, _ (@) + iy
n4t n+t)

an
A < Supte T oo E
2n

Stn,
n+4t,
Sy
n+t

P(t, <m) =P <Uk<n {Sk = Ay — %’})

<E

+on P < m) 4 S P(r, 2 )
2n 4n

=E + 5 (14 P < )
4n

=P (Ui {S.>%})  since 0<a<a <o
= 28,7 by Lemma 11
a?’lf
<3
Therefore
L
n+t' n\2 4 2 n

S ’

E "% _ >F S so the proof is complete.
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COROLLARY 3.

8a Qs
n, Dotk Il nk=1.
n >n+k forall n, k =
Proor.
Ay S0 o S, a, + S, a,
2 Sup;er, E SUpsep. E ="
8(n+k)< n+k+t‘,’,+k< Prere, n—]—t< Prere, nt n

therefore 8a,/n > a,../(n + k).
Lemma 17. Assume P(S, = a,i.0.) = 0. Then
1P xlogmdF(x) > 0(&_) .
" n 8n n

PROOF. a, is a strictly increasing function. Extend this to a strictly increasing
continuous function a(+) defined for x = 0. Thus the functional inverse a='(+)
of a(+) is uniquely determined.

a

4 g Su o gt X
8n n-tr° n+t°

Xt,,o I(th°§“n+t,n0)

A, .40
— E n+t, E
n -+t + n+4tr
o s‘tn0=k’ Xp>0n+i} Xk ap

+ D e
a,., o e xd F(x)
< 2E *ta w Jontp T AT

< 26 Pty e

§ai+1 xd F(x)

< 16 f’n_ P(6,? < o) + Diwn Lime ~2—

Sl

= 16 gl P(tno < OO) + Z?=n+1 <lec=n+1 -"> S$§+1 XdF(X)
n k

< 16% P(1,? < 00) + Tlanlog _{l_ fi+1 xd F(x)

< 16% P(1,0 < 00) 4 %0 §2+ x log T X) gF(x)
n ! n

< 16% P(1,0 < oo) + § xlog © %) dF(x)
n " n

(28) P, < o) = P(Uii{Sk = i) = P(Ui=a{S: 2 a.})
+ P(Unn (S z @) >0+ 0
by Corollary 2 and assumption, respectively. Therefore

w a(x) @G _ %
S%xlogTdF(x) > & o<n>.
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We examine the content of Lemma 17 somewhat more closely. Assuming
that P(S, = a,i.0.) = 0, then for ¢ > 0 and y sufficiently large,

29 =xlog "M gFy = Y .
B B ) MO = )
8+ a(y) = 2

— §y xlog (aX(x)/a™X(y)) dF(x)
Now if P(X, = a,i.0.) = 0, then
2. PX,=a,) < (Borel-Cantelli Lemma)
which implies

dinPXi=a,) < (X,’s identically distributed)
and

2 Pl@(X) = n) < oo (a7*(+) is an increasing function)
and therefore
(30) Ea (X)) g2 < o0 .
Using (29) it would then follow that

= dF(y) < oo,
§7 (x[y) log (a7X(x)/a™X(y)) dF(x)

Unfortunately this integral is not independent of a(x).

Being interested in what P(S, = a, i.0.) = 0 implies about the distribution of
X, we seek an estimate of a~*(x)/a~(y) for x > y in terms of x/y. We find in
fact that such an estimate allows us to prove that

§5 (x/y) log (x/y) dF(x)

Lemma 18. If P(S, = a,i.0.) = 0, then P(X, = 5a,i.0.) = 0.

§

Proor.

ES;
P(—S 2ES, ") = =t
( n—1 > n ) = 2ES — < 2

ESn_ = ESn’+ .
P(Sn—l g _2Esn+) = 1 - P(Sn_l < —2ES7L+)
=1— P(—S,,>2ES,") > }.
Hence if X, > 5q, i.0., then S, > 54, — 2ES,* i.0. a, > ES,*/2 so
S, =a, i.o., a contradiction.

Therefore P(X, = 5a,i.0.) = 0.
For a more detailed proof: Choose m 3 P(,2n {S, = a,}) < 1 and suppose
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P(X, =z 5a,i.0.) = 1. Thendm < ¢,, < o0 3 P(Ysm,, {X, = S5a,}) > 3. LetM =
max{n: m < n < c,and X, > 5a,}. If no such n exists, set M = co.

1 Z P(Unzn S0 2 0u}) 2 P(Uinn (S, = a,))
= 2izn P(Uinn {S, = a,}, M = k) = Y, P(S, = a,, M = k)
2 Tizn P(Sis = —2ES,*, M = k) = Xm,, P(S,_, = —2ES,)P(M = k)
>3 2imm P(M = k) = 3P(Uin, (X, = a,})) > 3, a contradiction.
Therefore P(X, = 5a,i.0.) = 0.

Define f,(x) = E(S, 0)/(x + 1,°) for x>=0. For n<x<n+ 1, put f(x) =
max (f,(x), fo11(x)). We may assume that our extension of a, satisfies

(31 Eé%) < flx) < _a_(x)_cl ) since xf(x) /.

1, <00 =35,0>0. (S,0)/(x + 0 is integrable. Thus so is (S, 0)/(x + 1,
for x = 0, k = 1. Moreover, Sy, 0/(x + t,°)* is continuously differentiable in x
for x = 0. Therefore f,(x) is infinitely differentiable and f2B(x) = (= 1)k —
DVE(S, 0)/(x + 2,2+ Consequently f(x) is a continuous, piecewise infinitely
differentiable function. (In fact, f(x) is convex.)

LeMMA 19. Fix0 < e < 1. If either
(i) P(S,=a,i0.)=0o0r

(i) a, = (8/e*)ES,* for n sufficiently large then x*f(x) is increasing from some
point on.

Proor. Choose M = 1/e. Since x*f{x) is continuous, piece-wise differentiable
and positive, we need but show that log x*f(x) has positive derivative for all
sufficiently large x at which f is differentiable.

Hence, to verify: 3X,5x > X, and f'(x) exists = —f(x) < (2¢£(x)) /().

Fix x at which fis differentiable. 3n5 f{y) = f,(y) for all y in a neighborhood
of x. So f(x) = f,'(x).

Sy =B w1 St Lt
" (x+89% " (x+1) x+t0
+ 1 Stno l(tn0>Mn} .
x + [Mn] + 1 x +t,°
Set
S, o
Aux) = E - J;ntno 1, 0omm, -
Then

, 1 J(x) — A,(x)

Recallingn — 1 < x < n+ 1, we have [x + 1 + [Mn]]"* < (Mx)~* for n large.
Now since f(x) — A,(x) 2 0, —f(x) < A,(N)/(x + 1) + (Mx)7(f(x) — A,(x)
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and therefore

—f) < AL (1 ) 4 09,

We have reached the parting of the ways. Suppose 1 holds.

. s . a,
An(%) = TE Sy —* AP S TR §uip0mm o AP

+k + k
+ ZE;IE?] S(tn°=k,Xk§5an+k) Xk ar Z[M”] S(t 0=k, X} >50, 4} X ar
N x4+ k x+ k
6an+k dap [Mn] S5“n+k xdF(x)
Zle(tOk} —|—k+Z —T
M,
<509 p(1 < oo) + P 55 xaF(x)

As shown in (28), P(t,° < c0) —0 as n— co. We now demonstrate that
{5, xdF(x) = o(a,/n). By Lemma 18, P(X, = 5a,i.0.) = 0 and hence as in (30),
we have Ea~(X,/5)1xzo < co. By change of variables to U = a7'(X,/5),

(32) §o, x dF(x) = §2 Sa(u) dF () = 5 §2 2O .4 dF,(u)

u
< 40 4\ u dF(u) .
n
Thus {3 x dF(x) = o(a,/n)
n

e < Gnt1 <2 1‘,:‘1 <léfin+ 1) < 16f(x)

Therefore A4,(x) = o(f(x)).

_p S) o %) 2€f(x)
f(x)<o< 2 ) ) < for x large.
Now assume 2 holds.
1
A, (x) = ZEED §i,0-m i‘ % < PR P § im0 Si
1 ESH,
= x+ 1 ik S(t 0=k} S[Mn] = EMI]
MES,*+ a,¢
=11 B+
_ _ f() el —ofix+1) | ¢f(x)
f()<8(x+1)( o +=< " +=
< 25_J;(x) since f(x 4+ 1) < f(x).

COROLLARY 4. Whenever P(S, = a,i.0.) =0, P(X, = a,i.0.) = 0.
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Proor. By Lemma 19, 3c¢3 ¢ < y < x = yif(y) < x¥f(x). By (31),

8a((z))% < zH(2) < a(z) . SO
SO <) <R < L.

In particular, a(Ky) > K*a(y)/8 for K = 1. According to Lemma 18, P(X, >
Sa,i.0.) = O whence 3, P(X, = 5a,) < co. Put K = 1600. Then a(Ky) > Sa(y)

for y large.
= 21, P(X; = a(Kn)) < o

— . P("( )>n><oo

= Ea‘l(Xl)l‘Xlgo, < oo
=D Pla(X) =n <
= Y P(X,=a,) < o
= P(X, = a, i.0.)=0.
THEOREM 8. If P(S, = a,i.0.) = 0, then
SSO dF(.y)
§7 (x/y) log (x[y) dF(x)
Proor. As in Corollary 4, one can actually show that for any ¢ > 03c5¢ <
y < x=x[y < (8a(x)/(a(y))***. Putu = a(x)and v = a(y). For a(c) < v < u,
(33) a—l(u) < <Q>l+e )
a '(v) v
As noted in (29), for u sufficiently large,

v © uloo & a”'(u) d
@ o = By T

<1+ g;oulog_;‘_dF(u) + (1 + ¢) log 8 § u dF(u) .

Recalling the technique used to obtain (32), but this time incorporating
Ea (X1, 20 < oo,

o v
§= u dF(u) = o <a—1(v)> .
Hence for fixed ¢ > 039,35 v = v, = (8 + ¢)a'(v) = /{7 u log (u/v) dF (u).

The latter is a nonnegative increasing (in fact continuous) function for v > 0
since the numerator increases and the denominator decreases as v increases.
Therefore
. dF(v)
§5

§o (u/v) log (u/v) dF (u

S $0(8 o+ awn) (o)

+ §5% (8 + €)a(v) dF(v) < oo
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REMARK 3. Observe that whenever P(S, = a,i.0.) = 0, we obtain an upper
bound for E|S,| in terms of the distribution of X,*, since a, > 3ES,* = 1E|S,|
and since given ¢ > 0, .

1
a(y) =
(8 +¢) §7 (x/y) log (x[y) dF(x)
for large y.
REMARK 4. It is well known that for0 < b, < b, --- lim,_, b, = co, P(Z, >
b,i.0.) = P(Z, =z b,i0.)for Z, =X,, Z, = |X,|, Z, = S,,0r Z, = |S,|.

CoroLLARY 5. If for some ¢ > 0, E(X,*)"** < oo, then P(S, > a,i.0.) =1 so
that every optimal rule stops with probability one.

Proor. Ifnot, then by the Hewitt-Savage zero-one law, P(S, > a,i.0.) = 0 =
P(S, = a,i.0.). Thus, according to a result preceding Remark 3,
v
@ + 9a(v)
for large v. Setting v = a,,

< §yulog % dF(u)

- § b u'*<? log (u/a,) dF(u)
St on + I <\zu log_n dF(u) < G

1+e/2
a
= "

1
L+ (2)
By Lemma 19, given 6 > 0, x’”*f(x) is eventually increasing — lim,_,, x’f(x) = co.
Noting that n’f(n) < a,/n*~° from (31) forces us to conclude that for any @ < 1,
lim,_,., a,/n* = oo, which then provides the desired contradiction.
Thus if E(X;*)'** < co for some ¢ > 0 then all optimal extended-valued stop-
ping rules stop with probability one.

=o(1) =% - o(1) where a =
nﬂ

4. A sufficient condition for optimal rules to assume the value 4 co with
positive probability. We will reserve making any further deductions from the
hypothesis that P(S, > a,i.0.) = 0 until later. Bearing in mind the essential
content of Theorem 8, namely that if an optimal rule has positive probability
of not stopping, then a certain integral is finite, one might wonder whether the
converse is also true.

We find in the succeeding that the converse is valid in a quite general setting
and that our proof enables us to construct random variables whose optimal rules
have positive probability of never stopping. In addition, we find that the con-
verse itself is not always valid.

LEMMA 20. Assume

i x dF (x)
" §2y log (y/%) dF(y)
Then
lim, §2y dF(y)

" Yz ylog (y/x) dF(y)
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Proor. Put

b_1 = y
0= (o7 og () )

and note that y/b='(y) is a decreasing positive function.

0 < lim,_. §2 )y dF(y) — lim,__ 32 Y/07()-67(y) dF(y)
- §2 ylog (y/x) dF(y) {2y log (y/x) dF(y)

< limsup,_., b‘l)zx) S?(bx—/llfi)(j;;(y) =0 since §§b7(y)dF(y) < oo.

LEMMA 21. Assume

>

i x dF(x)
§2y log (y/x) dF(y)
Let 1 < K < oo be given. Let
Mx
§2y log (y/x) dF(y)
b~Y(Kx)/b7Y(x) = K and hence also

b i(x) =

for some fixed M>0. Then lim

lim,_., b(Kx)/b(x) = K .

Note. It can easily be shown that regardless of F, b=(+) is a continuous func-
tion, so that b(+) is a strictly increasing continuous function defined for all x > 0.

b(Kx) _ K §7ylog(y/x)dF(y)
67(x)  §%. y(log (y/x) — log K) dF(y)
K

-~ _ Y ylog (y/x)dF(y) _ log K §z,ydF(y) =
§cylog (y/x)dF(y) 7 ylog(y/x)dF(y)

Replacing log y/x by log K in the appropriate integrand we have

b-(Kx) K

34 K

&Y S o S TogK ey )
i log (v/) dF(y)

Lemma 20 now implies that lim,__, 5=*(Kx)/b=*(x) exists, and equals K by (34).
* To show that lim,_, b(Kx)/b(x) = K, fix 0 < ¢ < K. For x sufficiently large,
b (K

— %) o g bHKN)

2 b e

Put y = 57!(x), multiply through by y, and then apply the increasing function
b(+)to (35) to obtain (K — ¢)b(y) < b(Ky) < Kb(y), whence K — ¢ < b(Ky)/b(y) < K
for y sufficiently large = lim,_., b(Ky)/b(y) = K.

CoroLLARY 6. If P(S,=a, i.0.) =0, then limsup,..a,/b(n) <8 and
lim sup, ., E|S,|/b6(n) < 32.
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Proor. From Remark 3,

limsup,_,., b7(x) <8.

a=(x) ,
As in the proof of Lemma 21, we then obtain lim sup,_., (a,)/b(n) < 8. Now
use the fact that

ElS,|

a, > -0,
w > 4
LeMMA 22. Let {X,} be i.i.d. random variables with mean-zero and common dis-

tribution function F. Assume that P(|X,| > b(n)i.0.) = 0, where

Mx
§2 y log (y/x) dF(y)
for x > 0 and some fixed M > 0. Then P(|S,| > b(n)i.0.) = 0.

.b‘l(x) =

Proor. By Feller [13] page 259, footnote 3, it suffices to verify that b(n)/n
and liminf,_, b(2n)/b(n) > 2:. Lemma 21 gives lim,_, b(2n)/b(n) = 2 > 2%,
Putting u = b(n), b(n)/n \ iff u/b~*(u) \ iff {7 y log (y/u) dF(y) \,. Since the latter
function obviously decreases as u increases, the desired result follows.

LeMMA 23. Let {X,} be i.i.d. random variables with mean zero. Let 0 < b, <
b, < ... be given such that P(S, > b,i.0.) = 0. Then P(N, {S, < b,}) > 0.

Proor. Let g(N) = P(Npaw {S. = 0,D)-9(1) £ 9(2) £ - - - lim,_, g(N) = 1.
ThusaN = 159(N) > 0. Let A = {u: P((Npzy {Sn — Sy < b, — u}) > 0}. Let
u, = sup A. Clearly, (— oo, u,) € A.

0 <9N) = P(Nazw (S = ba}) = EP(Nuzy {Su = 04}[ Sw)
= EP(Myzy {Su — Sy < b, — Sy}| Sy)

Therefore P(S, € 4) > 0.

P(Sl é bl’ R SN_1 é bN—l’ SNGA)
= P(Xléo’ ""XN—lé O»SNGA)
=[P(X, < 0)]"P(Sye 4| X, <0, -+, X,_, < 0).
Clearly,
P(SyeA| X, <0, -, Xy, <0)= P(SyeA|X; >0 forsome j< N),

and at least one of these two numbers must be positive, owing to the fact that
P(Sy € A) > 0; hence
P(SyeA|X; <0, ..., X, ,<0)>0.
=P(S; < by, -, Sy 1 by, Syed) >0
= P(N.{S. =5,}) >0.

CoROLLARY 7. Under the same hypothesesasin Lemma 23, P(N, {S, < b,}) > 0.
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Proor. Let0 < e < b,. Putd,’ =5, —¢, P(S, > b,i.0.) =0and 0 < b/ <
b/ < ...; therefore

THEOREM 9. Let {X,} be i.i.d. nondegenerate mean zero random variables with
common distribution function F, satisfying

(36) EX,*logt X; < oo and
37) §=. b73(|x]) dF(x) < oo where
b1 — lxl ] 0
0= e g oparyy 7>

= 0 l_f X = 0 .

Then every t €T, 3> E(S./t) = sup,.r,, E(S,/t) has positive probability of assuming
the value +co. (Note that (37) is equivalent to the assumption

(38) P(X,| > b, i.0)=0,

where b,,, of course, is defined by the relation #(b~*(x)) = x and in accordance
with the note to Lemma 21.)

Proor. The minimal optimal rule r, has the form

t,=1st k:S,>=a, if such & exists

= oo otherwise
where

R

n :supteTmEm,
n n-4t

Note: 0< g, <a, < -+~
Pty = o0) = P(N {S: < a,}) -

If we can find 0 < b, < b, < ---3b, <a, and P(S, > b,i.0.) =0, then by
Lemma 23, P(N,{S. < b)) > 0. = P(N,{S, < a,}) >0, or P(r, = o0) > 0.

Given any teT,>3 E(S./t) = sup,., E(S,/t), P(r = 7,) =1 (Theorem 3),
therefore P(r = co) > 0.

We construct b(x) by defining its inverse function. Fix 1 < M < co. Let
b=Y(x) = Mx/{7 ylog (y/x) dF(y) for x > 0. b~%x) is a positive, finite, strictly
increasing continuous function and is therefore the inverse of a strictly increasing
positive continuous function b(x).

Let

t,=1st k: X, = b(n+ k) if such k exists
= oo otherwise

t,eT,. At this point we require only the assumption

§ b7Y(x) dF(x) < oo .
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Estimating E(X, /(n + 1)),

E th = 3=, S(tnzk,xkgb(n+k))Xk ap
n+t, n+k

= Y P(t >k §otntn) X dF(x)
Zk—l (n_ ) n+k

v  (w XdF
= P(t, = o) Zk=n+1 Sb(k) al k(x)

= P(f, = o) Dirgus T 1350 200

= P(ty = ©0) Dfpir (Dhowea ) S ¥ dF ()

1
1

2 Plty = 00) . log 152 5150 xar(e)

oo j b_l
2 P(ty = 00) Eva 117 ¥log ) dr()
bi(x)
n+1

b=X(x)/x /. Therefore x = u = bY(x)/x = b~"(u)/u = b~(x)/b~*(u) = x/u. Let
u = b(n 4+ 1). Then

= P(t, = ) {§nsn x log dF(x)

X
E_"t 2 P(t, = 60) §fiuss, xlog —>

~—" __dF(x)

n-+t, b(n 4+ 1)
bty — ooy MB(n 4 1) _ <\ b
= Pty = o) n+1 ><M 2> n

for n sufficiently large owing to the facts

P(t, = o0) = P(N {Xi < b(n + k)})
=1 — P(Upewsr (X = 8(K)})

> 1 — N P(X, 2 b(k) — 1 as n— oo
because

P(X, = b(k) i.0.) =0; b(n 4+ 1) > b(n); and n+1)n—1.

a1 X e L P(t, = K)E(X,|t, = k)
E tn 1 —_—t = > ’?_1
=1 n + t,n Zk—2 i=1 N + k
n+k
> yom, yreer Pl = HEX| X, < b(n + 1)
n+k
P(t, = —
= E(X,| X, < b(n + 1)) 0z, Pl =0k = 1)
n4k
= Jln XdFG) o (=R =1)
P(X, < b(n + 1)) =** n+ k
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Let u = b7(x)
> _ $20(w) dF,(0)P(t, < o)
- P(X; < b(n + 1))
— V2 (bW)[u)-u dF,(u)P(t, < o)
P(X < b(n 4 1))
> _ (b + 1)/(n + 1)) §3,, u dF () P(t, < o)
- P(X < b(n + 1))

> _b(m) o(1) since b(n) > bin + 1) ,
n n n4 1
P(X<b(n+1))—>1lasn— coand {3, ,udF, (u)—0asn— oo, also P(t, < co) -0
as n— co).
Fixe >0and M >14¢ INsn=N
b(n) + S, S, o X X,
J A E__—'» —F )Yl n
n+t, > n+t, Z"ln-y-t”_’_ n+t,
> b(n) (M — i) b(m). > 5M  for =N.23
2 n 2/ n n

=a, > b(n) for n>=N.
—P(X, =a, i.0)=0.
Critical use of (37) is now made to obtain the conclusion of Lemma 22, namely
that
P(|S,] > b(n) i.0.) =0.
= (by Lemma 23) P(N,{S, < b(n)}) >0

Given any optimal rule r e T,,, r = n =S, = a, a.s. by Theorem 7. Therefore
P(t = o) = P(N.{S. < a,}) > 0.

CoroOLLARY 8. If P(X, = b(n)i.0o.) = 0, then liminf,_ a,/b(n) = 1.
Proor. Let

M .
§2 (v/x) log (y/x) dF(y)

LetM =1 4 1/m. b, (n) < b=%(Mn) < (1 + 2/m)b~*(n) for nlarge (Lemma 21).
By Theorem 9, a, > b,(n) for n large.

a™i(m) < byH(m) < (1 + 2/m)b~(n)

and so lim sup,_,., a~(n)/b~*(n) < 1, from which it follows that

by (%) = b7Y(x) = b7(x) .

liminf, ., a,/b(n) = 1.

8 Compare proof of result given by McCabe and Shepp in [17].
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REMARK 5. Observe that whenever P(S, = a,i.0.) = 0, combining Corol-
laries 4, 6, and 8 gives

1 < liminf,_ a,/b(n) < limsup,_..a,/b(n) < 8.

Thus for fixed ¢ > 0, if P(S, = (8 + ¢)b(n)i.0.) = 1, then P(S, > a,i.0.) =1,
and therefore all optimal rules stop with probability one.

We now derive a condition which ensures that P(S, > a,i.0.) = 1 even though
Eb~'(X,*) < oo. This condition will be expressed directly in terms of the dis-
tribution of X.

5. Certain stopping: Another sufficient condition.*

LemMMA 24. Let {X,} be i.i.d. nondegenerate mean zero random variables. Define
{n,} inductively as follows: Set n, = 1. Having defined n,_,, let n, = min{j >
ne_: EIS;| > 2E|S, _ |}. Let{c,}be any sequence of eventually positive, non-decreas-
ing numbers such that for some k,

ZI?:I:O .
"k
Then P(|S,| > c,E|S,|i.0.) = 0.
Proor.
P(Ujzn, 18:] 2 ¢ EIS;ID = Zite P(Unysicop, (IS5 Z ¢ EIS,1})
= Xt Plmax; o, |S;| = ¢, EIS, [}
(since ¢, E|S;| is non-decreasing).
| ”l+1_1’
by Lemma 11
< D g (by )
<230, 1 —0 as k— o0

"

therefore P(|S,| = ¢, E|S,|i.0.) = 0.
CoROLLARY 9. Let {X,} be as in Lemma 24. Let g(x) be any eventually positive
non-decreasing function of x such that
w 1
2ikk, 92" <
for k, sufficiently large, then
P(|S,| = 9(E|S,|)E|S,| i.0.) =0.

Proor. With n, as in Lemma 24, we need only verify that

1
Py
SIS,
W log we may assume k, = 1.
E(S,,| > 2E|S,, | = E|S, | > 2*'E|S, |

= 2E|X,| 5

¢ Compare with the contrapositive of section title 3.
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3 integer b such that 2°E|X,| = 2.

1 1
Dbt — e = Do

9(E|S,,,[) ) (2"""12"EIX1|)
= 2t (2k)
In particular, for any « > 1, P(|S,| = (log (E|S,|))*E|S,|i.0.) = 0.

THEOREM 10. Let g(x) be any function satisfying the conditions of Corollary 9.
If P(|X,| = g(n)b(n)i.0.) = 1, then P(S, > a,i.0.) = 1.

Proor. Suppose P(S, > a,i.0.) = 0. Corollary 6 yields E|S,| < 50b(n) for n
large. Therefore P(|X,| = (9(n)/50)E|S,|i.0.) = 1, from which one concludes
that P(|S,| = (9(n)/100)E|S,|i.0.) = 1, a contradiction of Corollary 9.

Theorems 9 and 10 involve conditions on the negative part of the distribution
of X; when Eb~'(X;*) < co. Examples of random variables which obey such
conditions are provided by Corollary 10.

CorOLLARY 10. Let X, be a random variable having density

_ G -
fx) = *(log )" x=e
39) =0 x| < e
= —CZ— X< —e,
x*(log |x|)? B

wherea > 2, 8 > 1and C,and C,are positive constants chosen so that =, f(x) dx = 1
and EX; = 0. Then

(40) B>a—1=PS,=a, i.0.) =0;
(41) I<fg<a—2=PS,>a, io)=1.

Proor. First consider lim, ., (log x)* {7 [y(log y)**<]~* dy for some fixed ¢ > 0.
Using L’Hospital’s Rule

lim, 37 [(ogy/*Idy _ o —[x(log™* _ 1
(log )~ —&((logx)™7/x) e
Consequently, {7 [(y/x) log (y/x)/y*(log y)*] dy is asymptotic to
1 < 1 _ 1 ) _  (logx)==*2 ’
(o — 2)(logx)==*  (a — I)(log x)~? x(a — 1)(a — 2)

which implies that 5=(x) is asymptotic to [(a — 1)(a — 2)x(log x)*~*]/C,.

1 _ - (= (e = Dy(logy)* ,
im, .. {7 6(y) dF(y) = lim, ... §: o dy

= lim, ., (@ — I)(a — 2) §=

L @y—o;

therefore Eb—(X;*) < oo.
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If 8> a — 1, then
lim, .. §=% b=¥(x]) dF(x)
_ Ca = 1)a —2) li j- dx C
G 7T x| (log [y e
Hence Eb™(|x,]) < oo. Applying Theorem 9, P(S, > a,i.0.) = 0.
Suppose 1 < < a — 2. Let g(x) = (logx)'*’ where 0 < 6 <a — 8 — 2,
0 < Zma(9(2) > o0 g(x) / for x > 1. We show P(|X,| = g(n)b(n)i.0.) = 1.

joo, IXIQOB I s gy X therefore
x*(log |x])? |x] log |

| X, |(log | X, [)*~*~* io.) —
P< I gn1.0.>_1 Vo< K< oo

3K < o0 3 b(x) < Kx/2(log x)*~2 for x large.
Let

h(x) = g(x)b(x) < KX

5 fl)—“ for x large; therefore
og x)*~%=

A (x) > x(log“;)“—"i for x large

1= P< Ian(logIl{an)”‘H >0 i.o.> < P(h7(X,)) = n i.0.).

Therefore P(|X,| = h(n) i.0.) = 1. We now invoke Theorem 10, obtaining
P(S, > a,i.0.) = 1.

6. P(S,> ¢,i.0.)# P(X, > c,i.0.). Let{c,}bea sequence of positive numbers
such that ¢, /n™\ and c,*~*/n " co for some ¢ > 0. Let {X,} be i.i.d. mean zero
random variables such that E|X,|'** = co for some 0 < § < 1. Letting S, =
X, + --- 4 X,, Feller [13] proved that
(42) P(S,| > ¢, i.0.) = P(lX,| > ¢, i.0.).

According to[13] page 259, footnote 3, the condition ¢,*~*/n " co can be replaced
by the requirement that lim inf,_, ¢,,/c, > 2!. Feller further stated (page 259)
that the absolute values could be removed from both sides of (42) without af-

fecting the validity of the equation. As an outgrowth of our results, we can
produce examples to contradict Feller’s latter assertion.

CorOLLARY 11. Let X, have a density as in Corollary 10, satisfying (39) and (41).
For0<e<1,
1= P(S, > (1 — ¢)b(n) i.0.) > P(X, > (1 — e)b(n) i.0.) =0

where
1

i (y/%) log (y/x) dF(y) |
REMARK 6. Corollary 11 will provide the desired counterexample since
b(n)/n ™\, 0 and lim,_,, b(2n)/b(n) = 2 > 2} (see Lemma 22).

bY(x) =
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Proor oF CoroLLARY 11. As verified in Corollary 10, Eb~*(X;*) < co. There-
fore P(2/(1—¢)b~(X,) > ni.o.) =0. Equivalently, P(X, > b(n(1 —¢)/2)i.0.) =0.
Owing to Lemma 21, b(n(1 — ¢)/2) < (1 — ¢)b(n) for nlarge. Therefore P(X, >
(1 — ¢)b(n)i.0.) = 0. Corollary 8 gives a, > (1 — ¢)b(n) for n large, which com-
bined with Corollary 10 yields P(S, > (1 — ¢)b(n) i.0.) = 1.

Curiously enough, Feller himself has a counterexample in his book ([14]
page 247).

7. liminf, ., a,/E|S,| < co whenever E|X,|'"* < oco. I suspect that whenever
E|X,|'** < co for some ¢ > O that lim, ., a,/E|S,| exists and is finite. This has
effectively been shown (though not stated in this form) when X; has finite variance
or is in the domain of normal attraction of a stable law of order a > 1. (see
[25],[19]and [18]). Recently, it has come to my attention that Thompson, Basu,
and Owen [23]and B. Davis [7] have virtually proven that liminf, . a,/E|S,| < oo
if E|X,['** < oo for some ¢ > 0. Another proof of this fact is presented here.
We dispense with the implicit convention regarding the special meaning of {5,}.

TueOREM 11. Let {X,} be a sequence of pairwise independent identically distributed
mean zero random variables. Given {b,} such that

(43) b,>0  and ”7 N
(#4) P o
(45) P(IX,| = b, i.0.) =0
then E|S,| = o(b,).

ProOOF. Let

Y,, =X, if |X,|<b,

n,J J

=0 otherwise.
Let Z,,=X,—Y,;. Let T,=Y1,Y,,, V,=5".Z,, S,=T, + V.,
ES, = 0= (ET,)? = (EV,).
E[S,| = E|T,| + E|V,| < (ET,)! + E|V,|
= (Var T, 4 (ET, )t + E|V,|
= (i Var Y, ; + (EV,)) + E|V,
= (T3 EYS; + (EIVLDDY + E|V|
= (EY;, + (X3 ElZ, ) + Z5 ElZ, 4
= (nEY;, + (nE|Z, \))) + nE|Z, | ;
(44) gives b, < b, ;.
Extend b, to a continuous function b(x) for x > 0 such that b(x)/x\, and
b(x)/x / oo.
0= P(X,| =5, i.0.)= Eb'(|X,|) < oo
= lim,_,, Eb_l(|Xll)1(b—1|Xl|g(n)) =0.
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Let
u = b7(|Xy)
E\Z,,| = EIX|1x 20 = Eb(u)1 (50

= E@ ~u1(uzn} g b(n) Eul(ué")

n
= 0<M> :
n
b*(n)/n /" co so 3 integers ¢, " co 3 b¥(c,)/c, = o(b*(n)/n).
Put u = 67Y(|X}))
EY,, = EX121(1x1|§bn)
= Eb*(u)l,, .,

: ul(cn<u§n)

_ gP® g, + o)
u u

b¥(c
C

o) o) o2).

E|S,| < (0(8%(n)) + (o(b(n)))* + o(b(n)) = o(b(n))
E[S,| = o(b(m)) .

=

W Eu+ 20 Bt
n n
Therefore,

CoROLLARY 12. Let {X,} be a sequence of pairwise independent identically dis-
tributed random variables with mean zero. Assume31 < a < 2 such that E| X |* < co.
Then E|S,| = o(n*).

PROOF.

EX|*<oco=P(X,)*=n i.0)=0
= P(|X,| = n¥* i.0.) =0
= E|S,| = o(n¥%)

by Theorem 11 since n*/*/n\, and n**/n / co.

THEOREM 12. Let {X,} be i.i.d. mean zero nondegenerate random variables such
that E|X||* < co for some a > 1. Then

lim inf, %=
. EISnI< o

Proor. Assumelim,_,a,/E|S,|=oc0. Recalling Lemma 19, V>0, x’f(x)—oco.
f(n) < a,/nso a,/(n*~?) — co. Incorporating Corollary 5, Vd > 0, P(S, > n'~?
i.o.) = 1. However, combining Lemma 24 with Corollary 12 we find that

P(S,| > n¥**%1 j0.) =0 Vg, >0.
Choose d; so that 1/a + 9, < 1 to obtain the desired contradiction.
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8. For } < a < 1, optimal rules for E(S,/t) are finite a.s.

THEOREM 13. Let {X,} be identically nondegenerate mean zero random variables.
Fix } < a < 1. Assume that lim sup,, S,/n* = 0 a.s. and that E sup, S,/n* < oo.
Then 3t e T, > E(S.[t*) = sup,., E(S,/t*) and for each such v, P(t < oo0) = 1.
Again we define

E%EEil_;tﬁi for teT,.
Proor. Theorem 1 guarantees the existence of an optimal re T, and of
(@) eT,>
E a+S‘r"(¢) = sup,.,_E a+ S, )
(n + (@) To(n40)e
Lemmas 6 and 7 can be modified to show that if

E_a_—f_in‘_‘”_ > 4
(n+ 7 (@) = n*
thenm > nand o’ < awithm —n-4a—a >0.
a + Sz’ n(@) a’
Tt @y T m
For optimalr e T, let 4, = {a: P(S, < a,7 = n) > 0}. A, is nonempty when-
ever P(r =n)>0. We may suppose, to obtain a contradiction, that P(zr = c0) > 0.
It follows that for every N, P(r < N) + P(r = o0) < 1, for if not, let
= if t<N
=1Ist k>N:§5,>0 if 1=o0.
Then 7’ ¢ T,, and since P(S, > 0i.0.) = 1,
E S > E Se o contradiction.
(z.l)a z.a
Hence 3 infinitely many numbers n, < n, < --- such that P(r = n,) > 0= 4,
is nonempty. For b, € 4,,,

sup,c,. E

bk + St < bk .

(m + 0% 7 (m)"

The analogues of Lemma 8 and Lemma 9 verify the existence of unique numbers
a, such that

E % a, + S, S a
sup,. =" and 0 < a .
Piero, E ( T o) e <o, <a <
The class of rules which maximize E((a + S,)/(n + t)*) over t e T, has the same
form as that of Theorem 7. Thus P(S, = a,i.0.) = 0 and, letting

t,=1st k: S8, =>a,,, if such & exists

n

= oo otherwise,
S S
" =sup,., E—" .
(n+ ) (n+ 1)
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As in Lemma 15, one can obtain

ES,* _ES* . S,
(2n)* (n+ 1)

and then the technique of Lemma 16 can be utilized to give

la g Sa %
8 n~ (n+1t) n®

so that in particular we have a,_,/(n + m)* < 8a,/n*. As in Lemma 17 and
Corollary 4,
PS,=a, i.0)=0=P(X, =a, i0)=0
=,PX,=a,)< o=} PX, =a,) < oo
=3, Pla'(X) =n < o= Ea‘l(Xl)l{X sq < 0
S, dP a,.,dP o X dF(x)
8na<2k15t—k( +k)“< Zle(t—k)(n_l_k)a Zkl—rmr—

< 16an P(t, < 00) + Ziai 5= Ve Ak Xdk]z(X)

+z]mﬁw—wymﬂmmm

a

1 jl—a —a a;
— D (177 — 017%) (41 x dF(x)

VAN
S

o i Sait X(@ (X)) dF(x)

Il
S

4+ ——— 2. x(a7(x))=* dF(x) .

a
l_a nt1

For n large,

o XaTHX) (1 — a)a,
ety T > e

Dpim aQ _, 2 8y

St my S @@y @)
forz>y. Therefore {3 [xa~'(x)/(a~*(x))*]dF(x) < 8a,/n" (o a}(x)dF(x);nlarge—

§,a7(x) dF(x) > (1 — a)/160 > 0; = Ea~'(X,)1 4 .o = oo = « contradiction.
Therefore P(r < o0) = 1.

9. EX; = 0= P(S, = (4 + ¢)'E|S,|i.0.) = 1. An optimal rule takes advan-
tage of large fluctuations of a sequence of random variables. Thus, in order to dis-
cover something about the frequency of certain large fluctuations of a particular
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sequence of random variables, one might employ optimal extended-valued stop-
ping rules r, examining P(r = oo0). Following this prescription, we discover a
result much stronger than the well-known fact that P(S, > 0i.0.) =1 for a
nondegenerate random walk generated by a mean-zero random variable.

Let {X,]} be a sequence of nondegenerate i.i.d. mean-zero random variables.
Fix ¢ > 0. Let Y, = S,/(n**) and Y, = 0. We will first show that 3re 7,5
EY, = sup,., EY, < oco. By the strong law of large numbers, Y, — Y, a.s.

According to Theorem 1, we need only prove

LeEMMA 25.

S,
Esup, i

PRrOOF.
1

1+e

£ sup, S <EZn11X|——E|X|Z"1 < oo

Analogues of Lemmas 6-9 remain valid in this setting. Using a proof similar
to that given in Lemma 13 or that presented in Theorem 13 one can show the
existence of unique numbers a, such that

a S, a,
supte Tw »_—I——* =

( + t)l—i—e nite :

We want to show that P(S, > a,i.0.) = 1. Asin Lemma 15,

S, up S,
(2n)1+£ teTw (n + t)1+e
a, +S, _ a,
< SuPteTwEG;q——t)l—iz = ke’
Therefore
ES,* _ E|S,|
a, > ire | p24e
Let
t0=1st k: S, =a,,, if such & exists,
= oo " otherwise;
S S
E__ 2t _ —sup,., E——* _.
(n + tn0)1+e had (n + t)1+5

Continuing further, we can parrot Lemma 16 and Corollary 3, obtaining for
sufficiently small ¢ > 0, a,/(10n'*%) < ES, of/(n + 1,°)*** and thus 10a,/(n'**) >
(@pyr)/(n + k) for all n, k = 1.
LeMMA 26.
P(S, > a, 1.0.) = 1.
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Proor.
. 2a,,, dP x dF(x)
ion < gy = B S g B Vg
20 dF|
< a” P, < 00) + Xitnm Z: =k Sa +1xk1+(eX)

20a

~ P(t, 0 < o0) + Xian (Zk n+lk11+ ) SigiﬂxdF(X)
20"” P(t,? < 00) + — §2, X dF(x)..

= 1+e

Now assume P(S, > a,i.0.) = 0. Then P(z," < c0) — 0 as n — oo, and so

o, X dF(x)

for n large and
u

20 Vo x dF(x)

Since a, > ES,*/(2'*%) one can prove that P(X, > a,i.0.) = 0.
Equivalently, P(S, > a,i.0.) = 0 = Ea'(X*) < co. Hence

a(u) > — for u large.

. - u _
lim, .., §: (W> dF(u) = 0.

However,

o B gpuyz STRAF@)
§ox dF() §o xdF(x)

This contradiction establishes that P(S, > a,i.0.) = 1.

§:

THEOREM 14. Let{X,}bei.i.d. mean zero random variables. LetS, =X, 4 ...+
X,. ThenVc <%, P(S, = cE|S,|i.0.) = 1.

Proor. This follows immediately from Lemma 26 because a, > cE|S,|.
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