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MIXTURES OF DISTRIBUTIONS, MOMENT INEQUALITIES AND
MEASURES OF EXPONENTIALITY AND NORMALITY!

By JurLiaN KEILsSON AND F. W. STEUTEL

University of Rochester and Technische Hogeschool Twente

The central limit theorem and limit theorems for rarity require meas-
ures of normality and exponentiality for their implementation. Simple
useful measures are exhibited for these in a metric space setting, obtained
from inequalities for scale mixtures and power mixtures. It is shown that
the Pearson coefficient of kurtosis is such a measure for normality in a broad
class & containing most of the classical distributions as well as the passage
time densities sma(z) for arbitrary birth-death processes.

0. Introduction. Many limit theorems of interest to probability theory de-
scribe the convergence in distribution of a sequence of random variables. Ap-
plication of such theorems in some special context is generally hampered by
one’s inability to say how close one is to the limit distribution. Measures of
such proximity have been available, but have either been empirical and inade-
quately understood (e.g., kurtosis as a measure of normality), largely useful as
a theoretical tool (e.g., the Lévy metric [17] page 215), or of limited value by
virtue of the breadth of the class of distributions to which it addresses itself
(e.g., the Berry-Esséen bound [5]).

By restricting the space of distributions considered, and focusing particular
attention on the distance to the limit distribution of interest, one can exhibit
simple tractable numerically accessible measures of this distance. One finds, for
example, that for a certain broad class <7 of distributions (cf. Section 8), the
classical Pearson coefficient of kurtosis appears as the distance of interest in a
metric space setting (cf. Theorems 8.2 and 8.3). Asa second example of interest,
one finds that, in the class &, of completely monotonic densities fy, the entity
(¢*/p*)xy — 1 is the distance to exponentiality in a metric space setting. The
squared coefficient of variation (¢?/p?) arises several times in such a context.
Even the Pearson coefficient has this character in a hidden form.

The basic spaces dealt with are mixture spaces of two types, scale parameter
mixtures and exponent parameter mixtures (power mixtures), and several im-
portant such spaces are discussed. A space of interest dealt with at length is the
space ., of mixtures of symmetric normal distributions. The extent of this
class is surprisingly large. Many of the classical distributions of statistics and
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probability theory are represented in .~ or in the class & simply related to .7,
All passage time densities for birth-death processes, for example, are found in
. )

Systems of moment inequalities for our mixtures of distributions are presented.
These are directly related to the log-convexity of the moments of the mixing
distributions, and related moment properties associated with log-concavity and
log-convexity.

We denote rv’s by capitals, their df’s, pdf’sand cf’s by F, fand ¢ respectively,
indexed by the rv.

If Z is an rv, then an rv that is distributed as — Z is denoted by Z”. In ex-
pressions of the form Z 4 Z”, we shall always implicitly assume independence.

1. Mixtures of distributions and some of their properties.
1.1. General mixtures. We shall be concerned with df’s of the form
(1.1) Fy(x) = §=., K(x, w) dF ,(w) ,

where F, is any df and the kernel K has the properties: K(x, w) is a df in x for
every w in the support of F,,, K(x, w) is Borel measurable in w for every x.
Distributions with df’s of the form (1.1) will be called mixtures, F, will be
called the mixing df. For a given kernel K the corresponding class of mixtures
is denoted by 2" The support of the mixing df’s may be restricted to part of
the real line; here it will usually be [0, co).

For an arbitrary kernel K, the correspondence between X and W is not one-
to-one, i.e., there may be different F, and F,, yielding the same F,. Every
class of mixtures has the properties stated in the following easily verified
propositions.

ProPosITION 1.1. If K is a given kernel, then .9 is closed under mixing.

ProposITION 1.2, If K is absolutely continuous in x for all w in the support of
F\,, with density k(x, w), then F is absolutely continuous with

(1.2) Sx(x) = §2, k(x, w) dF,(w) .
1.2. Scale mixtures. Many known classes of distributions are mixtures with
kernels of the form

«

(1.3) Ky(x, w) = Fy(x/w),

where F, is a df, and mixing distributions with support in [0, co). The cor-
responding pdf’s and cf’s take the form

(1.4) [x(¥) = §8 fy(x[w)w™ dFy(w)
(1.5) Px(t) = § py(tw) dFy(w) -
In terms of rv’s we have (=, denoting equality in distribution)

(1.6) X=,YW,
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where Y and W are independent. For a given Y, a mixture of this type will be
called a scale mixture of Y-distributions, and the class of these mixtures referred
to as a W-mixture of Y-distributions.

Much of our attention will be given to such scale mixtures and the presence
of a one-to-one correspondence between X and W is of importance. We outline
a proof of

ProrosiTiON 1.3. If |Y| > 0 a.s., E|Y|* < oo for some e > 0, and if Xe 7,
with E|X|* < oo, then EW® < oo, and there is a one-to-one correspondence between
Xand W.

Proor. Clearly Fy is uniquely determined by F,,. For the converse, we first
take | X|, and hence W, positive (a.s.). If now X =, YW, =, YW,, then E|X|' =
E|Y'EW,' = E|Y['EW,' for0 < t < e. AsE|Y|' > 0, it follows that EW,! = EW,!
for0 < r < e Now, for 0 < Rez < ¢ EW,* and EW,* exist and are analytic.
As they coincide for 0 < ¢ < ¢ it follows that EW* = EW,” for 0 < Rez < e.
Furthermore, as EW*® = Eexp (it log W) is a cf, it follows from the uniqueness
theorem for cf’s that log W, =, log W,, and hence that W, =, W,. If X is zero
with probability p, then W is zero with probability p, and (F,, — p)/(1 — p) is
uniquely determined by (Fy, — p)/(1 — p) as above.

It is sometimes useful to keep the following simple observations in mind (cf.
(1.6)):

(i) a scale mixture of a scale mixture of Y distributions is a scale mixture
of Y-distributions;

(ii) a W-mixture of Y distributions is a Y-mixture of W-distributions if Y is
nonnegative.

Many classes of distributions that are well defined otherwise can be exhibited
as scale mixtures of a given distribution to enable properties to stand out more
clearly. In the following sections a number of these classes will be discussed in
detail. The most important of these have been listed in the table below.

For any class .5~ of distributions we will interchangeably write Xe 9%,
F.e 2, fye & or ¢, e 27, if the distribution of X is in .97~

1.3. Power mixtures. If ¢, is an inf. div. cf, then ¢, isa cf for every w > 0.
If we randomize with respect to w, we obtain the class .57*, defined by:
by € 2 * if and only if '

(1.7) $x(1) = §5{pr(N}" dFy(w) -

Mixtures of this kind were introduced by Feller [5]. With slightly more gen-
erality, one may consider cf’s of the form (1.7) where ¢, is a cf for all w in the
support of F,,. For any distribution on the nonnegative integers with pgf =(u),
say, and any cf ¢,(7), the function 7(¢,(f)) is a power mixture of Y-distributions.
Power mixtures also occur in branching processes and queueing theory. Exam-
ples are provided by busy-period distributions, which have cf’s f(¢) satisfying
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B(1) = ¢(t + Ai — 2ip(r)), where ¢(¢) is the cf of the service time (cf. [5]). The
kernel for the class .97, * is given by

(1.8) K, *(x, w) = Fy*¥(x),

where F,*v is the w-fold convolution of F, with itself, defined by its cf ¢,.
One easily verifies that ¢, - ¢, = {5 ¢,* d{Fy « Fy }, and that, correspond-
ingly, one has

ProrosiTION 1.4. Ifin (1.7) ¢,* is a well-defined cf for all w in the joint supports
of Fy*V™ forn = 1,2, ..., and if W isinf. div., then X is inf. div.

Special cases of (1.7) yield the compound-Poisson and compound-geometric
distributions. Trivially, when Y is degenerate, then (1.7) yields all distributions
on [0, oo0).

We easily have

ProposiTION 1.5. If Yisinf. div., then K, * is closed under mixing and convolution.

Some of the scale mixtures we discuss subsequently can also be considered as
power mixtures. This is possible whenever ¢,(f) = exp (at’) or ¢,(f) = exp(alt|’),
and this circumstance facilitates the discussion of infinite divisibility.

2. Mixtures of normal distributions. The class of scale mixtures of normal
distributions encompasses directly or is simply related to a great many of the
distributions of interest to probability theory and statistics. The extent of this
class will soon be demonstrated. We start by relating the class to the symmetric
stable distributions (cf. [18]) and providing a characterization in terms of com-
plete monotonicity [5].

For 0 < a < 2 we define the classes <&, as follows: ¢, € &, iff ¢, is of the
form

(2.1) $x(0) = §5 e dFy, (w) .
Some properties of these classes were discussed in an earlier paper [14].

PROPOSITION 2.1. The class £, consists of all real cf’s ¢(t) that are c.m. (com-
pletely monotone) in |t|*, i.e., such that ¢(|t|*) is c.m. on (0, oo0).

ProposiTION 2.2. If a < B, then &£, C £, and £, + £,.

Proposition 2.2 follows from the fact that any function f{(x) that is c.m. in x is
also c.m. in x7 for every y = 1, i.e., f(xV7) is c.m. in x.
For a = 2, we obtain the class of mixtures of normal distributions with cf’s

(2.2) Py(1) = ¢ e ™2 W, (W),
and corresponding pdf’s (if F,(0 +) = 0)
e—xz/(ZwZ)

(2.3) Sr(x) =2 W dFy,(w) .
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In terms of rv’s we have (cf. Table 1)
(2.4) X =,NW,
where N is N(0, 1).

PROPOSITION 2.3. The classes <, are closed under mixing and convolution, the
class &7, is also closed under multiplication of densities with suitable renorming if
the product is integrable.

As a direct consequence of Bernstein’s theorem for complete monotonicity
[5], we have

PRrOPOSITION 2.4. The class £, contains all symmetric pdf’s that are c.m. in x°,
and hence all symmetric pdf’s that are c.m. on (0, co).

It follows from Propositions 2.1, 2.2 and 2.4 that &7, contains a wide variety
of known distributions. We list the following. &, contains: the symmetric
stable distributions; the Cauchy, Laplace and Student distributions and their
mixtures; all rv’s of the form I', 4 T',? (i.e., &, D &5, cf. Table 1) with cf’s
of the form (1 + %)=, and all rv’s of the form Z 4 Z”, where the pdf of Z is
PF,, (cf. [8]). These random variables arise as passage times of interest in birth-
death processes [13]. A more general class of rv’s of the type Z 4+ Z” of interest
to birth-death processes is given in the following proposition.

PROPOSITION 2.5. If Z has a pdf which is a convolution of c.m. pdf’s or a limit
of such, then Z + Z° ¢ &,

Proor. If f, is c.m., then its L.T. has the representation (cf. [20] page 44)

@.5) S = exp{ =S5 2
where m is a measure bounded by Lebesgue measure. The converse is also true.
It follows that the L.T. of any finite convolution of c.m. pdf’s, i.e., of mixtures
of exponential pdf’s has a representation of the form (2.5), with m an absolutely
continuous measure having a bounded Radon-Nikodym derivative m’. If we
now take f,(s) - f,(—s), and replace s by —it, we obtain

dm(x)} :

(2.6) Bolp(—1) = exp {57 o P w )|
_ e B
= exp{ §o md"(}’)} )

where n is absolutely continuous with n’(x*) = m’(x). Comparing (2.5)and (2.6),
we see that the mixture of exponential distributions has been transformed into
a mixture of Laplace distributions. As the Laplace distributions are in &,
Z + Z" is in &, by Proposition 2.3. If £, is the limit of a sequence of L.T.’s
of the form (2.5), then ¢,(¢) - ¢,(—1¢) is the limit of a sequence of cf’s of the
form (2.6). As .~ is closed under weak convergence, this concludes the proof.
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Clearly, all cf’s of the form (2.6) are inf. div. In order to discuss convolution
more easily, we replace W by V*in (2.4). We then have

2.7 X =, NVt
with correspondingly
(2.8) b(1) = §7 e~ dF,(v) .

From (2.8) it immediately follows that
(2.9) b,(0) - (1) = ¥ € d(Fy 5 F, )(v)
or equivalently, for X; and X, in &, and independent
(2.10) X, + X, =, NV, + Vy)},

and hence, rather curiously, for N, and N, independent and N(0, 1)
(2.11) N Vit 4+ NVt =, N(V, + V)t

Clearly, if ¥V is inf. div., then X =, NV* is inf. div.: fV=,Vi+---+V,
with identically distributed ¥;, then by (2.11) X =, N(V; + --- + V)t =,
NVE+ oo + NV} =, X, + --- + X, with identically distributed X;. It was
noted by Kelker [15] that NV* may be inf. div. without ¥ being inf. div. Tt
follows that in that case the components of NV'* cannot all be in &5,

REMARK 1. In the same way as above it follows that if X is symmetric stable
of order a, then V is positive stable of order a/2.

More generally one has (cf. [5] page 562).

PROPOSITION 2.6. If X is symmetric stable of order a, then X =, YV'1, where
Y and V are independent with Y symmetric stable of order y > a and V positive
stable of order a[y. The converse also holds.

Proor. By Proposition 2.2 we have for y < 2
(2.12) Eett¥ — e—ltl“ — Sgo e_|¢|rv dF,,(’U) — Sgo e—ltv1/7|7 dF,,(’l)) — euyvl/r ,

where Y and V are independent, Y is symmetric stable of order 7, and, by the
uniqueness theorem for L.T.’s, ¥ has L.T. exp (—s*'").

REMARK 2. As all symmetric stable distributions are in ., and as all pdf’s
in &~ (cf. (2.3)) are unimodal, all symmetric stable distributions are unimodal
(cf. [18] page 158).

3. Other classes of scale mixtures. Other classes of scale mixtures are of
interest. The most important of these, perhaps, is the class of completely mono-
tonic densities which are scale mixtures of exponentials. These play.a key role
in stochastic processes reversible in time [10]. Classes of importance introduced
by van Dantzig and discussed recently by Kemperman arise naturally from no-
tions of monotonicity, convexity and their generalization. Of special importance
are the one-sided and two-sided unimodal and convex densities.
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3.1. The classes & ,. These consist of mixtures of gamma-distributions of
order a (0 < @ < o0). We have: ¢, e &, iff

(3.1) $x(t) = §5 (1 — itw) dFyy(w) .
We list the following propositions without proof.

ProrosiTioN 3.1. If a < B, then
— it = ___I-;(ﬁ___ 1 7 —Bya—1 . —a-1
(3.2) (I —in—== T — ) §5 (1 — itu)=Pue=(1 — u)f-*"1du.

PrROPOSITION 3.2. If a < B, then &, C &, (strict inclusion), and lim
the set of all distributions with nonnegative support.

<
e & ¢ =

a

The class &, is of special interest. Two of its properties are noted in

PRroposITION 3.3. If f, € &, then f, is completely monotonic, i.e., fy is of the
form

(3.3) [x(x) = §7 wte " dFy,(w) .
Furthermore, f is infinitely divisible (cf. [19]).

3.2. The classes & 5. These consist of all distributions with cf’s of the form
(3.4) Px(t) = §& (1 + £w*)™" dFy(w) (x>0),

i.e., of all mixtures of I', + I',”, where I, has a gamma distribution of order a.
We have
&5 =

a—oo

ProposITION 3.4. If a < B, then &5 C &, (strict inclusion), and lim
&, (cf. Section 2).

ProrosiTION 3.5. If f, € &5, then f is completely monotonic on (0, co), and
infinitely divisible.

3.3. The monotonicity and convexity classes 7Z/,. The class 7/, consists of mix-
tures of densities f, , with

3.5 —(1—_*Y) i o 1
(3.5) [r, (%) ( n+1> i <x<n+
=0 ' otherwise ,
and EY, = (n + 1)/(n + 2). We have Xe 7/, iff
1
(3.6) [x(x) = $Snsn (1 — ﬁ) W dFy(w) .

These classes have been used by Kemperman [16] with a slightly different
norming, and earlier by van Dantzig [4]. For n = 0 one obtains all non-increas-
ing densities on (0, o), for n = 1 all densities on (0, co) that are convex. It is
possible to give n arbitrary real values > —1, with Z/_, representing all dis-
tributions on [0, co); in the sequel we shall only consider 7/, for integer n > 0.
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It seems obvious from comparing (3.3) and (3.6) that 7/, — &,. We now formally
state some properties of the %/, (cf. [16]).

ProposITION 3.6. [, e %, iff F, has an nth derivative F,™ .in (0, co) with
(=D"HF ™ convex in (0, o).

COROLLARY. [y e %, for n=1 iff f, has an (n — 1)st derivative with
(—D)*+f,»=1 convex.

ProrositioN 3.7. %, C %, for n=0,1,2, ... (strict inclusion), and
lim, ., %, = &,.

For f, € %, with its mixing df F,, = G having a finite first moment, , in-
tegration by parts yields
x >n+1 1 w

1
3.7 N nsmimefa() A = §i (1———— — —dG
(3.7) P $oons vz () 4y Sovnsn n + 2)w (w)

wop
= furi(x) € Z s -
Apparently, when G has all moments, and when the procedure leading from f,
to f,,, converges to a pdf f, then f must be completely monotonic. This is in
accordance with a result by Harkness and Shantaram [6] to the effect that if /,
and b, are such that the sequence {f,} defined by a given f, and a recurrence
relation
fan(®) = b,{1 — F,(l,x)},

converges to f, then F satisfies

(3.8) F(x) = by (1 — F(y)}dy.

It also follows from (3.8) that f(x) is completely monotonic.
4. Moment inequalities.

4.1. Scale mixtures. Let X be the scale mixture X = YW defined in Sub-section
1.2. For the absolute moments 8, = E|U|* one has from the independence of
Xand Y

1/k 1/k 1/k
(4.1 Bk _ Pk Bk
ABXI ABYI IBWI

whenever the moments are finite. The sequence BY% is strictly increasing (cf.
[17] page 156) whenever W is non-degenerate and is constant when W is degen-
erate. The following theorem is immediate.

THEOREM 4.1. For any scale mixture X = YW one has the infinite system of
inequalities
(4‘2) ‘ {Ck—lﬁXk}l/k _2_ {Cj—liexj}l/j > k > j’ j’ k= 1’ 2’ te
where £, = B,/B%, is a fixed sequence of pesitive numbers for each rv Y. The
inequality is strict for all distinct pairs j, k or for none. These inequalities for
the completely monotone class &, and for related broader classes were given in
[1] and [9].
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The parameters {, for the different classes of interest are given in Table 1.
Of particular importance is the relationship between f,, and B, Let o, =

(Bxz — B0

ProPOSITION 4.2, For any scale mixture X = YW, one has

2 2
(4.3) L A
X1 ABYI

with equality if and only if the mixture is pure, i.e., if and only if the mixing dis-

tribution is degenerate.

A somewhat stronger version of (4.3) is of interest will be needed subsequently.
As for (4.1) one may write

Bxa _ Bya Bwa _ Bra 0y’ + Brs .

2 2 2 2 2 2
X1 ‘BYI w1 Y1l w1 Y1
Hence
(4.4) ot _ o _ <ﬁ> Ty’
i ‘8%1 ‘Bgfl #W2

where 8, = u, = EW, since W is nonnegative. It follows that the coefficient
of variation of the mixing distribution is a measure of the departure of an element
X in a class of scale mixtures from purity. (This statement will be given sharper
meaning in Section 5.) We note in keeping with this that when W = W W,
where W, and W, are independent mixing random variables, the coefficient of
variation of W exceeds that of W, or W,. Indeed one has from (4.4) for Y = W,
W =Ww,

2 2 2 2 2
N R (S RaCARaCA R
( ) /«‘2 Wow, 2w, + ‘uz " + 2w\ it w,

The following property of the coefficient of variation is of some interest in
itself and will be needed subsequently.

ProposiTIiON 4.3. For any rv V = 0 with EV* < oo the coefficient of variation
for V&, (6/pt),« increases with a on [0, r]. The increase is strict except when V is
degenerate or concentrated on two points, one of which is zero.

Proor. It is well known that §,, is log-convex on [0, 2r]. Let f(x) = logB,,.
Then f’(2x) = f'(x) on I = [0, r] and hence

§5./7(x) dx < §5 f"(2x) dx

for b, ce I, i.e., 2f(c) + f(2b) < 2f(b) + f(2¢) and the result follows. The strict-
ness for V as stated is a consequence of the strict log-convexity.

Special structural characteristics of W may permit other systems of inequali-
ties. If, for example, f},(x) is log-convex on (0, o), then it is known that
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{Bwi/T'(k + 1)}/* increases with k [1]. As for (4.2) we then have

and, in particular, as for (4.3).

(4.6b) "_Xg_l;z<"¥2>.
2 2
X1 Y1
Similarly, when f,, is log-concave, or when W has log-concave lattice support,

then {8,,,/'(k + 1)}* is decreasing in k [1] and we have

@L" 1k o ‘Bﬂ 1/k
(4.7a) X \, Zs A \,
and, in particular

P 1<29" .

g
(4.7b) x <25

2
X1 Y1

For mixtures of normals (<) one has X = NV*. Analmost identical argument
to that for (4.6a, b) and (4.7a, b) shows that these inequalities require only
minor change when {8,,/I'(k 4+ 1)}/* is monotone.

In particular, we find that when {8,,/I'(k + 1)}¥¥ decreases with k, then
{Bxi/T' (k]2 4+ 1)}* decreases with k. For k = 1, 2, we obtain
(4.8) LIS

: .
X1 T

IA

The inequalities in (4.6a) and (4.6b) are applicable, for example, to F-distribu-
tions with random variables of the form

X = Fm/2/Fn/2 P

where I',,, is a gamma variate of half-integral order. The numerator I, , may
be thought of as the mixing variate and its density is log-convex for m = 1, and
log-concave for all m > 2. Thus (4.6a) and (4.6b) are applicable for m = 1
and (4.7a) and (4.7b) for m = 2 (for m = 2 one has equality).

4.2. Power mixtures. Consider the power mixture X € .5 ,* as introduced in
Sub-section 1.3. For the cf one has

(4.9) ¢x(1) = & (S (O} dFy(w)

and hence by differentiation EX = EW . EY, EX* = EW(EY*—E*Y)+ EW?E?Y =
EWg,* + EW?u,2

It follows that for p, = 0,

(4.10) LIS
Hx Hy Hw

oyt

b

and therefore we have
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PROPOSITION 4.4. For any power mixtures X € .27 ,* with p, finite and positive
2 2
(4.11) Ix > %
Px Ky
with equality only when the mixing rv is degenerate.

For compound-Poisson or compound-geometric distributions (4.11) becomes

(4.12) (%:)X = (fﬁ>y

where K is simply related to the compounding parameter.

5. Metrics for mixture spaces; convergence in distribution. The introduction
of a convenient distance function on a space of scale mixtures will enable us in
Section 6 to provide measures of exponentiality and normality for elements of
mixture classes.

5.1. Scale mixtures. Consider the class of mixtures .2, consisting of the scale
mixtures of Y-distributions, i.e., the set ¥}, = {F,: X = YW Y, W independ-
ent; W = 0}. Clearly F,, F,e 5 = p,F\(ax) + p,F,(ax)e 5, for all p, > 0,
p:=0, pp4+ p, =1, and a = 0. We have seen in Proposition 1.3, that under

simple, fairly broad conditions, there is one-to-one correspondence between F,,
and F, in >¢.

A distance function or metric can be associated with .57 in a simple way,
giving rise to a metric space in which the squared coefficient of variation appears
as a key distance. Certain moments will also be needed. We introduce the
following space. Let

Fy, ={Fy: X=YW; Y, W independent; W > 0; EW = 1; EW" < o}.

Let F,, F, in .27, be associated with W,, W,, and let tw,(dw), py (dw) be the
corresponding measures. We define the distance function

.1 0o(Fy Fy) = § |w — 1’|y (dw) — py (aw)| b<r.

The importance of the restriction EW = 1 and the utility of the factor jw — 1|
will appear in Section 6. When 6 = 2 and W, has all support at w = 1, we will
see in Section 6 that the distance p,(F,, F,) coincides with the squared coefficient
of variation of W,, i.e., to (¢*/%),,,. When EW, = 1, this is just equal to Var W,.
For measures of distribution shape, e.g., normality or exponentiality, scale is
irrelevant, and indicators of shape must be invariant under scale transformation,
as is (o”/¢"),,. Transformation of the scale of X and hence W to the subspace
for which EW, = 1 and measurement of distance to the “pure” distribution with
W, = 1 is then appropriate. (See (6.2) and (6.3).)
We next show that [.F7,,, o,(F,, F,)] is a metric space.

THEOREM 5.1. For 0 < 6 < r, p,(F,, F,) is a metric for distributions in 5,
i.e., forall F;in ¢, we have
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(@) op(Fy, Fy) 20

(b) pﬂ(Fsz):O‘:’F1=F2

(€) po(Fy, Fo) = po(Fo, Fy)

(d) po(F1s F3) = po(Fys Fy) + p4(Fy, Fy).

Proor. The nonnegativity, and symmetry of (a) and (c) are trivial. The tri-
angle inequality of (d) is available from the classical argument |z, — p| = |p; —
M+ s — sl < |ty — o] + |1s — |- For property (b) we note that equality
requires that the measures coincide away from the point w = 1 and hence at
the point w = 1 as well. For p, = 0 when F, = F, see Proposition 1.3.

The metric given in (5.1) provides a basis for discussing convergence in dis-
tribution in the homogeneous mixture space .5%,. The following theorem is
immediate.

THEOREM 5.2. Let (X,),” be a sequence of random variables in 57, . The se-
quence converges weakly to X,e 57, if p(F;, F) > 0 as j — oo.

5.2. A related metric for &,. For mixtures of normals ., we have seen that
(cf. (2.7)to(2.11)) the representation X = NV'*isadvantageousinthat X, + X, <
Vi + V, for convolution. In this and other similar cases it is useful to employ
as the distance between distributions F;, F, in .&, the metrics (5.1) for the cor-
responding distributions of ¥ with EV = VarX =1, i.e.,

(5.2) po(Fi, Fy) = § |v — llﬁll"vl(d’u) - l‘Vz(d'U)l .

Clearly p,(F,, F,) again satisfies the conditions for a metric (cf. Theorem 5.1).
The case § = 2, as we shall see in the next section, is of special interest.

6. Measures of exponentiality and normality. Two important limit theorems
in probability theory center about exponentiality and normality. Exponentiality
is of importance to rare events (cf. [12] and [3] page 257), and normality to the
central limit theorem. Such limit theorems are often weakened in their practical
impact by the lack of good criteria for knowing how close one is to the limiting
distribution. The metric given in (5.1) provides such a measure of closeness in
a setting sufficiently broad to be of interest.

Let us suppose that X, in Theorem 5.2 is equal in distribution to that of the
basic rv Y, i.e., that X, =, YW, with W, = 1, so that the measure for W, has
all support at w = 1. Then for Xe 9,

Owa(Fys FXO) = §(w — D)uy(dw) — #Wo(dw)l
= § (v — 1y (dw) = EOW — 1y°
i.e.,
(6.1) Ows(Fy, Fy) = VarW = oy’ tw® -
It follows that the squared coefficient of variation of the mixing distribution

is a measure of distance to the distribution F, in the sense of Theorem 5.2, i.e.,
is the metric of key interest on the scale mixture space. The choice of index
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= 2 for p,, is clearly dictated by convenience and tractability. The emergence
of the classical coefficient of variation in this setting, however, is somewhat
striking. .

It is convenient to have a measure of distance from F, to a pure F -type df
(i.e., the df of cX; for a positive ¢) for all X e .2, having a mixing distribution.
with a finite second moment. We therefore define

(6.2) Owa(Fys FyWXO) = IOWZ(FX/yW’ FX(,) = oyt .

If X, =, N, then p,, is a measure of distance to “normality” (for all X e .
having a finite second moment) rather than a measure of distance to F,. How-
ever, for the more general distance (6.2), Theorem 5.2 does not hold.

The metric can be given directly in terms of X and Y from (4.4). One has

2 2 2
(6.3) IOWZ(FX//lw’ FX0> = ng {'0—2{‘ - (‘;;’ } .

Y2 X1 r1

Exponentiality and normality are of greatest practical importance. In Section

7, we will see how the metric (5.1) is useful for studying convergence to ex-
ponentiality in birth-death processes. In Section 8 we will examine normality
in the context of the central limit theorem, where variants of (5.1) are often
needed.

7. The rate of convergence to exponentiality of sojourn time in birth-death
processes. As an illustration of the utility of our results for the study of limit
behavior, we consider convergence to exponentiality in birth-death processes.
Let N(r) be such a process governed by upward and downward transition rates
Aps ptn, With g =0, 4, > 0for n =0, p, >0, n > 1. It is known that when
Aultt, — 0 as n— oo, visits to high states become rare, and passage times 7, ,
from state 0 to state n converge in distribution to exponentiality with suitable
scaling [11]. A related result for the convergence of the sojourn time 7,* =
T, .. on the set of states 0 < m < n initiated by a downward transition from
state n 4- 1 is described by:

T'HEOREM 7.1.
n n
_—-——>0=>——‘_>d 1

Proor. The rv T,* has a completély monotonic density (see, e.g., [13]).
Hence 7," is a scale mixture T',* = I', W, and from (4.4)

2 2
(7.1) Cn:<i2> =1 +2<12>
1/, 1w,

We will show that C, goes to one as n — oo, so that Theorem 7.1 follows from
Theorem 5.2. From (1.5a) and (1.5b) of [10] we have
C . _ P E2T+

A
n _“2_ Ez;__: (Cn——1+1)§_n‘(cn—1+1)'

n
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One then has

C +1
(7.2) 2+ ST 470+ Galu-) o+ Galor oo 1)

where y, = 4,/p,. It follows from Lemma 3.1 of [11], that (C, 4+ 1)/2 — 1 as
n — oo so that C, — 1 as needed.

For a given birth-death process, the quality of the asymptotic approximation
is available directly from (7.2) which provides an upper bound for our distance
(C. + 1)/2 = (*/p")y, from exponentiality. Explicit evaluation of (¢%/47),, is
available from (1.5a) and (1.5b) of [10].

It should be noted that when 4,/p, — 0, one also has T, - the first time down
from state n converging to exponentiality. Here the argument is much simpler.
Indeed, as shown in [10] (cf. (1.1) and (1.9)), 7, is a mixture of an exponential
random variable with weight z,/(4, + p,) and a second positive random variable.
The resul then follows.

Theorem 7.1 could also have been obtained from a more general theorem for
rare events [12], and the formalism of [10]. The quality of the exponential ap-
proximation for finite n, however, would not have been available.

8. The rate of convergence to normality in the central limit theorem. We
have seen (Section 2) that a mixture of normals X, i.e., an element of &, may
be represented either in the form X = NW or the form X = NV Two families
of metrics were seen in Section 5 to be of interest. The first given in (5.1) is
defined in terms of a metric on the space of df’s of W. For the parameter value
6 = 2, the distance to normality with W = W, = 1 took the form (6.2)

(8.1) OwalFys waN) = oy’[pw’ .

An alternate metric defined in terms of the random variable V' was given in (5.2).
When the parameter 6 = 2, this becomes (cf. (6.1)), for the subspace with
EV = Var X = 1 (see below)

(8.2) Ovi(Fxs Fy) = 0%

The distance p,, may be extended in the same way as p,, (cf. (6.2)) to include
all X e &, having a finite fourth moment. We define

(8.3) ovo(Fx» FaXN) = pVZ(FX/aX’ Fy) =01,

which can be used as a measure of distance to normality for all X € &7, having
a finite fourth moment.

The metric (8.1) is more natural than (8.2) in that it deals directly with the
mixing rv W. Moreover, the distance o,*/¢,* is available whenever F has a
second moment since EX* = EN*EW?® = EW?, and is more appropriate to the
central limit theorem where the second moment is intrinsic. The metric (8.1),
however, is not a convenient tool for discussing the rate of convergence to nor-
mality since for independent convolution one does not have X; + X, & W, + W,.
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For the representation X = NV*! we do have X, + X, & V, + V, as we have
seen in Section 2. For this reason the metric (8.2) is attractive. The requirement
that X have a fourth moment to permit ¥ to have a variance is a mild handicap
in practice.

We note that if X = NV}, EX? = ¢, = EV, i.e., distributions in ¢, with
finite second moments have finite first moments for their V distributions. As a
direct consequence, one finds a simple correspondence between the central limit
theorem in .~ and the weak law of large numbers.

THEOREM 8.1. Let (X,),” be a sequence of independent random variables in
with 0 = EX}» < co. Let (V;),” be any corresponding sequence of independent tv’s
with X, =, N,V . Then (cf. (2.11))

Sk XFX, Te 20V, 51

_—M,_—)dN@

o[Sy]  (LEa)t ET, E[XFV,

where 6(1) has all support at unity.

Proor. From the representation X = NV}, and the closure of ", under con-
volution we have
(8.4) Sk utVe o AV Tk
alSx] oSkl E[ZFV;] E[TL]

Also one has for corresponding sequences (X,),* and (V,,),”

(8.5) ¢Xn(t) = (e thr dF,,n(v) .

Tw|ET, —,6(1) then implies that S, /s[S;] —, N and conversely. This may be
seen, for example, from the continuity theorem for Laplace transforms and the
related uniqueness theorem, since ¢ ,.((25)?) is a Laplace transform when X is in
&y (cf. [5] XTID).

The structure of the metric (8.2) and its simple relation to convolution imply
that in the class .~ , the addition of any independent increment X, to X, = 0
when X, is closer to normality than X, brings X, 4+ X, closer to normality.
Indeed, one has

69 ()= (ol + 6, Gt = (2,
pvivry Nt v Ny /! Py Nty + v/ N vy

Moreover, for sums of independent identically distributed rv’s X, in ../, the
normality increases (strictly) with the number of summands, the sole exception
being when the summands are normal. This is a direct consequence of

‘ plsfv, K \ptl

It should also be noted that (¢*/p?),; < (¢*//%),, a special case of Proposition 4.3.
This implies that p,,,(F,, F}) the distance corresponding to (8.1) tends to decrease
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when p,,(Fy, Fy) decreases. The monotonicity in the norm p,, in cases of in-
terest such as those above is not clear.

The Class 7. In Propositions 2.4 and 2.5 we introduced implicitly and dis-
played the extent of a class of distributions which we now define formally.

DEFINITION. An rv Z will be said to belong to the class <7 if the convolution
of the distribution of Z with that of its dual Z? =, — Z is a mixture of normals,
ie., if Z 4+ ZP ¢ &£,

We note that £, ¢ &, and that the completely monotone class &, ¢ &
(cf. Proposition 2.5). Z is clearly closed under convolution but is not closed
under mixing. If Ze & then Z 4 C, e & and C,Z ¢ & for all real constants
C,, C,. The metric p,, provides a convenient metric for the set of df’s in .
Let

Z4 2z
(8.8) U=

The 2¢ factor is introduced so that if Z¢ &7, with ¢, = 1, then Ue &, with
of=1,and Z=N= U= N. Let Z, Z, be elements of 7. We define the
metric

(8.9) P+(les Fg) = AOVZ(FUI, FUz)
where p,, is the metric (5.2) with ¢ = 2 for elements of .%, with unit variance,

and U, is related to Z; via (8.8).

THEOREM 8.2. The subspace of <2 with ¢, = 1 and distance function (8.9) is a
quasimetric space [2], i.e., one has

(8.10a) ot (Fy, F;) = 0, and the triangle inequality
(8.10b) P+(FZI’ Fu) = :0+(le’ Fp) + P+(FZZ’ Fzs) .

Proor. (8.10a)istrivial. (8.10b)followsform p*(Fy, F;) = pyo(Fy, Fy) =
Pvz(Fvl’ Fy) + ovi(Fy, Fry) = P+(le’ Fg) + P+(Fz2, Fyg).

Quasimetric spaces differ from metric spaces only in that p*(x,, x,) = 0 does
not imply that x, = x,. Thisis clearly in keeping with p* as a measure of distance

between distribution forms, with the measure undisturbed when Z, or Z, is shifted
or multiplied by minus one. For departure from normality one has

(8.11) 0 (Fyy Fy) = 25
My

where V is the mixing distribution associated with the U obtained from Z.

By the extension of the distance p,, (cf. (8.3)) the distance p* can be extended
as follows

(8.12) O (Fy Fopy) = 01(Fp0y Fu) -

In this way we obtain a distance from normality for all X e & with EX* < oo.
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We will now show that this distance from normality is equal to y,/6 where 7,
is the classical Pearson coefficient of kurtosis. We have U = NV so that

8.13) v — 3EU - E'UP L[E{Z— tr)t — 3EHZ — /«tzP]
25 E*U* 6 EYZ — p,}
In summary, we have

THEOREM 8.3. The distance to normality of a random variable Z e <7 in the
metric space of Theorem 8.2 is 1,]6 where 7, is the classical Pearson coefficient of
kurtosis.
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