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DENSITY VERSIONS OF THE UNIVARIATE
CENTRAL LIMIT THEOREM'

By Suint K. Basu

University of North Carolina

Let {X,} be a sequence of independent random variables each with a
finite expectation and a finite variance. Write Z, for the standardized sum
of X1, X, - - -, X» and suppose that for all large n, Z, has a probability density
function which we denote by 4,(x). It is well known that the usual assump-

. tions of the Central Limit Theorem do not necessarily imply the convergence
of ha(x) to the standard normal density ¢(x). In this study, we find a set of
sufficient conditions under which the relation

limp oo |x[¥|An(x) — $(x)| = 0

holds uniformly with respect to x € (— oo, 4 o0), k being an integer greater
than or equal to 2.

1. Introduction. Let X, X,, - .-, ad inf be a sequence of independent random
variables such that ZX; = 0 and &X;* = ¢;* < oo, for all j. We write s,> =
10 Z, =35, 3%, X; and H, (x) = Pr{Z, < x}. Lindeberg’s form of the
Central Limit Theorem for independent random variables asserts that if for

every ¢ > 0,

(1.1) 2= g1[|as]-|>esn]|Xj|2 = o(s,”)

as n— oo (and hence s, — oo, sup,.,<, 0,/s, — 0, as n — co) then Z, tends, in
distribution, as n — co to the normal distribution with probability density func-
tion (pdf) ¢(x) = (27)~* exp(—x*/2). Insome situations it is desirable to be able
to claim that the pdf of Z, tends to ¢(x), a conclusion that is, in general, false.
This is, however, true in the case where the X’s (i.i.d. case) have the same dis-
tribution provided the characteristic function (ch.f.) of X, is integrable in rth
power for some integer r > 1 (see Feller (1966), Gnedenko and Kolmogorov
(1968) and Smith (1953)). The i.i.d. case was later studied in greater detail by
Petrov (1964), (1972). He showed that if, in addition to the integrability of the
ch.f. (or of the rth power of it) of X,, there exists an integer k = 3 such that
Z|X1|* < oo, then H,(x) is absolutely continuous with a pdf #,(x) such that the
relation

(1.2) (1 + %) (x) — @(x) — T2 Py(—¢)[ni?] = o(n~k-7%)

holds uniformly with respect to (w.r.t) x, as n — co. Here
Pi(—¢) = 45;(x)¢(%)
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where g;,(x) is the well-known polynomial in x of degree 3j with coefficients
which depend only on the moments of X, up to order j + 2.

No such general result is known when the X’s have different, distributions.
Petrov (1956) provided an estimate of (4,(x) — ¢(x)) under a certain condition
on the integrability of the ch.f.’s of the X’sand the assumption that #|X,[* < co,
where k =2 46, > 0, and k,(x) is a pdf of Z,. He also provided an expan-
sion of 4,(x) in the case where § > 1 and some other stronger conditions hold.
This expansion is somewhat similar to (1.2); but unlike (1.2), it does not contain
(1 + [x|*) as a factor. Smith (1953), on the other hand, provided a different set
of conditions under which (I + x*)(k,(x) — ¢(x)) converges to zero, uniformly
w.r.t x, as n — oco. In order to motivate our present problem, we shall now
briefly discuss Smith’s findings.

Let us denote the characteristic function (ch.f.) of X; by w,(¢), j= 1,2, --..
We shall write ¢(x) for the standard normal pdf.

DEFINTION 1.1 [Smith]. The sequence of random variables {X,} will be said to
contain a “smoothing subsequence” if there exists a subsequence o, (1), @, (), - -
such that for some positive R, 4, « we have

., (0] = A/]1|"
for real r with || = R.

Denote by n* the number of members of the smoothing subsequence in
X, X, -+, X,. He then proved:

THEOREM 1.1 [Smith]. If the conditions of Lindeberg’s theorem hold and if a
smoothing subsequence exists which satisfies.

Condition A lim inf,_ n*/s,> > 0

then for all sufficiently large n, H,(x) is absolutely continuous with a pdf h,(x) such
that

(1.3) lim, ., A,(x) = ()

uniformly with respect to x in the interval (—oo < x < oo). If further,

Condition B: limsup,_, 217, 5,7 {2 |x|F;(dx) < oo
holds, then '
(1.4) lim,_, x*h,(x) = x*¢(x)

uniformly with respect to x in the interval (—oo < x < o).

The purpose of this present note is to prove a theorem which embraces the
ideas of Theorem 1.1 and even allows us to introduce x* in place of x* in the
expression (1.4), where k = 2 is an integer. We shall prove that this is possible
if we replace Condition B in Theorem 1.1 by a condition L, (to be defined in
Section 2). As will be seen, this condition Z, reduces to the usual Lindeberg
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condition (1.1) if # = 2; since we assume the latter anyway, this renders con-
dition B in the above theorem redundant. It will be clear from Corollary 2.1.1
that such an assumption may not be avoided in the present situation. Similar
results in the case where the X’s are identically distributed can: be found in
Smith and Basu (1973); there it was possible to go one step further and prove
a similar theorem even when r is not necessarily an integer.

We shall need additional notation. The ch.f. of Z, will be denoted by Q,(r)
so that

Q.(1) = 17 0,(t/s,) -
Whenever the rth order derivatives exists, we shall write
0,7 (1) = (ddiy o), j=12

and
Q. (1) = (d]dr)"Q,(1) .

Also if the rth order moments exist, we shall use
i = X7, J=12
while we shall write
6, = §E2 |l p(x) dx
N(#) will represent ch.f. of the standard normal distribution and we shall use
N™(1) to represent its rth derivative.

2. Some necessary lemmas. Here we shall discuss a few lemmas that will be
necessary for our later purposes.

LemMMA 2.1. For an integer k, Q,(1), whenever it exists, is given by
(2.1) Q1) = 5,7 Tg, (ks ks -5 k) Digsicipencsysn iz @52(1)5,)
X 5w iniyigeeiy @1/52)
where (ky, k), - -, k) = (K!)(k! k;! -+ - k1)~ and
0, = Ut {(ky, kyy -+, k)t each k; is an integer =1,
ky kgt oo b k= k).

Proor. The proof follows by an application of Leibnitz rule and then a re-
arrangement of terms.

LEMMA 2.2. With notations introduced in the previous section, assume that the
conditions of Lindeberg’s theorem hold and that p;, < oo for some integer k = 2
and all j. Then Q,* (1) exists for all t and

(i) lim,_, &|Z,|k = ¢,, implies
(i) lim, . Q,%(f) = N®(1), for all t.

Proor. That Q,%* (1) exists for all ¢ is obvious. Next we note that

Qn(k)(t) - N(k)(t) = Dln + Dzn + D3ﬂ
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where
Dy, = §¥, (ix)* exp(itx)H,(dx) — §¥, (ix)* exp (itx)¢(x) dx ,

D,, = §,,5n (iX)* exp (itx)H (dX) ,
Dy = —§ iy (ix)" exp (i1)(x) dx

M being a positive number to be suitably chosen later. Since Lindeberg con-
dition (1.1) holds, it is easy to see that for any fixed M, D,, converges to zero

3n

as n — oo.

Also,
|D2n| é S[z[>M |x|an(dx)

which, because of Lindeberg condition and condition (i) can be made as small
as we please by a suitable choice of M. D,, can obviously be made small by
choosing a large M. This completes the proof of the lemma.

DEerINITION 2.1. A sequence of independent random variables {X,} with
“X,=0,S, =X +X,+ -+ X, =&S",n=1,2, ... is said to obey
a Lindeberg condition of order v > 2 (i.e. L, holds) if
(22) ?21 gl[ilezesnﬂXjP = O(Sny)
as n — oo forall e > 0.

When v = 2, this is the well-known Lindeberg condition which we mentioned

in Section 1. It has been shown by Brown (1969) that when v > 2 the condition
(2.2) is equivalent to

(2.3) T Xl = 0(s,)
as n — oo and that L, implies L, for 2 < @ < v. We shall reproduce the follow-
ing theorem from Brown (1970).
THEOREM 2.1 [Brown]. Forallv > 2, L, is both necessary and sufficient for the
Central Limit Theorem and
lim, ., &|S,/s,] = ¢, .
COROLLARY 2.1.1. Suppose k = 2 isaninteger. Whenever Q,®(r) exists, a suf-
ficient condition for the Central Limit Theorem and
lim,_, Q,®(f) = N®(1)
(for all t) to hold is that L, holds.
Proor. Immediate from Lemma 2.2 and Theorem 2.1.

LeMMA 2.3 [Smith]. Suppose the sequence {Q, (1)} of ch.f.’s contains a smoothing
subsequence. Then there exists a positive function Q(t) such that
Q) = Al for | =R
=1—y* for [t|]<R
where 7 is some positive number, and if w, (1) belongs to a smoothing subsequence,

then for all t
]wnj(t)] é Q(t) ‘
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It may be observed that, without any loss of generality, R may be assumed
large enough for AR-* < 1.

3. The main theorem. With this much of introduction, we are now in a posi-
tion to state and prove the following theorem:

THEOREM 3.1. Let {X,} be a sequence of independent random variables with df’s
F,F, .- and chf.’s w,, @, ---. Suppose
(i) X, =0, X =0 < o0,j=1,2, .-+,
(ii) for some integer k = 2, L, holds,
(iii) a smoothing subsequence exists which satisfies

Condition A: liminf,_ n*/s>> 0.

Then for all sufficiently large n, H,(x) is absolutely continuous with a pdf h,(x) such
that the relation

3.1) lim, ., (1 + [x[)[Au(x) — $(x)] =0
holds uniformly with respect to x in the interval (—co < x < o).

Proor. Since w,(f) is bounded by unity for all jand a smoothing subsequence
exists, Q,(¢) is (absolutely) integrable for all n greater than or equal to some n,.
Hence H,(x) is absolutely continuous for all n > n,. In view of Theorem 1.1,
it is sufficient to prove that |x|*[#,(x) — ¢(x)] — 0 as n — oo, uniformly in x.
Next, we note that L, implies L, and hence

(3.2) lim,_,, H,(x) = O(x) for all x, and
(3.3) S, —> 00 as n-— oo.
Since |0, ()] £ p;, < 0 for0 < r < kandj=1,2, .-, fromcondition A, it

follows that Q,*)(r) is (absolutely) integrable for all large n. Thus for all large n,
[x[An(x) = $(x)] = 2m) 7§22 {Q,P(1) — NO(1)} exp(—itx) di|

é (271')_1[]1,” + IZn + 1371. + IML]
where
]m = SltlsQ |Qn(k)(t) - N(k)(t)l dt,

1, = S|t|>Q |N(k)(t)| dt,
L, = SQ<|tI<Rsn’|Qn(k)(t)l dr,
L, = S|t|>mn IQn(k)(t)I dr,

where R > 0 is as in Lemma 2.3 and Q > 0 will be chosen later.
Since L, holds, Corollary 2.1.1 applies so that

lim,_, Q,®(t) = N®(1)
for all ¢. Also, by Theorem 2.1, there exists a finite number B > 0 such that

|Q,®(f)] < B. Hence whatever the constant Q0 > 0 may be, I, converges to
zero as n tends to infinity. By choosing Q sufficiently large, /,, can be made
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as small as we wish. By Lemmas 2.1 and 2.3

2.2 = (ks HZ o Drsirciper<iysn iz 052 (/5,) [HQUt 5,))
since (¢) < 1. But this implies
(3-4)  [QR0) = K T, {874 Dia lo (s )Msa ™ Tga o2 (1fs,)]} - - -
{878 e o 40 (t)s,) Ut s )} " .

Now for each j =1, 2, ..., 0,%(¢) is differentiable and since the mean is zero,
;(0) = 0. Thus

wi(l)(t/sn) = (t/sn)wj(z)(gf t/sn) s 0 < 5.1' < 1 ’
so that
lo;V(t/s,)] = (|t]o,?)/s, 5 J=1,2, -0
Therefore,
(3.5) 8,7 DG | V(tfs,)| = e

Also since L, holds, and L, implies L,, r = 2, .-, k, by (2.3) it follows that
there exists constants W, > 0 such that

(3’6) sn_r Z;’L=1 le(r)(t/sn)l é Sn_r Z;’l=l ng]lT é W" ’
forr=2,3, ..., k. Combining (3.4), (3.5) and (3.6) we can then say that
12,20 = {Ztoaltl'} X {Qt/s)} ",

where a,’s are nonnegative constant coefficients. Also, because of condition A,
there exists a ¢ > Osuch that for all sufficiently large n, n* > ps,2. Since Q (1) <1,
for all large n, we must have

(3-7) 250 = T @l Q1 s}*
Thus, for all large n
Ly < 2itoo @ osiuis, [H{Q(ts,) )" dt

= 2feo @ Sz |t exp{—rP(ps,® — k)[s,’} dt
Se,

for large enough Q.

Finally, for all large n,
(3.8) I, < Yk pa S0z re, |[H{Q(¢/s,)}n>* dit
= Z?:o a, S|¢|g3,n ltll(AS,,“|t]‘“)l"n2—" dt

which converges to zero as n— oo by simple calculations, since 4AR~* < 1.
This completes the proof of the theorem.
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