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LOCAL VARIATION OF DIFFUSION IN LOCAL TIME

By FrRANK B. KNIGHT
University of Illinois
Let X{(¢), X(0) = 0, be a nonsingular diffusion in the natural scale in a
neighborhood of 0, and let f{¢, x) be its local time. The local behavior of
X(f-Y(t, 0)) is studied, and used to obtain upper and lower functions of a
new type for X(¢) at £ = 0.

0. Introduction. Let X(¢) = X(t, w), X(0) = 0, be a nonsingular diffusion in
the natural scale in a neighborhood of 0. The terminology is that of It6 and
McKean [3]: the speed measure is m(dx) and the local time is f{t, x) = d*/dm*
(Lebesgue measure {s < t: X(s) < x}). Both X(r) and f{t, x) are continuous for
each path w in the variables shown. An interesting open problem (see [3]4.11,
Problem 12) is to find an analytic test for a function 0 = ~(0) < A(7), non-
decreasing and continuous, to be of upper or lower class locally for X(¢), in the
sense of Kolmogorov (k is “upper” of “lower” according to whether P{X(f) <
h(1), 0 < t < ¢, for some ¢ > 0} is 1 or 0). If X(¢) is Brownian motion such a
test is well known (Petrowsky [7]).

In this paper we study the related problem in which ¢ is replaced by the left-
continuous inverse local time f~V(a) = inf {t: f(z, 0) = a}. This much more
tractable problem then affords the solution to a problem in ordinary time which
is very similar, but not equivalent, to the above. For purposes of comparison
we can state this result as

THEOREM 0.! Let p(t, x, y) be the continuous transition density of X(t) (with
respect to m(dx)—see ([3]4.11)). Then P{X(t) < h(f"""(f(1))), 0 < t < & for some
e > 0} is 1 or 0 according as §,+ h=\(t)p(t, 0, 0) dt is finite or infinite.

REMARKS. It is not hard to see from the fact that zeros of X are points of
increase of f [1, V, (3.8)] that f~V(f(r)) = sup {s < t: X(s) = 0}. The conclu-
sion of Theorem 0 is unchanged if X(r) is replaced by — X{(z), in contrast to the
Kolmogorov classes which may be different for X(7) and — X(#). Thus it repre-
sents a symmetric analogue of the latter. On the other hand, the result also
holds if X(7) is only defined on [0, ) with 0 an instantaneous singular point, so
that the generator G satisfies (Gu(0))m(0) = u*(0) — u(0)k(0), as in ([3] Section
4.1). Indeed, the proof below needs no change in this case.

1. Variation of X(f"V(a)). In the remainder of the paper we assume that
X(t) is conservative and persistent. Since Theorem 0 concerns only a local prop-
erty at r = 0 this assumption evidently entails no loss of generality (we are free
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1 We use the notations f(f) = f(t, 0) and A-! = 1/k in distinction to the inverse function A1),
AMS 1970 subject classification. Primary 60J60.
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LOCAL VARIATION OF DIFFUSION 1027

to set k(dx) = 0 and change m(dx) outside a neighborhood of 0). In particular,
lim,_, f(f) = oo with probability 1. We now introduce two obvious concepts.

DEFINITION 1. Let 0 < g(¢) be continuous and non-decreasing, and let M(¢) =

max,,., X(s). We say that
(i) 9(¢) is upper (resp. lower) in local time if P{M(f~V(a)) < g(a), 0 < a < ¢
for some ¢ > 0} = 1 (resp. equals 0);

(ii) g(t) is lower for M in local time if P{M(f~V(a)) > g(a), 0 < a < ¢ for
some ¢ > 0} = 1.

Since lim,_, f"P(a) = 0 a.s., the Blumenthal Zero-One Law shows that in (i)
every ¢ is either upper or lower in local time. Investigation of these concepts is
quite simple when based on certain known facts which hold independently of
m(dx), and which we state as

THEOREM 1. For0 = a, < a; < - -+ < a, the processes

(% W) = L), X) =S (@), ¥), l=k=nx=0
are independent diffusions in the parameter x with the same generator y(d*/dy*), ab-
sorbing barrier at y = 0, and initial values a, — a,_, at x = 0 respectively. Letting
x(a,_,, @) = inf {x: 5,(x, w) = O} denote the absorption times, we have

X(Qp_yy @) = MAXp-1) (o, _)<t<si-Diay (1) .S, and
P{x(a,_,, ;) < z} = exp _&:z—ak_—l) , z>0.

These results are from [4], or alternatively [8]. To obtain a rationale for their
validity the reader can imagine X(r) approximated by simple random walks of
step size A > 0 and of step duration at x = nA given by Am[x, x + A), as in
([4] Section 4). f~V(a) is approximated by the sum of the durations steps pre-
ceding the [aA~"]th step from 0 to A, and since the number of such steps does
not depend on m(dx) the maximum of the random walk in this interval is likewise
free of m(dx). It is thus evident that the classes introduced in (i) and (ii) will
not depend on m.

THEOREM 2. [In Definition 1, g(t) is upper or lower in local time according as
So+ 97X(¢) dt is finite or infinite.

Proor. Using the continuity of g we have

PIM(f70(e)) = 9(2), 0 < < ¢}
P{x(0, a) < 9(a), 0 < a < ¢}
= lim,_,, P{x(0, kA) < g(kA),0 < k < A1},
By the monotonicity of g and Theorem 1, this becomes
lim,_,, P{x((k — 1)A, kA) < g(kA), 0 < k < A~}

= lim,_,, [Ti<.a—1 eXp —(Ag~'(kA))
= lim,_,, eXp — X} ,c.,-1 Ag~' (kD)
=exp— {5+ g7'(t) dr.

o
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Letting ¢ — 04 we get 1 or 0 according as the integral converges or diverges,
completing the proof.

ReMARK. If g is upper (resp. lower) in local time then conditional upon the
process f{(+), with probability 1 g(f{-)) is upper (resp. lower) in the usual sense.
However, this does not mean that g(f(.)) is with probability 1 upper (resp.
lower), even if X() is Brownian motion.

Turning to the second part of Definition 1 we will be content to obtain a
function g(a) for which P{lim inf,_,, M(f"V(a))g (@) = 1} = 1. Then(1 + c)g(a)
is lower for M in local time if —1 < ¢ < 0, but not for ¢ > 0.

THEOREM 3.
P{lim inf,_,, M(f""V(a))g " (a) = 1} =1 for g(a) = a(loglog 1/a)™*.

Proor. The proof is a simplified version of one given by P. Lévy [6] in a
similar situation. For 1 < 8 < 1 and fixed ¢ we set

A, = {M(f~V(F") < (1 + ¢)f"(log log 57)7'}
and obtain
T P(A,) = T exp—((1 + ¢)7'loglog 57)
= N (nlog pyate™
which is finite for —1 < ¢ < 0 and infinite for ¢ > 0. By the first Borel-Cantelli

lemma the corresponding lim inf along the sequence " is not less than I for
—1 < ¢ <0. Butfor g~ < a < 8~ we have

M (E) o M@)o MUPTUET)
9(8"™) 9(a) 9(8")
so that by considering 8, = 1 — k™' and using lim,_, 9(8,")97%(8,"™") = 1 — k7
we get the lower bound 1 for the unrestricted lim inf.
Conversely, for ¢ > 0 we can show that with probability 1 infinitely many of
the events 4, occur. It suffices for this that, for m > 1, 37 .., P(4,| 4/, m =
k < n) = oo where A4,’ is the complement of 4,. We have

P(A4,14,),mZ k <n)

_ pay PE BT 2 (L 00(F Y, e x5 87 = (14 90(EM)
VPO, B = (T 9g(8™), - X(0,57) = (1+ 0)g(B™)

The second factor on the right may be written in the form /,7,~* where

=5 O P exp— (F22 ) piy)
y y

L= e (T5)p0)

in which « = (1 + c)g(ﬂ"—l) and p(y) denotes the conditional probability of the
inequalities following the first, given x(8", f*~!) = y in the numerator or given
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x(0, f~7!) = y in the denominator. Since the ratio of the integrands is
(I — B)exp(B*/y) > 1 — B, this second factor exceeds 1 — 8 and the sum is
infinite along with ;> ., P(4,). Consequently the lim inf along this sequence
is at most 1, and the theorem is proved.

2. Variation of X(r). In the present section we adapt the method of Section
1 to prove Theorem 0. We need a variety of lemmas. The first one enables us
to “discretize” the problem.

LEMMA 2.1. Let 0 = h(0) < h(t) be non-decreasing and continuous. For a > 0
the events {X(f) < h(f VA1), 0 < t < f8(a)} and lim,_,, U7, {x(0, k27"a) <
h(f Pk — 1)27"a)) + 0, 1 < k < 2"} differ by at most a set of probability 0.

Proor. It is clear that X(r) > A(f~Vf(r)) implies x(0, k27 a) > A(f~V((k —
1)2-"a)) for fl(k — 1)27"a) < t < f(k2 "a), proving the inclusion from right to
left. On the other hand, if 6 > 0 is fixed and for all » there is a k with
x(0, k27"a) > h(fV((k — 1)27"a)) + 0 then for a subsequence k, we can obtain
lim,_,fV((k, — 1)27"a) =t < fV(a). It follows that X(rf) = 0 (since X is
continuous), and either lim, _,_, x(0, (k, — 1)27") = lim,__, x(0, k£,27") = x(0, f(1)),
or both limits are x(0, f(f)-+), or else the first limit is x(0, f{(¢)) and the second is
x(0, f(1)+) > x(0, f(r)). Since f-Vf(r) < t we have in all cases x(0, f{t)+) =
h(fVf(1)) + 6. But either x(0,f(r)+) = x(0, f(t)) = M(t), and then M(t) =
h(f~Vf(t)) + J, orelse x(0, f()+) > x(0, f(¢)) and thereis a t' > t with f{¢') = f(1)
and x(0, f(1)+) = M(¢'). In this case M(t') = h(f"Uf(')) + 0, and we may
assume ¢ < f"Y(a) since the event {x(0, a4) > x(0, @)} has probability 0.
Reducing ¢ if necessary, this implies in both cases a t < f'""!(a) with X(¢) =
h(fPf(t)) + d, establishing the reverse inclusion.

The central part of the proof is in

LemMma 2.2. If P{X(t) < (fVA1), 0 < t < e for some ¢ > 0} =0, then
E o+ B7(f"V(a))da = co. If, however, this event has probability 1 then
$or A71(fCV (@) da < oo a.s.

Proor. By the Blumenthal Zero-One Law the event in question has proba-
bility 0 or 1, as does also the convergence of the integral (it will be shown later
that the expectation of the integral is infinite if and only if the integral diverges
a.s.). Lemma 2.1 shows that if the probability is 0, so that for every ¢ > 0 there
isa0 <t <ewith X(¢) > h(fVf(1)), then 1 = P{lim,_, lim inf,__ (the number
of k < 2 for which x(0, k2~"a) = h(f"V((k — 1)27"a)) 4 0) = co}. Indeed, the
lemma is applied with 2-™a in place of a, for m arbitrarily large. Here we may
replace x(0, k27"a) by x((k — 1)27"a, k27"a), as in Theorem 2. Now the first
Borel-Cantelli Lemma (or more precisely its proof) shows that

0o = lim,_, lim inf,_ 3%, P{x((k — 1)2~"a, k2"a)
> h(f~0((k — 1)2-"a)) + 8} .
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Using Theorem 1 the probabilities are
E(1 — exp —[a2"(h(fV(k — 1)27"a) 4 9)7])
< a27"E(h(fV(k — 1)27"a) 4 9)7L.
The sum is thus not larger as n — oo than E {& (A(fV(B)) + 9)'dp, and as
0 — 0 we obtain divergence of the expectation.

Conversely, suppose that the probability is 1, so that for small « > 0 and
small 0 > 0 we have lim, ., P(N}Z, S;) > 0 where S, = {x((k — 1)27"a, k27 "a) <
h(fV((k — 1)27"a)) + d}. Letting & (f~?(8)) denote the usual o-field of the
past of X(#) up to the stopping time f*-V(8) and /(S) the indicator of S we have

P(NiZ1 Si) = E[E((Sw) |- (f (@ — 27"a))(N{Z S))]
= E[E{E(I(Sy)|- 7 (f " (a — 27"a)))](Syn_y)|
FU P« = 27" M) H(NES? Si)]
= E[E{E(- - - E(E(I(Sy)|-7 (S (@ — 27"a)))(Syn_s)|
U (a =27 Pa))) --+)
I(S)|. 7 (f 7027 Pa)(Sy)|. 7 (SR (27 a) H(S)] -
The strong Markov property now permits us to bound the successive conditional
expectations from above using the inequalities

(2.1)
on —2 " FT(F-V((m — g
E {<Hk=m+l P h(f2((k — 1)27"a)) + 5) 1(8,) |- = (S 12 ))}
an —27"a T (-1 _ -ny
< E{ITn o e g g | U = D2

for 1 < m < 2". Granting (2.1) it follows by Theorem 1 that

PNi= 8 = E[E< 1 P Rk __21_)”;%)) ¥ ’57(0) )]

—27"a

VRO — D27a) + 0

But as n — oo the last expression becomes E exp — {& (h(f*""(B)) + 9)~* dp, and
letting d — O this becomes 0 unless §,+ £A~'(f~"(B)) d3 converges with probability
1, as was to be shown. ‘

Returning to the proof of (2.1) we shall only write the case m = 2" — 1 as
the others are completely analogous. Settingc = f"?(a — 2~ ""Pa)andd = 27"q,
and using X(c) = O together with the strong Markov property at time c, this
reduces to showing that

= Eexp Y iv

E (exp — (h(c +f<—(11)(d)) T ) I(z(o,d)<h(c)+5)>

d d
< Eexp— <h(c T ) + o + h(c) + 5>
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when ¢ is given. The left side may be written
E <exp — d
h(c + 7)) + 8
and in view of Theorem 1 it is enough to prove the bound Eexp —[d/(h(c +
S7V(d)) + 0)] for the conditional probability. But the condition {x(0,d) <
h(c) + 0} = {M(f~(d)) < h(c) + 0} has the effect of increasing P(f~*(d) < t}
for each r > 0, as is easily seen.? Hence the result follows.

The next aim is to prove the following Lemma 2.5, but to do so we need the
(purely analytical) Lemmas 2.3 and 2.4.

(x(0, ) = k(o) + 0}) P{x(0, d) < h(e) + 9}

LemMA 2.3. If O < r(t) is continuous and non-increasing on [0, c] and if F(dA)
and G(dA) are two (nonnegative, finite) measures on [0, c] X [0, c] satisfying, for
each rectangle of the form Q = [0, a] X [0, 0], 0 < a, b < c, the inequality F(Q) <
G(Q), then \g §§ r(s)r(t)F(dA)y < §; ¢ r(s)r(1)G(dA).

Proor. It suffices to prove this for the functions r,(f) = r(k,-») on {k,-» <
t < (k 4+ 1)27"}, 0 < k < [2"c] in place of r(t), and then to let n — co. For r,(f)
the result can be written in the matrix form r,(f; ;r,’ < r,(g,;)r,’ where f; ;and
g;,; are the F and G-measures of the rectangle [i27", (i + 1)27") X [j27", (j +
1)2-"). Setting r, = r,, we now use an inductive procedure in which, at the
kth step, r, , is replaced by r, .., for which the first k 4 1 elements equal r(k2-")
and the remaining are unchanged. It is shown that the inequality for r, ,,,
implies that for r,,. Since in the case k + 1 = [2"c] the entries of r, ., are
equal and nonnegative, the inequality is obvious in that case and the others
follow by the induction.

The induction step to be established is thus

rn,k(gii - fij)r:t,k L R —_fij)r:t,k-(-l =0.

The left side is seen to equal

2(r (k) — ru(k + 1)) Zjsr 221 (95,5 — fi,)%a())
+ (r,(k) — r(k + 1)) 2o ise 22 (955 — fis)
= 2(r, (k) — r(k + D[ D et (905 — [ )70
+ r(k + 1) Zigk t=1(9:,5 — fi,5)]
= 2(r, (k) — r,(k + 1)) X7 350955 — fura([27¢])
=0

where the second inequality is proved by replacing inside the brackets r,(k + 1)
by r,(k + 2), then by r,(k 4 3), and so forth to r,([2"¢]), decreasing the total

2 A formal proof can be given, starting with Eexp — Af'-1(d) = exp — d¢(2) where ¢(2) =
m(0)2 + {53 (1 — e~2¥)n(dy), as in ([3] 6.2). The conditioning may be introduced by simply ex-
cising the excursions of X(f) from 0 which reach A(c) + 4, as in [5]. Then since these excursions
do not contribute to f(¢) the conditional local time will have a similar representation but with
a new measure ny(dy) < n(dy).
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at each step in view of F(Q) < G(Q) and r,(k + 1) Z r,(k +2) = - - - Z r,([2¢]).
This proves Lemma 2.3.

The next lemma is essentially proved in ([2] page 131) in the case when
m(0) = 0, so that f* has no linear part (see footnote 2), but we.do not need
this added assumption.?®

LEmMA 2.4. EfY(f) < 2(Ef(1)), 0 < 1.

PrOOF. We show first that lim,_. x*P{f(f) > x} = 0 for k > 0 and ¢ > 0.
This follows from
P{f(t) > x} = Pf0(x) < 1}
< Eexp —A(f7N(x) — 1)
= exp(—x¢(2) + A1), $(2) > 0.
We use this in integrating by parts below.
§ e HEf(r) di = {7 e 7 xd (PUfiD) < x} — 1) dr
= (e {5 P{f(t) > x}dx dt
= §7 (57 e P (x) < 1} di) dx

— % i §o eitd, PLf(x) < 1} dx

= 55 exp(—x 9(4) dx

= (4¢(H)~" -

Similarly, we have
(oo e MEf* (1) dt = \¢ e\ xd (P{f(1) = xi} — 1) dt
= §¢ §¢ e MP{fN(xY) < 1} didx

= L g5 7 e, P ) < e
= 2§ exp(—xig(D) dx

— 2271 ()2

Comparison of these results shows that
Ef(t) = 27‘1’; Vi Ef(S)Ef(t — ) ds .

Now by ([3]5.4, 3) we have (d/dn)Ef(r) = p(t, 0, 0), and together with Ef(0) = 0
this yields

EF() = 2§ Bfts) 5 Bt — 9)ds < 2Bf(0) 549 Bftc — 5) ds = 2(B(0)

3 The author is informed that R. K. Getoor has given another proof (unpublished).
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We can now prove

LEmMMA 2.5. §o+ 7Y(f "V (a)) da converges or diverges with probabzlzty 1 according
as o+ k7 (1)p(t, 0, 0) dt converges or diverges.

Proor. It is first to be observed that for 0 < ¢’ < ¢ (& A7Y(f"V(a)) da =
{420, A~(¢) df(r). To show this one can write the left side as

(e”)
limA—.o A Z[e'rllgks[srl] h—l(f(_l)(kA)) ’
and choosing ¢, so that f(t,) = kA and f~f(r,) = ¢, this becomes

limy_, 300 A7 (0) (fthr) — A1) -

Now as A — 0 the terms where 7,,, — t, > 0 for fixed 6 > 0 have a negligible
effect on the sum, enabling us to insert additional ¢’s in these intervals (¢, 7,.,,)
to obtain 7,,, — t, < 0 for all k. Since ¢ is arbitrarily small the assertion fol-
lows. Now, letting ¢’ — 0, we get the same identity with ¢ = 04. But
E {7V B\ (1) df(t) is finite if and only if E §{¢ h~'(r) df(z) is finite, since if
ER7Y(f""(¢)) = oo then both expectations are clearly infinite, and otherwise
the difference of the two expectations is finite. Next, by ([3] 5.4, 3), we have
E §5+ k(1) df(t) = (v B4 (1)p(2, 0, 0) dt, so it only remains to prove that if this
is infinite then {,+ £7(r) df(r) diverges with probability 1. By Lemma 2.4,

E(f(9)f11)) < (Ef*(5)Ef*(1))!
=< 2Ef(s)Ef(r)
r(f) = h7Y(7) if d<t<e
= h7Y(¢') if 0<tse 0<e<e,

and setting

we can apply Lemma 2.3 to obtain
E(§i: r(t) df(0))” = §5+ Siv r(s)r(r) dE(A()A(1))
= 2(§5- (1) dEA(D))* -
Consequently, setting R(¢’, ¢) = {5+ () df(t), we have
Variance R(¢’, e)(ER(¢', ¢))* < 1.

If, contrary to what we wish to show, {5. A7%() df{t) is small with probability
near to 1 for small ¢ while its expectation is infinite, then for small ¢’ and ¢,
R(¢', ¢) will also be small, while its éxpectation will be arbitrarily large. In this
case one would have for 6 > 0, Variance R(¢', )(ER(¢’, ¢))™* = 2 — 4, contra-
dicting the previous inequality. This completes the proof of Lemma 2.5.

Combining Lemmas 2.2 and 2.5, Theorem 0 follows immediately.
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