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DISCUSSION ON PROFESSOR KINGMAN’S PAPER

PROFESSOR D. L. BURKHOLDER (University of Illinois). The key to the point-
wise ergodic theorem for subadditive stochastic processes is the decomposition

(1) xst = yst + Zat *

Here y is an additive process satisfying Ey, = y(x) and z is a nonnegative sub-
additive process with y(z) = 0. Kingman’s elegant proof of the existence of such
a decomposition for any subadditive process x is the most difficult part of his
paper [2] so a slightly different proof, one which is more probabilistic in its
orientation, may be of some interest.

The main novelty in the following proof is the use of Komlds’s theorem [3]:
If X), X,, - - is an L'-bounded random variable sequence (sup, E|X,| < o), then
there is a sequence n, < n, < - - - of positive integers and an integrable random vari-
able Y such that

j_l g:l Xni - Y

almost everywhere as j — co. This theorem could be avoided if the sequence
f, = (fi) defined below could be shown to converge almost everywhere. How-
ever, quite apart from this possibility, Komlos’s theorem gives at once enough
information to carry through the proof of (1); it is enough to know that the se-
quence of Cesaro means of some subsequence of f, converges almost everywhere.

The first steps leading to Komlds’s remarkable theorem were made by
Steinhaus, Austin, Rényi, and Révész; see [3]. Recent contributions have been
made by Chatterji; for example, see [1].

Now let x = (x,,) be a subadditive process and y = y(x). The desired decom-
position (1) may be deduced easily from the following fact.

LEMMA. There is a stationary random variable sequence for frs -+ such that
Efy =y and
2) TS S X 0<s<t.

Given this, let y,, = 312} f, and z,, = x,, — y,,. Theny is an additive process
with Ey, = 7 and z is a nonnegative subadditive process with y(z) = 0:

17 Ezy, = 17 E(xy, — Yor)
=t'9,—r—0
as t — co. This proves (1).

Proor oF LEMMA. Let

(3) Sin = 170 2070 (Kkkrr = Xwrirr) -

Since (x,,,.4;) has the same distribution as (x,,), it is clear that f, = (f,),
f, = (fi.), - - - is a stationary sequence.

[28 ,f'»’;
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Let s < k < t—land n > t. By subadditivity, x,, —x,,, , < X, o, Tk + 1,
so that
nfk’n = I'::Z+1 (Xk'r - xk+1,r)
g Z::Hl (xkr - xk+1,r) + txk,k+1 .
Therefore,
N3 fin & 2reen (Xor — X40) + 1 2000 X -
By subadditivity, the first sum on the right-hand side is dominated by
ris1 X = (n — 0)x,,. Accordingly,
(4) Itc_:{vfk'n é xst + n_lwst
where w,, = [ 3117} X 141 — Xl
In particular, f,, < x, and, by (3),
Efon =ntyr, (g, gr—l)
= n“gﬂ z 7.
Therefore,
E'fo'nl § E|x01| + E(xm - f(m)
S Elxg| + 0, — 71

and f, is L'-bounded. Hence, by the theorem of Komlds, there is a sequence
n, < n, < - - of positive intergers and an integrable function f; such that

Aoy = 7 Zicifom, = fo
almost everywhere as j — oo. Since f, f;, - - . is stationary,
Ay =7 Dici fm,
also converges almost everywhere, say to f,, and f, f;, --- is a stationary
sequence. Let 6; = j=' >7i_, n,7'. Then, by (4),
) o Ay = Xoo + 0wy,
Now let j — oo to obtain (2).
It remains to show that Ef; = y. By (2) with s = 0,
Efy = 17" JiS Ef,
< t7'Ex,,
=19, —>7r
as 1 — oo so that Ef, < y. Toshow Ef, = r, recall that Ef,, = n~'g, — r, which

implies that EA,; — 7. Hence, by (5), which implies that x, — 4,; = 0, and
Fatou’s lemma,
g9, — Eﬁ) = E(XOI _fO)

< liminf, E(xy — A;)
=0 —7-

Therefore, Ef, = y and the proof of the lemma is complete.
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ProFESsOR DARYL DALEY (Australian National University, Canberra). 1 have
much enjoyed reading Professor Kingman’s paper, and have been prompted by
it to think again about the two-dimensional Poisson growth process of Morgan
and Welsh (1965). In that model, as with several other physical applications,
subadditive processes arise as first-passage time random variable decompositions,
and typically x,, is then a non-decreasing nonnegative random variable. Morgan
and Welsh’s model is on the integer lattice in the positive quadrant and hence
the subadditive process to which it leads is a discrete parameter one as in Sub-
section 1.1. But equally one could ask whether any further simplification or
properties may come out of studying continuous parameter subadditive processes
with nonnegative increments. Certainly S; then implies the boundedness con-
dition at (1.4.7). And the local sample path behavior will presumably be related
to the finiteness or otherwise of the dominating additive process

Yst = sup Z?:l Xy

where the supremum is taken over all finite partitions t, = s < 1, < -+ - <1, =t
of the interval (s, 7) (in other words, Y,, is the Burkill integral of x on (s, f)).
Now

=10ty

p=EYy) = E(Yy)/h = sup,so E(xp) /b,
so the finiteness of y, entailing the a.s. finiteness of Y,, for all 1, then gives
P{xy, > u} < phju.

Presumably some other local properties may be deducible also (as for example
from the joint distributions, when available, of y).

The other feature which occurred to me in thinking about Morgan and
Welsh’s model is that the process studied there has some features of a branching
process in the small, but that “crowded living conditions” prevent exponential
growth in the large, producing instead a linear growth rate (cf. also Kendall’s
comments re the growth of forest fires in Bartlett (1957)). There arises intui-
tively the suggestion that this linear growth rate is due to there being asymptot-
ically a stationary additve process, the subadditivity of x,, being simply due to
the initial transient phase of the process. In other words, the joint distributions of

{xml — Xotgr Xot, ™ Xoeys * vy Xor, — th,”_l}

for fixed T; =t;, — t;,, j=1, - - -, n, converge in the limit 7, — co to those of
a stationary additive process with nonnegative increments, this distribution
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being the same as that of y at (1.2.6). But I can not see that this intuition helps
much, for it seems to underlie the proof in [8] of the decomposition at (1.2.6),
and it brings us little closer to constructing from the local properties of the
process x the process y.
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ProFEssOR H. KESTEN (Cornell University). 1 found Professor Kingman’s
article most interesting and was impressed by his elegant derivation of the result
of Furstenberg and myself on the growth of products of random matrices. Even
though subadditive processes seem a simple tool, the applications show that they
are quite powerful. As added evidence I would like to mention D. Richardson’s
recent beautiful proof ([1]) that “animals” growing in the plane according to
certain stochastic rules have an asymptotic shape. (In particular this is true in
Eden’s growth model [2]). Richardson’s work also suggests the lemma below,
which can be used to show that

lim,_, »n(z,) =c w.p.1

whenever the 7, are defined on a common probability space in such a way that
I(z,) is non-decreasing (see Sub-section 2.4).

LEMMA. Let X,, s=1.and Y,,, 1 < 5 < t, be random variables (s, t integral)
satisfying the following conditions:
1 PX,, = x} = PIX, + X/ + ¥,, < x}
forallreal x and s, t = 0, where X, has the same distribution as X, but is independent
of all X,,

(2) EY!, =C,
3) E|X, < oo and
“4) EXy<C

forall s, t > 1 and some C (independent of s and t). Then, there existsa 0 < y < oo
such that

X
Sio{ 2o = 1| > e} <o
forallm=1,¢>0.
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PROFESSOR P. NEY (University of Wisconsin). It has been a pleasure to read a
preprint of Professor Kingman’s stimulating lecture on subadditive ergodic
theory. Ialso took this opportunity to go back to the 1965 paper of Hammersley
and Welsh, in which subadditive processes were introduced as a tool for treating
percolation processes. In that paper and in the present lecture a number of
interesting models and open problems are discussed.

Associated with some of these models are generalizations of the classical re-
newal process. I would like to briefly point out two of these, one still an open
problem, and the other recently solved.

The first deals with a special case of the percolation process discussed in
Sub-section 2.1 of Professor Kingman’s paper, and was introduced in the
Hammersley, Welsh paper. The graph under consideration in this problem is
the square lattice in the (x, y) plane. Roughly speaking, to obtain the new
renewal function one looks at the minimum time needed to get from the origin
to the line x = n over graphs lying in the cylinder 0 < x < n, with the times
between nodes being i.i.d. random variables. One then takes the maximum
value of n for which the above minimum is < ¢. The result is a random variable
x,, whose expectation R(r) is the desired renewal function. It reduces to the
ordinary renewal function when the plane is replaced by the line. Hammersley
and Welsh proved an analogue of the weak renewal theorem, namely that
R(t)/t — 2 (say), They conjectured the strong renewal theorem, that R( + #) —
R(t) — Ah, but as far as I know this result is still open. The constant 4 depends
on the random travel time between nodes of the graph, and its determination is
not completely known.

The second model deals with the products of random matrices discussed in
Sub-section 2.2 of the present lecture. Here X, = Y, Y, ... Y,, where {Y,}isa
stationary sequence of positive random matrices. By identifying a suitable sub-
additive process, the author gives an elegant new proof of the Furstenberg-Kesten
theorem that if Elog* ||Y)|| < oo, then lim,_, n7"log [|X,|| = a exists w.p. 1.
(]| || is the max. norm). Kesten has recently shown that if the Y,’s are inde-
pendent and identically distributed and if @ > 0, then for # = 1, and fixed row
vector v,
log #

a

lim,_,Eg{n: t < |vY, .- Y, | < th) =

After a logarithmic transformation we can see that this impressive result is a
strong renewal theorem for the subadditive process in Professor Kingman’s
paper. (Professor Kesten’s result is in a recent preprint, and I appreciate his
making it available to me).

PRrROFESSOR FRANK SPITZER (Cornell University). 1 have enjoyed reading this
paper, to see in particular how beautifully it solves the problem of products of
random matrices. I observe also that an old problem of mine is a corollary to
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Professor Kingman’s theorem: Let x, be a spatially homogeneous Markov
process with values in R*. (For example, x, could be v-dimensional Brownian
motion.) Let 4 be a compact subset of R*. Attach x, to 4 and consider the
volume, V,, swept out by 4 during [0, ¢]; that is, V, = V;, where

I/;,t = IUsgrét (xr + A)l ’

|+| denotes volume and x, + 4 denotes the random set {ye R*: y — x, € A}.
Then V, , is subadditive, and hence

lim,_, 7'V, = C(A) exists a.s.
An easy calculation now shows that
C(A4) = lim,_,, t7'E(V,) = (electrostatic) capacity of A4,

which is the capacity of Markov process theory.
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PRrOFESSOR J. M. HAMMERSLEY (Institute of Economics and Statistics, Oxford).
Kingman employs postulates which are, naturally enough, appropriate for the
theorems he wishes to prove. On the other hand subadditive processes, which
do not satisfy these postulates, can arise in certain practical situations. An
example is the first-death problem for an age-dependent branching process,
defined as follows:

(i) The family tree originates from a single progenitor who dies at time 7'=0.

(ii) Each person in the tree has a (birth to death) lifetime U distributed with
cumulative distribution function G(#) and mean lifetime & = EU < 0. We
suppose that G(#) = 0 for # < 0, and that G(c0) = 1.

(iiiy When anyone dies, he is replaced immediately by j newly-born offspring
with probability p, (j = 0, 1, ---). We write P(z) = 7., p;z?; and we suppose
P(1) = 1 and p, < 1 < P'(1) = g, say. Hence there is a positive chance p > 0
that the tree will propagate indefinitely, where P(1 — p) =1 — p.

(iv) All members of the tree are independent, both in lifetimes and in the
numbers of their offspring.

(v) The rth generation (r = 1, 2, - - -) consists of the offspring of the (r — 1)th
generation, the zeroth generation being just the single progenitor.
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The first-death problem for this branching process is to discuss at what moment
of time a death first occurs to some member of the rth generation. We can set
up a subadditive process x,, for integers 0 < r < s as follows:

(a) x,, = co if the subsequent recipe fails at any juncture through non-
existence (for example, if the rth generation is empty).

(b) Let T, be the earliest time at which some person in the rth generation
dies. Consider all members of the sth generation who are descendants of this
particular person in the rth generation. Let T, be the earliest time at which one
of these descendants dies. Define x,, = T, — T.

In particular, x,, is the first-death time for the rth generation.

In this problem, postulate S, holds and so does S,’. But S, does not, because
the joint distribution of (x,,, x;) differs from that of (x,, x,,). We can, neverthe-
less, obtain a few results for this first-death problem from the following theorems:

THEOREM 1. If a sequence of distributions F, in the convolutive semigroup D is
superconvolutive, namely if

(1) Fr+s(x) .-2_ (Ff * Fs)(x) fOl‘ a” X
then the function
) K,(0) = log §=., e dF,(x)

is a superadditive [unction of r for each fixed = 0, and log F,(rx) is a superadditive
function of r for each fixed x. Also the limits

3) ¢(x) = lim__,, r'log F (rx), K@) = lim,_, r*K.(9), ¢ = 0)
satisfy the reciprocal relations
@) ¢(x) = inf,. [KO) + 0x], K@) =sup,[¢(x) — 6x], (620).
If, in addition, the distributions F, are all proper, there exists a constant y such that
() F(rx) =1 (x>7)

-0 (x<7) as r— oo .

THEOREM 2. If Q(2) is a concave non-decreasing function defined on 0 < z < 1
such that for some p satisfying 0 < p <1

(6) Q) =p and, ¢=0(0)>1,
and if the sequence of distributions F, is given by
(M F, (%) = QI(F, » G)(%)], (r=01,2,-.-)

where Fy(x) = 0 or 1 according as x < 0 or x > 0, and where G is a proper distri-
bution of a nonnegative random variable with a mean i, then the sequence F, is
superconvolutive and

(8) F(rx)—p (x>7)
-0 (x<7) as r— oo,
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where y is the unique root of
) infy,, §5 €’7 dG(u) = 1/q, <.

Moreover, if x, is a random variable with distribution F,, then conditionally on
X, < oo the random variable x [r converges in probability to y as r — co, and

(10) y = lim_ E(x, [r|x, < oo).

THEOREM 3. An independent subadditive process is characterized by a super-
convolutive sequence of distributions, but the converse is false in general.

Theorem 1 is the superconvolutive generalization of two familiar convolutive
theorems, namely the weak law of large numbers and Chernoff’s theorem [1] on
the extreme tails of a distribution. Theorem 2 yields an explicit equation (9) for
the time constant y of the subadditive process for the first-death problem in an
age-dependent branching process, when we take Q(z) = 1 — P(1 — 2).

I have submitted a paper for publication which proves these theorems, and
which discusses some other applications of superconvolutive sequences and sub-
additive processes.
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I am most grateful to those who have taken the trouble to comment so con-
structively on the paper; their contributions go to show that there is yet a good
deal to be discovered about subadditive processes and their applications.

Professor Burkholder is of course quite right to see the weight of the proof
of the pointwise ergodic theorem in the demonstration that there is an additive
process y, lying below the subadditive process x, but having the same value of
7. My argument used the most obvious of all compactness principles, and it is
pleasant to see how smoothly the more sophisticated approach by Komlos’s
theorem reaches the desired result. Is it possible that the existence of y lies less
deep than either of these arguments would suggest, and that a process y with
the required properties might be constructed more directly?

Dr. Daley’s remarks, as well as suggesting more further applications, raise
the possibility of using the Burkill integral to study continuous-parameter sub-
additive processes. This is a tool which has not often appeared in the statistical
literature, though recent work by G. S. Goodman (to appear in the Annals of
Mathematics) shows its relevance to some rather different stochastic problems.

I am most impressed by Professor Kesten’s proof of almost sure convergence
in Ulam’s problem, and by the technique which may well be applicable to
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similar problems. An interesting feature of his lemma, and one which makes it
potentially very powerful, is that when Y = 0 its hypotheses bear only on the
individual distributions of the X,, and not on their joint distributions.

Professor Ney points out that I have seized on just one aspect, the Law of
Large Numbers, of the work of Hammersley and Welsh, and that they raise a
number of other fascinating questions. It would indeed be interesting to establish
an analogue for subadditive processes of Blackwell’s renewal theorem, particu-
larly if this were powerful enough to contain and to generalize the result of
Kesten which he quotes.

Professor Spitzer’s example shows how subadditive processes arise in a natural
way in yet another important area of probability theory. What is unusual and
significant about his result is the explicit computation of the constant y; perhaps
there is a lesson here for the other subadditive problems for which such an
identification is not yet possible.

Dr. Hammersley’s remarks, which reached me after I had written the preceding
paragraphs, are characteristically profound and challenging. I acknowledge his
counter-example to my assertion that processes satisfying S, but not S, are
“highly artificial.” But it is worth noting that his example does satisfy a weak-
ened form of S,:

S,””: For each k > 1, the sequence (x,_), ..; # = 1) is stationary.

Many of the proofs of [8] go through with S, replaced by S,”, and Theorem 1 is
still true, except that convergence with probability one must be replaced by

P{limsup,_. x,/t =&} = 1.

However, in Hammersley’s example there is no difficulty in replacing “lim sup”
by “lim” by a simple argument (essentially van Dantzig’s idea of “collective
marks”) which gives a lower bound for x,,.

An alternative way to reach the same conclusion is to apply Kesten’s lemma
(with Y = 0). Professor Kesten has unwittingly but significantly contributed to
the Hammersley theory of superconvolutive sequences.

There remains the difficulty of the infinite values which x,, may take with
positive probability. Say that an individual is fecund if he has infinitely many
descendants. Then the fecund individuals form an age-dependent branching
process with the same lifetime distribution G but a new family size distribution

Pt =0,  p* =7 NP1 — p)i, Gz

With the obvious notation, ¢* = ¢, y* = 7, x* < oo and if the original tree
propagates indefinitely x,, < x#. From this it is very easy to deduce the strong
law for x,, from that for x¥.

The really interesting aspect of Dr. Hammersley’s contribution, however, is
the technique for determining the actual value of y. As it stands, it is rather
specific to the particular example, but as the basis of a general method for finding
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7, when some element of independence is present in a subadditive process, it is
potentially of great practical and theoretical importance.

Perhaps I might reply by recommending the interested reader to the
Hammersley—-Welsh paper which started this branch of random p}ocess theory,
and which contains a good deal not touched upon in the present account.

J. F. C. KINGMAN



