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OPTIMAL STOPPING IN THE STOCK MARKET

By DaviD GRIFFEATH AND J. LAURIE SNELL .
Cornell University and Dartmouth College

A class of optimal stopping problems for conditioned random walk is
discussed in terms of selling strategies for the stock market.

0. Introduction. The stochastic process Brownian motion was introduced
in 1900 by L. Bachelier [1] as a model for fluctuation in the stock market, five
years before Einstein’s discussion of the process as a model for the motion of
particles. There has recently been a renewed interest in stochastic models for
the stock market; see for example the extensive collection of Granger and
Morgenstern [6]. While it is doubtful that these studies have significantly in-
creased the number of millionaires, they have led to interesting mathematical
problems.

One such problem, introduced by Boyce [2], may be motivated as follows:
Let us adopt Brownian motion as a model for stock prices. This seems to be
a reasonable hypothesis according to the review articles of Cootner [3} and
Samuelson [10], and also to Samuelson’s paper [9]. Suppose now that we want
to stop at some point within a prescribed period of time so as to maximize our
expected profit. Since Brownian motion is a martingale (i.e. a fair game), we
cannot guarantee a positive expected payoff under optimal stopping. Now
Boyce raised the question of optimal stopping given a “prediction distribution”
which was not normal with mean 0 and variance 1, but was some other normal
distribution (g, 6*). A number of rather striking results follow from this
model. First, even in the face of a negative predicted trend, p < 0, it is possi-
ble to have a positive expected gain under optimal stopping. That is, one can
profit from information even if it is bad news. Secondly, the optimal strategy
for stopping turns out ,to be “sell on rallies, ride out storms” if the prediction
is reliable (¢* < 1) and “cut losses, let profits run” if ¢* > 1. Boyce [2] ex-
hibited these results by computational methods using a discrete approximation
to Brownian motion. Recently Follmer [5] derived the same results working
directly with Brownian motion. Related stopping problems have been studied
by Shepp [11]. :

The purpose of this paper is to show that the results described above for
Brownian motion can be demonstrated in terms of the simpler process of dis-
crete random walk. At the same time we wish to show the use of maximum
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entropy methods in giving the stock market problem and related prediction
problems a self-contained discrete formulation.

Thus for our discrete model we assume that a man holds a unit of stock
which he must sell sometime over a period of N days. For simplicity we assume
that the stock price increases or decreases by one unit each day. Finally, we
assume the validity of some predictive information abut the stock price after N
days. We wish then to determine how to sell optimally taking account of this
information. To obtain a convenient probability measure for the stock market
process we will follow a method suggested by Jaynes [8]; namely, we choose a
measure which maximizes uncertainty as measured by entropy and is consistent
with our given information. For example, if we have no information this leads
to a simple random walk with probability 1 of an increase and ] of a decrease
on each day. If we are given a predicted mean and variance of the price after
N days, we shall obtain a process for which the price at time N is distributed
according to a kind of discrete analogue of the normal distribution. We will
also be able to describe the process using the notion of conditional Markov
chains, introduced recently in the study of Markov processes and potential
theory. We begin with a discussion of these two basic techniques for modify-
ing a stochastic process.

1. Conditional Markov chains. Let Q be a finite sample space with an assign-
ed probability measure P. If we are given information that an event A4 occurs,
conditional probability in effect leads to a new measure P taking 4 to be the
sample space, while retaining the same relative probabilities of subevents of A4
as given by P. In particular this is true for the individual outcomes, or atoms,
of 4. Each such outcome w of A is assigned a new measure P(0) = P(w)/P(A).
More generally, if {A4,, 4,, ---, A,} is a partition of Q; and if rather than know-
ing that an outcome is in one of the events of the partition we learn information
which causes us to change the measure assigned to these events to P(4,),
P(4,), - - -, P(4,) respectively, then as in the case of conditional probability we
wish the new measure to keep the same relative probabilities for the outcomes
within each event of the partition. This is achieved by assigning to each atom
w € A, the measure P(w) = P(0)P(4,)/P(A4,). This is called a conditional pro-
bability measure.

Next consider a finite Markov chain With transition matrix P = {P,;}. This
chain is said to be absorbing if it has at least one absorbing state, or trap, and
if from every other state it is possible to reach an absorbing state. If an absorb-
ing chain is started in state i, it will eventually reach an absorbing state a almost
surely. We denote by Via, the probability, starting in i, that the process ends
in a,.

A function k on the state space of a Markov chain is said to be regular if
h = Ph (writing k as a column vector), and superregular if h = Ph.

Suppose now that we have a finite absorbing Markov chain which starts in
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state 0 and ends at one of the absorbing states a,, a,, - - -, a,. Let 4, denote the
set of all finite paths leading from O to a,, and let ® = (0, i, - - -, a,) be a typical
such path. Then except for a set of measure 0, {4, 4,, ---, 4,} is a partition
of the probability space Q of all paths of the chain. The original Markov chain
assigns a probability to each event of this partition. Assume now that a pre-
diction causes us to change these probabilities from P(4,) to P(4,). Then, in
accordance with the above discussion, we change the measure of » from

P(w)y=P, P, - --- - P,

0ty © iyig Tg@y

to
(1) P(0) = [Py Py o+ - Py o JP(A,)[P(A,) .

Conveniently, the distribution (1) can be achieved by defining a new Markov
chain as follows: First observe that if 4 is any nonnegative regular function,
then the matrix £ defined by P,, = P, h(j)/h(i) is again a transition matrix.
The resulting Markov chain is called an h-chain. For such chains, the proba-
bility of a sequence » becomes

P(0) = Py, h(i)[A(O) - Py, h(i)[h(i) - -+ - P, h(a,)[h(i,)
:[ 029 1112' tre 'Pia]h(a )/h(o)
We now choose an appropriate . Note first that for any a,, h(i) = v, Is a
regular function. The same is true of the function A(i) = v,,_ P(A4,)/P(A4,) since

multiples of regular functions are regular. Finally, we obtain the desired & by
summing,

@ W) = 5, via, P(4,)/P(4,) .

For this choice 4(0) = 1 and k(a,) = P(4,)/P(4,), so that P(w) takes on the
form (1) as desired. Therefore the predicted chain becomes an k-chain with A
as given by (2).

2. Optimal stopping for a space-time chain. With a given Markov chain it
is often convenient to associate a new process called the space-time chain. For
this chain we take the states to be pairs (m, i), where i is a state of the original
chain and m represents time, so that the transition matrix for the new chain is
given by

P

(m,i)(m+1,5) = sz .

According to this formulation the process is in a state at most once.

Suppose now that we have a space-time chain which we watch for a finite
number N steps, the states (N, r) being made absorbing, and also that we have
a function z(m, i) defined on the state space which designates our payoff if the
process is in state (m, i) and we decide to stop. For such a process, by standard
dynamic programming techniques it follows that the value g(m, i) of being in
state (m, i) and being allowed optimal stopping satisfies the boundary condition

3) g(N, r) = n(N, r)
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and the recursion equation

4) g(m, i) = max {x(m, i), 31; Piu iyims1,5»9(m + 1, ))} for m < N.

An optimal stopping rule consists in stopping the first time g(m; i) = n(m, i).
The value function g may also be characterized as the least superregular
function dominating the payoff function « (see [4]).

3. The conditioned stock market problem. We now formulate the stock
market problem in terms of a space-time Markov chain. In the notation of
Section 2, the simple random walk model for an N-day stock market process
starting at (0, 0) is described by the transition matrix P with

— . j— — 1
P(N,r)(N,r) - 1 ’ a’nd P(m,i)(m+1,i+1) - P(m,l)(m+l,i—1) — 2 for m < N’

The absorption probabilities are

N .
Yoo = <(N + r)/2>/ 29 (r=—=N,—N+42 -, N=2,N).

The effect of prediction is to assign a new set of absorption probabilities
Pr = Pw,0w,m to the stock process. We have seen that this can be done by
forming an A-chain according to (2), so that

h(m, i) = 33, V(m,i)uv,r)pr/”(o,omv,r) .

The values v, .., are easily computed as binomial probabilities, and hence
it is a simple matter to determine 4. The new transition matrix for the A-process
is then

(5) ﬁ(m,i)(m+1,7.+1) = h(m + 1,0+ 1)/2h(m’ i)
ﬁ(m,i)(m+1,i—l) = h(m + l,i— 1)/2h(m’ ) for m < N,

with, of course, By . v, = 1.

We shall denote the process which represents the daily price by V =
{V.; 0 < m< N} with V; normalized to 0, as we are only interested in net
gains or losses.

4. Maximum entropy measures. Consider a finite probability space (2, P)
with elements w. Suppose we wish to assign a probability measure to Q on the
basis of partial information about that measure. Suppose in fact that we only
know the expected values of certain random variables X;, X,, - - -, X, defined
on Q:

E(X)) = po5 EX) = s o5 EX) = py.

A standard information theoretic approach is to assign to Q the measure which
has maximum uncertainty while satisfying the given information as expressed
by constraints of the above form. Uncertainty is measured by the entropy of P:

H(P) = — 3, P(0) In P(w) .
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The maximum entropy measure Pis typically unique and of the form
F(a)) = AN 1@ . L g K@)

where ¢, 4, - - -, 4, are constants determined by the given constraints and the
additional condition that the P(w) sum to 1. See [8], [7], for a discussion of
this problem.

If there are no constraints except that P should be a probability measure,
then the maximum entropy solution assigns equal weight to all outcomes. If
the possible outcomes o are integers and the only constraint consists in giving
the expected value of the outcome, then the maximum entropy solution is

P(r) = ¢,

a geometric distribution. If the first two moments are given, then the solution
has the form

(6) P(r) = e 2, .

In this latter case we have a discrete analogue of the normal distribution. For
continuous distributions with densities, the normal solution maximizes entropy
when the first two moments, or equivalently the mean and variance, are known.

We now apply these ideas to the stock market problem. The basic proba-
bility space is the space of sequences w = (w,, ®,, - - -, w,), where o, is 1 or
—1 depending on whether the stock rises or drops one unit on the mth day.
Thus the corresponding price V,, = } ™, »,. Inthe absence of any information
the maximum entropy method suggests that we assign an equal weight to each
possible sequence w. This leads to the binomial distribution for V,, and our a
priori simple random walk measure P on Q.

Suppose now that a new distribution for V), is predicted. Then we can write
the new distribution as a set of predictions in the form E(X,) = p,, where
X, =1, is the indicator function of 4, = {0: Vy(») = r}, and p, = p, is the
predicted probability of absorption at (N, r). (V,, is defined, according to our
model, for both positive and negative prices i.) By applying the method of
maximum entropy to the path space Q we therefore obtain

= . N

(7 P(o) = p, / <(N B r)/2> for we A,
(assuming, for convenience, that N is even). In other words, the maximum
entropy measure assigns the same probability P(w) to all sequences in A, for
fixed r. Looking back at the way we assigned a measure by means of the &-
chain, we see that the same is true. Hence both the maximum entropy method
and the method of A-chains lead to the same basic measure to take into account
the prediction of our example.

This will not be true for a general absorbing Markov chain. Moreover, the
maximum entropy theory is not available for the continuous time model as the
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h-process theory is. The maximum entropy method can, however, be used in
certain problems where the A-chain theory does not suffice. For example, sup-
pose that only the mean and variance for the price of our stock after N days
are predicted. Then there are many distributions which agree with these pre-
dictions, giving different A-chains and corresponding measures on the path space
Q. The principle of maximum entropy provides a rationale for choosing one
particular measure, which in turn determines a specific 4-chain to which we
may apply our optimal stopping results. We shall use this technique in the next
section, where we treat the optimal stopping problem for the stock market
example.

5. Solution of the stock market problem. We are now prepared to give a
discrete formulation of the stock market problem of Boyce [2]. Following the
methods and notation of the preceding sections, consider an N-day stock market
process with states (m, i) where m denotes the day and i the relative price on
that day. As a matter of notational convenience we will always take N even;
only trivial differences arise in the analysis for N odd. Let the predicted £ 4y,
be denoted j,, and the corresponding final A-value h, (=h(N, r)). The h-value
at state (m, /) will be written h(m, i), the optimal value g(m, i) and the con-
ditioned transition probability from (m, i) to (m + 1, j)—where j =i + 1—as
P imer - The payoff z(m, i) if we choose to sell our stock on the mth day is
simply i, the price of the stock at that time.

For any prediction probabilities whatever, the optimal strategy may be
obtained by the backward iteration method of Section 2, making use of (3) and
(4). Specifically, g(N, i) = i, and for m < N,

8) g(m, i) = max{i, ﬁ(m,i)(m+1,i+1)g(m +1,i4+1)
+ ﬁ(m,i)(m+1,i—l)g(m + 1,i — 1)}.

An optimal strategy consists in stopping (selling our stock) if i is greater than
or equal to the second term of the max, and continuing otherwise. Of course,
from (8) we have g(m, i) = i for all (m, i) since we can always sell immediately.
It follows that a sufficient condition for continuing at (m, i) is

A

Pl tymarivn > 3> Pl iyimr1,-1) (m<N-1),

or equivalently by (5), ‘
%) h(m 4+ 1,i + 1) > hm+1,i — 1) (m< N-—1).

If westopat (m + 1,i+ 1)and (m + 1,i — 1)sothatg(m + 1,i 4 1) =i 41
and g(m + 1,i — 1) =i — 1 (in particular, if m = N — 1), then the above con-
ditions are also necessary for continuing at (m, i) when we adopt the .optimal
strategy just described.

Arbitrary prediction distributions will in general lead to highly complex
strategies, so that if a family of “nice” strategies is desired, some restriction
must be placed on the j,. One such restriction, which we believe to be an
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appropriate analogue of the continuous time normal formulation of [2], is that
the prediction probabilities for the path space Q be a “discrete normal” distri-
bution of given mean and variance, determined by the method,of maximum
entropy described in Section 4. More precisely, for each w e 4, choose P(w)
to have the measure P(r) of (6). Then by (7), the prediction probability p, of
ending at price r is given by

N = N
10 . — >P - < AT
(10) A ((NM/2 (0)=c (NM/Z) 2,
with
(11) h, = 2YA7 4,

where ¢, 4, and 4, are uniquely determined by the mean y and variance ¢* (and
the fact that the p, constitute a probability distribution).

This formulation gives the stock market problem a self sufficient discrete
version, whereas that of Boyce relies on approximation to the continuous
normal distribution. It is worth noting that while our discrete model is not
that of Boyce, it does agree with his in the extreme case where the predictor
designates with certainty the outcome after N days. In this case the process
reduces to the following simple model studied by Shepp [11]: An urn contains
R red balls and B blue balls. You are allowed to draw without replacement as
long as there are any balls in the urn. Each time you draw a red ball you
receive one dollar and each time you draw a blue ball you lose one dollar. As
Shepp and Boyce have shown, finding the optimal value and strategy, even for
this simpler process, provides challenging problems.

Let us consider, then, prediction distributions of the form (10), which we
shall refer to in the sequel as discrete normal (1, 1,)-distributions. For the cor-
responding A-process, note that by (5) only the ratio of A-values determines the
transition probabilities, so that in (11) the normalizing constant ¢ and the factor
of 2V are irrelevant to the determination of g. It is the relation between x and
o®, or alternatively between A, and 4,, which determines the nature of the
optimal strategy, and hence it is this relation in which we are particularly
interested. We will soon restrict our attention to the sub-family of mean-0
discrete normal distributions, where the essential features of the stock market
problem are most readily demonstrated. In the continuous model Follmer [5]
has shown that the non-mean-0 situation can be represented as a mean-0 pro-
blem with a “drift,” while in our case the interrelation of discrete normal stock
market problems is indicated by the equivalence of the N day (4,, 4,)-process
starting at (m, i) and an N — m day (4,, 4,)-process starting at (0, 0), where
A = X, 4. Before limiting ourselves to the mean-0 situation, however, we
mention a result which may be considered analogous to one obtained in the
continuous case by Shepp, using Brownian motion transformations.

ProrosiTION 1. If the prediction distribution {p,} is binomial, then an optimal
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selling strategy for the stock market problem consists in holding our stock until day
N for 1 > 0, and selling immediately if 11 < 0.

Proor. If the p, are binomially distributed, it is easily verified that they are
(4, 1)-discrete normal. For ;> 0 we have 2, > 1; for =0, 4, =1 and P
reduces to the a priori measure P; and if # < 0, 2, < 1. Hence according to
(11) the A, are monotone increasing as r increases for p > 0, and monotone
decreasing for ¢ < 0. Now, in (5) note that

h(m, iy = [h(m + 1,i 4+ 1) + h(m + 1,i — 1)]/2.

By backward induction, this averaging property preserves the final ordering for
all h(m, i) with m fixed. Hence according to condition (9) if 2 > 0 an optimal
strategy consists in continuing at all (m, i) with m < N. For px < 0, on the
other hand, (9) is violated at all (m, i), whence a backward induction shows
that we stop at every state.

For the remainder of this paper we will consider only the mean-0, or equiva-
lently, the (1, 4,)-stock market problem. As will be seen, the characterization
of optimal strategies in this case depends fundamentally on the size of ¢%. For
o* < N (a “reliable” prediction) we play when our stock is down and sell when
it is up, while for ¢* > N (an “unreliable” prediction) we play when the stock
is up and sell when it is down. Some insight into the nature of this “flip” is
obtained by considering the extremal mean-0 distributions: ¢* = 0 and ¢*> = N*.
In the former case, where we know with certainty that we will end at (N, 0),
it is clearly unwise to sell a stock which is down, and advisable to sell at certain
states where it is ahead (since it will eventually drop to 0). For ¢* = N?, where
we end at (N, N) with probability 4 and (N, —N) with probability £, we should
sell immediately if the stock drops on the first day since it will certainly con-
tinue dropping to (N, —N). But if the stock gains on the first day we should
continue playing since it will with certainty climb to (N, N). In order to see
that the qualitative flip suggested here occurs at ¢* = N, and to describe more
fully the optimal strategy governing discrete normal distributions, it is necessary
to take a closer look at the underlying A-process.

Consider, then, the (1, 4,) stock market problem with predicted probabilities
and A-process given by

N and
12 p, = < )2 (r?)
(12) p.=c N )
(13) h, = 23,

where 0 < 4, < oo, and 4, satisfies

Z (g o)™ o

N

A.(rd)

Z'<(N+ r)/2> ’
(r=—-N,—-N+2,...,N—2,N).

(14) (%) =
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In (12) we see that p, = p_, so that p is clearly 0. Also, since the a priori
binomial distribution for ¥, and the f, are both symmetric about 0, it follows
that P(m ) (m+1,5) — P(m - (m+1,~7) and that h(m l) - h(m’ _l)

Observe in (14) that #(4,) is monotone increasing on [0, co0) (¢’ = 0), with
6(0) = 0,6(1) = N, and lim,__,., (4,) = N°®. It follows that 4, is uniquely defined
in terms of ¢*, with

A, < 1 for 6?2 < N,
(15) A, =1 for ¢*= N,
> 1 for ¢*> N,
Now using (13), for the (1, 4,)-process at m = N — 1, condition (9) becomes
22(i+1)2 > 22(1‘-1)2 ,

which by (15) holds for i < 0 when ¢* < Nand i > 0 wheno? > N. (Forg¢® =
N, P reduces to the uniform measure P on Q, and our process has optimal
value 0).Since, as already noted, (9) is necessary and sufficient for continuing
at (N — 1, i), it follows that

a) for ¢> < N we stop at i > 0, continue at i < 0;
P
b) for ¢ > N we continue at i < 0, stop ati > 0.
P

We proceed to show that for ¢* < N we play at all (m, i) where i < 0 (m < N).
According to (9), it is enough to show that

h(m, i 4+ 2y > h(m, i) forall m andall i: —2>=i>= —m.

We know that 4 ., > k., > h,_, for r < —3, and by the averaging property
of the A-process, each preceding 4-value is an average of the k-values at that
time. Also, A(m, —1) = h(m, 1) for m odd; h(m,0)=[r(m + 1, —1) +
h(m 4+ 1, 1)]/2 = h(m + 1, —1) for m even. By backward induction, the order
is therefore preserved. A strictly analogous argument establishes that for ¢* >
N we continue to play at all (m, i) where i > 0. Finally, note that for ¢* < N,
g(m’ _1) > —1 and g(m’ 1) = 1 whereas P(m 0)(m+1,-1) — P(m 0(m+1,1) — 2’ SO
that by continuing at i = 0 we guarantee g(m, 0) > 0. Similarly, for ¢* > N
we continue at (m, 0).

The flip in optimal strategies just demonstrated is illustrated in Figs. I and 2.
We summarize our results in the form of a proposition:

PROPOSITION 2. According to the optimal strategy for the mean-0 stock market
problem, we continue to play at all (m, i) where m < N and i < 0 if ¢* > N, and
we continue to play at all (m, i) where m < N and i = 0 for ¢* > N.

Optimal strategy description for i > 0 when ¢* < N, and for i < 0 when
¢’ > N, is a far more difficult problem. No tractable explicit characterization
for either the discrete or continuous model is known at this time; only approxi-
mate and asymptotic results are available. Asalready mentioned, any particular
finite stock scheme is soluable by the backward iteration method.
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For ¢® < N, by means of an involved and not particularly enlightening
induction argument, we are able to show that the mean-0 discrete normal opti-
mal selling strategy is described by a stopping curve s = {(m, s,,)} (m < N) below
which we continue, and at (or above) which we sell. Moreover,

Spoy = S, 1 and Sp_yg = Sp» OF .+ 2,

m

so that s is “almost monotone increasing” from m = N backwards. The stop-
ping curve s is shown for N = 10, ¢ = 8 in Fig. 1; an optimal strategy starting
at (0, 0) consists in holding onto our stock until we reach s or m = N. Unfortu-
nately, the induction argument does not extend to ¢* > N, and simulations
suggest that s may not always be monotone decreasing from N back for this
case. Being tedious and of limited applicability, the proof of our partial result
is therefore omitted.

A few more remarks regarding the optimal strategies and stopping curves are
of interest. First, note that although the mean-0 predictions given in Figs. 1
and 2 are rather close to the martingale case where ¢* = N, the optimal strategy
ensures a mean profit of about 15 percent over the ten day period. For more
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peaked distributions, i.e. for ¢* very large or small compared to N, by adopt-
ing an optimal strategy we may achieve significant expected gains in cases where
1 < 0. As an extreme but illustrative 10-day process, consider, the limiting
case where our stock climbs to (10, 10) with probability 2 and drops to (10,
—10) with probability 2; for this example we have ; = —2, but
9(0,0) = 2(10) 4+ &(—1) = 3.4.

Needless to say less deterministic instances can be constructed, yielding the
perhaps paradoxical result that, according to our model, it is even possible to
profit from a declining market.

Simulations suggest that as the variance of a discrete normal distribution in-
creases from ¢? to ¢, where 0 < o? < ¢’ < N, the associated stopping curve
decreases in the sense that s,(6"*) < s,(0% for all m. In [2] Boyce conjectures
(for the continuous model) that s does not decrease to 0+ for ¢? approaching N
as we might expect, but rather to some limiting curve. We are able to verify
this for the discrete model, by means of our final result.

PROPOSITION 3. Adopting an optimal strategy for ¢* < N, the last day on which
we continue with V,, = 1 is N — k — 1, where k is the smallest even integer such that

k—r—1) k
16 P TL,,,,77< )h,__h, 0,
( ) (k k+2) Zr 2k—r (r+2)/2 (kr2 kr)<
(r=2,4, - k—2k=4).
Proor. A necessary and sufficient condition for continuing at (N — k — 1, 1)
asgivenis Py, 1 ivore - 2+ Py _iiniv-ro 9(N — k, 0) > 1, or equivalently,
(17) ﬁ(Av—k—l,mAv—k,m + ﬁm’—k—l,m;v—k,m[g(N — k, 0) - 1] > 0.

By the averaging property of the A-process we have

A
P(N—k—l,l)(N*k,Z)

= 2 {hesa + e+ Zf3[<(k 4 - 2)/2> + <(k + ;- 6)/2>} "
* <(k _kz)/2> h"} ; "

A k k
Py hrn-no = 271 {2 ¥ <(k n r)/2> h, + <k/2> ho} .

Now g(N — k,0) = 3, rP(V,, < 1 forallm > N — kand V,, = r) + P(V,, = 1
for some m: N — k < m < N). By a classical ballot theorem we are able to
evaluate the given probabilities, and obtain

g(N — k,0) = [,, &ﬂ&.ﬂ] + [1 _ F=o ¢(L] 1,

A
P(N—kfl,l)(}\r'fk,o) ZP(N*k—l,lJ(N*k.O)

41 k + 1
where (1) = 7<T’1*<(k +r+ 2)/2) e
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Using these relations the condition (17) can be written entirely in terms of the
h-process. After combinatorial simplifications we derive (16).

An easy calculation making use of (16) for k = 6 now shows that if N > 8,
we continue at (N — 7, 1) no matter how close to N the variance. Using the
partial characterization of s stated above, it follows that s, > 1 for all m <
N — 7 whenever ¢* < N, which proves Boyce’s conjecture.

Observe that the analogous argument applied to ¢* > N yields the condition
ﬁ(N—k—l,—l)(N—k,—Z) - ﬁ(N—k—l,—l)(N—k,O)[l + 9(N — k,0)] > 0. By taking 2, suf-
ficiently large the first probability exceeds 1 — ¢, so a necessary condition for
continuing at (N — k — 1, —1) becomes

1 — 2¢

g(N — k,0) >

Taking ¢ < $ 4+ N, we see that the last condition is never satisfied. Hence for
4, sufficiently large, or equivalently for ¢* sufficiently close to N?, the stopping
curve s becomes identically 0—no matter how large N.

That such a complex relation as (16) determines the simplest possible stopping
curve demonstrates graphically the intricacy of the stock market problem for
even those prediction distributions which define reasonable strategies. This
suggests that the most profitable extension of our results might be the char-
acterization of a larger family of prediction distributions for which Proposition
2 holds. Boyce’s normal predictions in the continuous time model and our
(4, 4,) family should probably be viewed as convenient, relatively tractable
examples from a wider class of “nice” measures. For example, using (9) it is a
simple matter to show that Proposition 2 holds for any family of symmetric
mean-0, variance ¢* distributions {j,(¢®)} such that the corresponding final /-
values £ (o%) satisfy:

(@) {h.(N)}is uniformly distributed on {—N, —N + 2, ..., N — 2, N};
(b) {#.,.(c»} is monotone decreasing on {0, 2, ..., N} for ¢ < N, and mono-
tone increasing for ¢*> > N.

Of special interest would be the derivation of general conditions under which
the flip occurs for p + 0, as this phenomenon is certainly the most intriguing
aspect of our problem.

‘
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