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FUNCTIONALS OF CRITICAL MULTITYPE BRANCHING PROCESSES!

By K. ATHREYA AND P. NEY .
Indian Institute of Science and University of Wisconsin

Let Z(t) = (Z:(1), - - -, Z(1)), t = 0, be a critical k-type, continuous time,
Markov branching process. It is known that Z(#)/¢, conditioned on Z(t) #0,
converges in distribution to v/, where v is a vector determined by the mean
matrix of the process, and W is an exponentially distributed random vari-
able. Thus if & is any fixed vector, then (& - Z())/t, conditioned on non-
extinction, converges to (§ - v)W. If § is orthogonal to v then ¢ is not the
right normalizing factor. We prove that in this case: -

(a) {(§-Z()/(u- Z(t))} | Z(t) + 0} converges in distribution to a normal
random variable, and

(b) {(€ - Z(1))/t}| Z(t) + 0} converges in distribution to a Laplacian ran-
dom variable.

1. Introduction. In this note we prove a limit theorem for linear functionals
of a critical, k-type (2 < k < o0), continuous time Markov branching processes

Z(t) = (Z(1), - -> Z(1)) 5
Z(t) being the number of type i particles at time ¢.

It is well known that Z(f)/t, conditioned on Z(r) + 0, converges in distribution
to vI¥; where v is a vector determined by the mean matrix of the process (to be
defined below), and W is an exponentially distributed random variable.? Hence
if § is any fixed vector, then (§ - Z(¢))/t, conditioned on non-extinction, con-
verges to (§ - v)W. However, if § is orthogonal to v, then this only tells us that
(§ - Z(r))/t — 0 in distribution, and it is natural to ask whether some normalizing
function smaller than ¢ leads to a non-degenerate limit law.

We will prove two results in this direction; one for a random normalization,
and the other for a deterministic one. Namely, we show that if (§ - v) = 0 then

{(€ - Z(0)/(u - Z(1))* | Z(r) + 0}
converges in distribution to a normally distributed random variable (u is a fixed
vector to be specified), and that

{(§ - Z(n)/¢| Z(r) # 0}

converges in distribution to a Laplacian random variable.?
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2. Results. The mean matrix of the process is
M(t) = {my;(0); 5,7 =1, -+, k} = {E(Z{(1) | Z(0) = e,)} ,

wheree, = (0, ---,0, 1,0, ..., 0)is the unit vector with a 1 in the ith coordi-
nate. It is easy to check that

M(t + 5) = M(f)M(s) , t,s =0,
and one can write

M(r) = exp{At},

where A is the infinitesimal generator of the semigroup {M(r); t = 0}. We assume
that the process is positively regular, i.e., that all elements of M(z,) are positive
for some #,, 0 < ¢, < co. Then there is a simple eigenvalue 2, of 4 which is real,
and is larger than the real part of any other eigenvalue. Let uand v be the right
and left eigenvectors associated with this maximal eigenvalue. Denote by 4, the
event that Z(¢) # 0, by {X| A4,} the random variable X conditioned on 4,, and by

P-[4},  E{-]4}, P A}, E=A)
the conditional probability and expectation, given A,, and restricted to 4,
respectively.
THEOREM 1. If Z(f) has finite second moments, § is real, and § - v = 0, then
{(§ - Z(1)/(u- Z(1)* | 4]}

converges in distribution to a normally distributed random variable with zero mean,
and finite, nonzero variance.

Proor. Due to the additive property of the branching process, we can write
(1) Z(t + 5) = Y b, AP Z0I(t, 5), s=0,t=0,

where Z*9(z, s) = the population vector at time ¢ 4 s of the process descendent
from the jth type i particle alive at time .

Let X(f) = u- Z(r) and Y(f) = § - Z(r). Then by using (1) we can write
2) Y+ =T DAV [E 2990, 5) — (M(5)€):] + (M(9)F) - Z(1)
and hence

Y(t + 3) : (Zi(t)y { 1 : } (M(5)§) - Z(1)
3 — i 240 (1, S AMB)s) = £4¢°)
@ (X(0)* TAX() /) W(Z )y Rt O (X(0)*
where (¢, 5) = § - Z"(t, s) — (M(5)§),. The idea of the proof is to condition
on A,,,, apply the central limit theorem to the independent, identically distri-
buted random variable 7,,(s), and show that if (§ - v) = O then the last term in

(3) goes to zero in probability. ‘
First, let V = exp{i0Y(t + 5)/(X())!}. By expressing E{V; 4,,,} as

E(V; A} — E(V; A, A;,,} = E[V| A}P{A} — P{A, 4.},

’

we see that
E(V| A} = [PlAYPIAEV | A} — P4, | A} -
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But for fixed s, P{4,,,}/P{A4,} = P{A4,,,] A4} — 1 as t — c. Hence

@) lim, .., E(V| Ay} = lim, .., E{V| A} .
Now return to (3) and condition both sides on 4,. Observe that {7,,(z, 5)| 4,},
j=1, .-, Z(t) are independent, identically distributed random variables with

mean 0 and finite variance, whose distributions are independent of r. Let
a/%(s, §) = Var {n;;(1, 5)| 4} = Var {€ - Z(s)| Z(0) = e,}.

Since {Z,(t)| 4,} —, o0 and {Z(1)/X(?)| A,} —, v; (Where —, denotes conver-
gence in distribution), we see that

where N,(s) are independent N(0, ¢,%(s, §)) variables. The exact expression for
o(s, §) need not concern us, it being sufficient to know that

(6) lim,_,, 0,%(s, §) = 0,%(§) = O for §=+0, §-v=0.
This is in turn a consequence of the fact that for any ¢ € R, (see expression
(4.16) of [3])
(M) E{($ - Z()|Z(0) = e.} — (M(1)$)/?
=01, ) = Xi Simi (o) (Mt — )Y C(O)(M(r — 7)p) dr
where C,(0) is a positive definite matrix representing the infinitesimal variances
and covariances for a process starting at e;. When ¢ - v = 0, one can show (see

proposition (1) of [3]) that there exist constants 4 > 0 and y depending on ¢,
such that

8) sup, M(t)gpett7 = r(¢p) < o,
thus making the integrand in (7) integrable in [0, co). Also, since the process is

critical, m, () — u, v, as t — co. Thus, by the dominated convergence theorem,
we may conclude that

) lime, 0¥, @) = u, 350, § (M(0@) C/(0NM(n)g) dit = 0X($) ,  say.
It is clear that ¢*(¢) = 0 iff M(r)¢p = 0 for all ¢, or equivalently that ¢ = 0.
Thus, ¢ + 0 implies 0,(¢p) # 0. Also, it is clear from the above expression for

o (¢) that it goes to zero if ¢ — 0.
From (7), (8), and (9) we can further conclude that

(10) L,(n) = sup, E{|y - Z(1)|"| Z(0) = e,} < oo,
and
(11) L(p)—0 as |y —0.

By Chebychev’s inequality and the fact that Z(z) = 0 on 4,°, we have

(12)  P(M(s)§) - Z(1)| > et* | Z(0) = e;, A}
< E{|(M(5)8) - Z(1)[*| Z(0) = e;}/e'tP{A} .
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Since tP{A4,} — constant > 0, we can conclude from (10) and (12) that
(13) sup, P{[(M(s)§) - Z(1)] < er*| Z(0) = e;, A} < cL(M(5)5)

for some positive constant ¢. Now when &.v=0, M(s)§ > 0as s— oo, SO
by taking s large and applying (11) and (13), we see that we can make
{(M(5)&) - Z()/r}| A,} small in probability uniformly in #. Hence, since {X(#)/t| 4,}
converges to a proper distribution, we conclude that given any e, 0 > 0, there
is an s, such that

(14) sup, P{[(M(5)§) - Z(N/(X(D)} > e[ A} < o

for s > s,.
Finally, note that

Y(t+s) _ Y +5) ( X(1) >*
X+ 9 X)) \X(t+ )/’

and that for fixed s,
{(X(0)/X(t + )| A} —a 1 as t—oo.

To see the latter, note that as r — oo

_— 7 DI 2000 9] A —amis),

and hence that

{ r N r ZZ i) 7 (U)(t S)

A} =y (M(syw), = 1.
u;

u, Z,(1)
Thus
ity 14 = {Z—z—%—) A,}

Hence taking s large and then ¢ large, and combining (3), (4), (5), (6) and (14),
we have Theorem 1.

THEOREM 2. If Z(t) has finite second moments, § is real, and § - v = 0, then

{(§-Z())/t| 4]
converges in distribution to a random variable with density function fye=7, —oo <

x < oo, where y > 0.

ProOOF. Let &, denote the o-field generated by {Z(u): u < r}. Then by using
the decomposition as at (2), and noting that conditional on &, the second term
there is constant, we have
(15)  E[exp{i#¥(c + 5)}| 4]

= E{exp{if(M(s)§) - Z(0)}E[exp{if Y., 270 9yt )} F ]| A} -
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Let ¢,(0; s) = E exp{ifin,;(t, s)} (note that this is independent of j and 7). Then
the expression at (15) equals

(16) E{exp{id(M(5)§) - Z(1)} [1i-1 97105 5)| A} -

Now by (14) and the remarks around it, given ¢, 6 > 0, we can find s, such that
(14) holds with (X(#))* replaced by %, so

(17)  E[exp{i0Y(t + 5)/(t + *}| 4]
= [1 + 7(s, NIE(ITV 0720 + )74 5) [ 4.}
where 7(s, t) — 0 as s — oo, uniformly in 7. Now for fixed s, ¢, is the charac-

teristic function of a random variable with mean O and finite variance g,(s).
Also, we can write the exponent of ¢, in (17) as

[Z:(0)/(u - Z())][(u - Z()/1)e/(t 4 9] + 5) 5
whence, recalling that as t — oo, (u- Z(#))/t converges in distribution to an
exponentially distributed random variable U with parameter 2 say, that
{Z(1)| A} —, o0, and that {Z(1)/(u - Z(1))| A} —, v;, it follows that the limit
(as t — o), of the right-hand expectation of (17) equals

(18) E[exp{—30°0*(s)U}] = (24/0%(s))/[(24]0*(5)) + 6°]

where o’(s) = 3] v,0,%(s). We have already observed that lim,_, ¢°(s) = ¢® exists,
and by arguing exactly as in the proof of (4), with

V(1) = exp{ifY(t)/tt},
lim, ... E{V(1)| A,,,} = lim,_ E{V(t + $)| 4,,,} = lim,_., E{V(t + 5)| 4,} .

So by taking s large, letting t — oo, and referring to (17) and (18), we arrive at
the characteristic function of a random variable of the asserted form.
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