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THE POISSON APPROXIMATION FOR DEPENDENT EVENTS'

By DAvID FREEDMAN
University of California, Berkeley

Consider a sequence of dependent events, where each has uniformly
small conditional probability given the past, and the sum of the conditional
probabilities is approximately constant at a. Then the number of events
which occur is approximately Poisson with parameter a. An explicit bound
is given on the variation distance.

1. Introduction. Supvose you have a sequence of dependent events, such that
each event has small conditional probability given the past, and the sum of the
conditional probabilities is approximately constant at a. Then the number of
the events which occur is approximately Poisson with parameter a.

First, a review of the well-known case of independence.

(1) DerinNiTION. If 2 and g are two probabilities on (27, Z), then

d(p, 1) = Sup,es |1(A) — #(A)] .
If Y and Y’ have distribution g and g/, then d(Y, Y’) = d(y, ).

2) Facts. (a) The function d metrizes the space of probabilities on (27, Z).
(b) If X is the o-field of all subsets of the countable set 227, then

d(ps ¢) = % Dae o |(X) — /()] -

Call d the variation metric. In fact,

2d(p, ) =l = ||
is the total mass of the finite signed measure p — ¢/, because p(27) = p/(27) = 1.

Next, a calculus estimate. This introduces two constants K, and K, which
appear in the main estimates (4) and (5), the easy proof is omitted.

(3) LeEMMA. Let 0 < g < 1. Suppose 0 < p < q.

(@) p= —log(l —p) = p+ 3p°/(1 — p);
(b) —log(l — p) = K\(q)p, where

‘ 9 ¢
Kiq) =g 1-log(l =)l =1+ -+ + -
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DEPENDENT POISSON APPROXIMATION 257

() —log(l — p) =< p + Kq)p’, where

Kig) =g [log(1l =) —ql=4+ L+ Ly .

)

(d) Ki(to) = 18 and Ky(5) = §-

Here is an estimate for the independent case. In a sense, exactly the same
estimate holds for the dependent case: a precise statement is in (5) below. As
usual, 1, is 1 on 4 and O off 4.

4) THEOREM. Let A,, - -, A, be independent events. Let N = 3111, be the
number which occur. Let

a= )1 P(4) and €

L1 P4
Suppose ¢ < 1. Let N* be Poisson with parameter a. Define K,, K, by (3). Let
a = 3K (e}) + Ky(e?) = 1 + Bet + -.. .

d(N, N*) < ac .

I'learned this inequality from Hodges and LeCam (1960), and will review their
ingenious proof later, in Section 2, because most of it works in the dependent
case. Of course,

21 P(4,)" = [max, P(4)] - Xt P(4)) .

If 317 P(A,) = a is moderate, and the P(4,) are small, then 337 P(A4,)* is small.
However, >.7 P(A,)’ can be small even for large [max, P(4,)] - 217 P(4;,). Soa
bound in terms of >} P(A4,)* is superior to one in terms of max; P(4,) and

21 P(A).
Now suppose that A4,, 4,, - - - are dependent events. Let .5, be the field gen-
erated by 4,, - - -, 4, and let

pe = P(A 7))
so p, is an .% ,_ -measurable random variable and 0 < p, < 1. To begin with,
suppose the p, are individually small, but have a large sum: say

p. < n everywhere © and >»p=T.

Let a < T. Let z(a) be the least n with p, + .-+ + p, = a,s0p; + -+ + p.o
is nearly a and p,* + ... + pi,, is small. Explicitly,
asp+ - tpw=a+y
p12+ +P?-(a) = W(Pl + o +pr(a)) é 7)(a+ 7))'
Let N be the number of A, which occur with i < ¢(a): formally, N = »{ 1.

Then N is approximately Poisson with parameter a. I will now give an explicit
bound in a more general situation.
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By definition, 7 is a stopping time relative to { &} provided: r takes the values
1,2, ---,00;and {r = i}e .7, foralli=1,2, --.. So z(a) is a stopping time.

(3) THEOREM. Let A,, A,, - - - be dependent events. Let 5 be the field generated
by A, -+, Ay, and let ’
pe= P(A4;|F )

Let 7 be a stopping time relative to {7 }. Let N be the number of A; which occur
with i < 7.

N=3lia lAi .
Let a < b be nonnegative real numbers. Let ¢,  be nonnegative real numbers less
than 1. Suppose

Plagp +---+p.<band p+ ... 4+ p*Zef=1-90.

Let N* be Poisson with parameter a. Define a as in (4).
Then
d(N,N*) < ae + (b — a) + 20.
I will prove this in Section 3. If 4,, 4,, - - are independent, then p, = P(4,).
If also 7 is constant at n, you can choose @ = 37 p,and ¢ = 37 p’and 9 = 0.
So (5) includes (4).

NotaTioN. Throughout this paper, (Q, &, P) is a probability triple; &, C
F,C . F,C - C F areo-fields; 4, &, and W, =1, is 1 on 4, and 0 off
A,, while p, = P(A,| %,_;) = P{W, = 1|5 ,_)}. ExceptinSection5, &7 is the
field generated by 4,, - - -, 4,; s0 F = {4, Q}.

Sometimes, it is useful to have information about the whole trajectory of par-
tial sums W,, W, + W,, ---. If you think of W, as having time coordinate p,,
W, 4+ W,as having time coordinate p, + p,, - - - and in general W, + W,+ ... + W,
as having time coordinate p, + p, + - - - + p,, the whole process is approximately
Poisson, provided the p, are small and Zp, is large, as will be shown in Section 4.

Sometimes, it is convenient to have %, larger than the field generated by
A, .-+, A;; this will be discussed in Section 5.

There is a beautiful result of Aryeh Dvoretzky (unpublished), which extends
the general central limit theorem for triangular arrays to dependent variables.
It seems that the Normal approximation and Poisson approximation have quite
a wide domain, by comparison with the compound Poisson approximation. To
illustrate this point, consider dependeﬁt variables W, which take the three values
0 and +1. Let &, be the o-field generated by W, ..., W,. Let

po=PW, =171} and g, = PW, = —1[.5,_}.
Suppose t is a stopping time such that

pi+ -+ + p. is nearly constant at ¢,
¢, + -+ + g. isnearly constant at d and

Pt s Pes Gus o+csq. aresmall.
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Then W, ++ ... 4+ W_ is nearly compound Poisson with canonical measure c at
1 and d at —1. However, there are usually no such stopping times: if r makes
P+ - -+ + p. nearly constant, it will usually make ¢, + ... + g, extremely
variable, and there is nothing to say.

Here is a sample of the pathology. I will construct two very different processes
withp, 4+ ... 4 p. = l and thesame ¢, + --- + ¢.. One willhave W, ...+
W. = —1 everywhere, but equal to —1 with positive probability, even in the
limit when p — 0. This prevents W, 4 ... 4+ W_ from being approximately
compound Poisson. The other process will haue W, + ... 4+ W_ unbounded
above and below.

The first construction. Initially, let

p=PW, =115 )=p and g =PW,=—1]5_)=p.
So W,, W,, - .. are independent, +1 with equal probability p, and 0 with the

remaining probability 1 — 2p. Keep this up until the first n with W, 4 ... +
W, = —1. From that n on, let

pi=PW, =15 _}=p and g9, =PW,=—-1|5,_}=0.
Let 7 be the least m with p, 4+ ... 4+ p, = 1.

The second construction is like the first, except you change from the 3-valued
to the 2-valued W’s at the first n with W, + ... + W, = 1.

2. The independent case.

(6) LeEMMA. If Y and Y’ are measurable mappings from (Q, 5, P) to (7, Z),

then
aY,Y)< P Y +Y'},

where P, is inner measure.
Proor. Let 4eX. Then
[P(Ye A) — P(Y'e A))| < P{(Ye A) A (Y € A)},

where A is symmetric difference. But (Y € 4) A (Y’ € 4) is an % -measurable
subset of {Y == Y’}. []

7 LeMMA. If' Y is Poisson with parameter 2, then

(a) P(Y=1}=2
(b) P(Y =2} < 42

Proor. Claim (a). Observe P{[Y =0} =e*>1— A
Claim (b). Check that

PYz2=etys, X

-

because 2/j! < 1/(j — 2)! forj = 2. []



260 DAVID FREEDMAN

®) LEMMA. Suppose Y is Poisson with parameter a, and Y’ is Poisson with
parameter a’ > a. Then
dY,Yy<ad —a.

Proor. Let Z be independent of Y and Poisson with parameter @ — a. Then
Y + Z is distributed like Y’. With the help of (6) and (7a),

dY,Y)=d(Y,Y + Z) < P(Z+0) < (¢ — a). 0

Proor or (4). Construct independent Poisson variables Y, - .-, Y, on some
triple (&', &', P'), where Y, has parameter

4, = —log(l — p,) and P

P(A,) .

Then let X; = 0 when Y, = 0, and X, = 1 when Y,
independent 0-1 variables, and

P(X,=0)=P(Y,=0)=e*=1—p,,

= 1. Now X, ..., X, are

so P'(X;=1)= P(4;,). That is, X, + ... 4+ X, is distributed like N =
1A1+ el lA,,- So

9) d(N, N*) = d(X, + -+ + X,, N*).

ButX, + ... 4+ X, =Y, 4 .-+ 4 Y, excepton 7, {Y; = 2}. Letk, = K(¢?).
Check

dX, 4+ -+ + X, Y1+ - + V) < X5, P{Y, =2} by (6)

(10) =S DN by (7b)
= ke b)’ (3b),

wheree = 317, p’ ButY, + ... + Y, is Poisson with parameter 2, + - - - + 4,.

Let k, = Ky(¢t). As (3a/c) imply, p, < 2, < p, + kyp?, s0
a=2aup S DA S a+ ke
Now N* is Poisson with parameter a, so (8) shows
(11) AN, Yy 4 e ) < ke
Combine (9), (10) and (11) by (2a), to see
d(N, N*) < %kf’e + kye = ae.

The bound for a can be established this way. If e < ;1;, thene? < 1. So (3d)

1 2

3. The dependent case. Here is the leading special case of (5).

(12) ProposITION. [Inequality (5) holds provided t is constant, say at n, and
0 =20, so

(13) as=p 4 -+ p.=b and pl+ -+ pl=< e everywhere.
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Proor. Onsome triple (Q’, &', P’), construct a unit Poisson process Y. That
is, for all w e Q’,
(14a) Y(0, w) =0.
(14b) Y(., w) is a right-continuous, non-decreasing, integer-valued step

function, with jumps of height 1, and only finitely many jumps in finite time
intervals.

Let X(r) be the o-field spanned by Y(s) for s < 7. Then Y has the main defining
property
(15) P{Y(t + u) — Y(t) = j| G} = e~ui]j! for all nonnegative ¢ and ¥, non-
negative integer j, and all sets G € Z(r).
Remember W, =1,, so N=W, + ... + W,. The partial sums W,, W, +
Wy, -+, Wi+ ... + W, can be replicated by looking at Y at the random times
A, A, -, A, as follows. Let ¢(j) be 0 when j = 0, and 1 when j = 1. For
convenience, let A, = 0. Let p, = P(A4,) and 4, = —log(l — p,) and A, = 4,
and X, = ¢[Y(A,)]. So
P'{Xl = 0} =eh=1 — P11 = P{W1 = 0} .

and X, is distributed like W,. Furthermore, {X, = x;} € Z(4,), where x, - -+, x
are 0 or 1. Proceeding inductively, let 1 < m < n. Let

Pmia(X15 - X)) = PW =1 W =x, -, W, = X}

Zm+l(x1’ Tt xm) = —log[l - pm+1(x1’ ] xm)]

Apr(Xps oo s X)) = A+ A(X) + -0+ Appa(Xy, -0 X,)

Am+1 = Am+1(X1’ R } Xm)
Xm+1 = ¢[ Y(Am+l) - Y(Am)] .

Make the inductive assumption that {X; = x,, - - -, X, =x,} € Z(A (X}, - -+, Xp1))-
So (15) shows:
(16) Given {X; = x,, - - -, X,, = x,}, the difference Y(A,,,,) — Y(A,,) is con-

n

ditionally Poisson with parameter 2, ,,(x,, - - -, X,,)-
In particular,
PX,=0|X,=x, -, X, =x,} =exp[— 24, a(xs, -+, X,)]
=1 = pup(X0 -0 05 Xp)
=PW, . =0|W,=x, --,x,}.
Make the inductive assumption that (X, - - -, X,,) is distributed like (W,, - - -, W );
so (X;, - -+, X,,;,) is distributed like (W, ---, W, W,.,). For the next move,

confirmthat {X, = x;, - -+, X1 = Xpuii} € 2(A . 4(xy, - -+, X,,)). When the induc-
tion is over, (X, - - -, X,) is distributed like (W, ---, W,), so

17 N=W,+ ... + W, is distributed like (X;, ---, X,), and
d(N, N¥) = d(X, + - -+ + X,, N¥).
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This completes the embedding. So A, = 0 and A, = 2, are constant, but A, =
A + A(X)) is random; as are A, ---, A,. Also, X, = S Y(A,) — Y(A,)], by
(14a).

For the next step, let

(18) C,={YA,) —YA,.) =2} and Cc=yxr.,.C,.
Check that
X, =YA,)— YA,_) off C,,
o)
(19) Xi+ - 4+ X, = YA, for m=1,....n off C.

I must now estimate P’(C). Relation (16)implies that P'{C, | X, = x,, - - -, D, GR—
X,_,} is the probability that a Poisson variable with parameter 4,(x, -- -, X,,_,)
is 2 or more. So (7b) shows

P'{Cm|Xl = xl’ "’9Xm

Use (3b) with k, = K,(¢t), and assumption (13):
P'{leXl = x19 M) Xm—l = xm—l} é %klzpm(xv Tty xm—1)2 )

=X ) = %’Im(xv Tty xm—1)2 .

and
P,{Cm} é %k12E{Pm(x1’ R } xm—l)z} .

But P(C) < N1, P/(C,), 50

(20) P(C) = 3k E{ X s (X o5 X))
Use assumption (13) again:
(21) P'(C) < Lk

Use (19) with m = n:

PX, + o+ X, % Y(A)) £ PI(C) < bk
So (6) shows
(22) d(X, + -+ + X,, Y(A,)) < P(C) < Lk

Remember that N* is Poisson with parameter a. The next job is to estimate
d(Y(A,), N*) = d(Y(A,), Y(a)). Relations (3a/c) with k, = K,(ct), and assump-
tion (12), shows ‘
Pr(X s Xp1) S An(Xyy oy X)) S pa(Xy ooy X)) F Kgp(Xys c ey X )
so assumption (13) makes
a<A,<b+ ke everywhere.

Now (14b) shows {Y(A,) # Y(a)} C {Y(b + ke) — Y(a) = 1}. Use (15) and
(7a):

P{Y(A,} # Y(a)} < P'(Y(b + k&) — Y(a) = 1}

<kye+b—a.
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Now (6) shows

(23) d[Y(A,), N | < kye + b —a.
Combine (17), (22) and (23):
d(N, N*y < Lk + kye + b —a. 0

The general case of (5) can be reduced to the special case (12), as follows.
First, a can be slightly decreased because the bound is continuous. Then, r can
be replaced by r’ = max (z, n), so as to get a uniformly bounded stopping time.
Then, 7’ can be replaced by 7", the largest m < ¢’ with p+ o+ p. < band
p*+ -+ 4+ p,’ < e. Then, band ¢ can be increased slightly and the game con-
tinued with (say) tossing an 7 coin after time "/, so as to build Zp, up to a.
When all is said and done, the new events will satisfy (13) and will not differ
appreciably from the original events.

Here is a preliminary.

(24) LEMMA. Let A}, A,, - -, A, be events. Let .~ be the field generated by
Ay, -+, A,. Let t < n be a stopping time relative to {57}, Fori=1,...,n, let
A* = A, 0 {r = i} and let .= * be the field generated by A.*, ..., A*. Thentis
a stopping time relative to {7 *}, and

PAX| 75} = P45} on (r= )
=0 on {r < i}.
Finally, 371, = Xt L
Proor. To make it formal, I will argue by induction that
(25) if Ae 57, then 4 n {r = i}e .57 *; especially (¢ = i} e &7 *.
This is clear for i = 1. Suppose it for i < j. Then
fzj+ 1} =Q{r < e,

and
{[rz=j+ e >,

Now the collection of 4e .57, , with 4 n {r = j+ 1}e. .o *is plainly a field,
which includes the basic sets 4,, - -+, 4,,,, so is all of -~ ;41- This proves (25).
With its help, you can verify that {r > i} e .~ *, and then (24) is both obvious
and easy to verify. [] '

The next proposition is the main step in reducing (5) to (12).

(26) PROPOSITION. [nequality (5) holds provided © is uniformly bounded, with
20 reduced to 9.

ProOF. Suppose r < n everywhere. Let o be the largest m < r with
it FpaSb and pit o+ plie.

Then ¢ < 7; and o is a stopping time, because p,,,, is .5, -measurable.
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Fori=1, ...,n, let
W,=1,;
A*X = A, n{e =i} and W*=1,.3
& * be the o-field generated by A4*, ..., 4*; '
pi* = PlAx|. 7).
With the help of (24), you can check

(27) prt S =pt e S h

(28) pet e+ =pt s pt S

Let

(29) G={asp+ - +p.=band pP+ ... +p’=<e}.
Then

(30) o=r on G,

so (24) shows
(31) W+ oo v WHE=W, 4+ oo + W, =W, + ... + W, on G.
The next job is to get the sum of the conditional probabilities up to a. This

is a problem if b = a or if }7p** =e. So, introduce b’ > b and ¢ > ¢, but
close. Choose a positive integer n’ with

a a’
n’ > max {a, —-—} .

b—b —e
Let » = a/n’. So without having the upper bounds (27) and (28),
n <1 and p b —b and 'yt <L —e.
Without real loss, suppose there are independent events A%, ..., A¥, ., with

common probability », independent of & *. Let W* = 1,. and let .5 * be
the field generated by 4,*, ..., 4*, fori=n+ 1, ..., n + n’. Then

pr=PAxX| S x)=09 for i=n+1,---,n4n.
Let o’ be the least m > n with p;* + ... 4 p * > a. Then ¢’ is a stopping time
and ¢’ < n 4 n’, because n’y = a. From (27),
(32) a=pr+ - tpisat sy,
because 7 < b” — b. From (28).
(33) pE e p St S,
because n'y’ < ¢’ —¢. Remember G from (29). Now ¢ = = on G by (30), so

prt =gt o+ p=p+ o 4 poZaonGby (27),and o’ =n
on G. Then (31) shows

(34) W1*+"'+W:<':W1*+"'+Wn*
=W+ -+ W, =W, + ... + W, on G.
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Now let
A = A* n{d = i} and W/ =143
4 Dbe the field generated by A/, ..., 4/;
pl=PA| L)
fori =1, ..., n + n’. Relations (24) and (32) and (33) show
(35) a=s=p/+ - A ps b and  pl 4 ... 4 p2 <6
Similarly, (24) and (34) show
(36) Wyt oo+ Wo=W/+ ..+ W, on G.
Proposition (12) on the W,/ shows
AW/ + -+ Wi N S’ + b —a,

where N* is Poisson with parameter a. Condition (13) holds by (35). Remember
P(G) = 1 — 6 by assumption. Relations (6) and (36) show

AW+ - + W W+ o W) S0
So (2a) makes
dW,+ - + W W+ - W) Sad + 0 —at3.

Since 4" > b and ¢’ > ¢ were arbitrary, inequality (5) is true for uniformly
bounded z, with 26 reduced to 4. []

PRrROOF OF (5). As n1 oo, the stopping time r, = min{r, n} increases to r.
And p, + --- 4+ p. < b makes W, + ... + W_converge a.c. So

Pt p, ot P
pit e p TP pS
W1+ "‘+Wrn=W1+ ..._}.Wr

for large enough random n, a.e. ontheset {a < p, + -+ + p. < b}). If r = o,
however, p, + ... + p. may never reach a. So let @’ < a and ¢’ > 4. Let
n > 0 be small. For large enough n,

(37) Pd<p+ - +p, =band pP+ ... +pi Se}=x1 -7
(38) PW,+ - + W, =W+ -+ W)zl —-0—7.
Let N" be Poisson with parameter a’, while N* is Poisson with parameter a. Then
(37), and (26) on r,, show
aw, + - + W.,N)ySaec+b—a +7.
But (8) shows d(N', N*) < a — a’. Relations (38) and (7) show
dWw,+ - + W Wi+ - + W )<+ 7.
So (2a) makes
dw,+ - + W N)Y<ac+b—a +0 +a—d +d5+7.
Since @’ < aand ¢’ > 6 and » > 0 are free, inequality (5) is proved. [J
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4. The jointdistribution. Asusual,let 4, 4,, ---, A, beevents. Let W, =1,.
Let . be the field generated by 4,, - .., 4,, and let p, = P{A4,| 5 ,_;}. Letz(f)
be the least m if any with p, + --- + p, = ¢, and 7(f) = oo if none. Let

SOy =W, 4+ - + W, .

So S is the trajectory of the process: W, at time p,, W, + W, at time p, +
Py s Wi+ - + W, at timep1+ -+« 4+ p. -+-. Let Y be a unit Poisson
process, as defined by (14) and (15). Let a be a positive real number. Let ¢
and 0 be positive real numbers less than 1. Define K, and K, by (3). Let
B(e, a) = [Ky(e) — 1]a + Ki(e)e = $ea + ¢ + O(&?)
7(e, @) = 3K (e)’e(a + ) = tea + O(&?) .
Let k be a positive integer. Let0 <1, < --- <t, < a. Let
S = (S(t), - - -, S(t) and Y = (Y(1), ---, Y(1,)) .
(39) THEOREM. Suppose there is a stopping time t with
Plpy+ -+ +p.=za and max,. . p,<e}=1-—9.
Then
diS,Y) < kf(e, a) + 7(e,a) + 20 .
If a=1and e < 4, then
kB(e, a) + 1(s, @) < Tkea.
PRrOOF. You can argue this pretty much like (5). There is no loss in making
= uniformly bounded and ¢ = 0. Then, you can replace r by z(a), so
pt s tpSate.

Then, you can make r constant, say at n, by (24). After these reductions, you
can use the same construction as in (12). For 0 < ¢ < a, let ¢(¢) be the smallest
m with

PrFPX)+ o Fpa(X, e X)) =t
Let

T(t) =X+ -+ Xa(t)
T = (T(t), -+, T(tk)) .
Since (X, - - -, X,) is distributed like (W), - -, W,), you can conclude T is dis-
tributed like S, and

dS,Y) =dT,Y).
Let L, = A,.,. So

FEpr+pol(X) + -+ Poe(Xys - Xypm)) S+ ¢
And (3) shows

1= L, < K(e)(t + ¢) < 1+ B(e, a) .
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So

P{Y(L,) + Y(1)} = B(e, a)
by (7a). Let

Y = (Y(L,), ---, Y(L,)) -
So

PlY +# Y} < kf(e, a),
and (6) makes
dY,Y') < kB(e, a) .

Remember the set C defined by (18). Use (19) to check that T = Y’ off C. So
(6) shows
d(T,Y') < P'(C).

Use (20) with k, = K(¢):

P'(C) < 3Ki(e)"sup Xini P’
= %Kx(e)z(suPPm) < SUP 3ime1Pm
< 3K(e)’e(a + ¢) .
So
d(T, Y') < 7(e, a).
Overall,

diS,Y) = d(T,Y)
<dT, YY)+ dY,Y)
< 7(e, @) + ke, a) .
The bound for kfi(¢, a) + 7(¢, a) can be argued this way. Relation (3a) implies

1 €
K()— 1< L
(&) ==

A

and (3d) shows
Ki(e)e < Ki(e)ea < 18ea.

So
kp(e, @) < (3 + 19)kea.
Furthermore
7(e, @) = Ki(e)’ke(a + {5a)

=} (8 - kea.

So
kp(e, a) 4+ 7(s,a) < (5 + 1§ + 3 - (39)" - Hh)kea
< Zkea. {

Theorem (39) only deals with finite joint distributions. However, the Skorokhod
topology on non-decreasing step-functions is weaker than the pointwise conver-
gence topology: if you know a path on a large enough finite set of times, you
know it up to small perturbations of the time scale. So (39) is stronger than the
conventional invariance principle.
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The only interesting functions on paths are the waiting times. Let g(m) be
the least n if any with W, + ... 4+ W, = m, and ¢(m) = oo if none. Let

6(m) = Z1™ pis

the (intrinsic) time to the mth occurrence. Let Y be a unit Poisson process, and
let 6,* be the least ¢ with Y(r) = m.

(40) COROLLARY. Let 0 <, <t/ <, <ty < -+ <t, <t <a Under
the conditions of (37),

|P{t, <0(p) <t for v=1,...,m}—Pt, <0*<t  forv=1,...,m}
=< 2mpB(e, a) + y(e, a) + 20 .

So the inter-occurrence times are approximately independent and exponential
with parameter 1.

5. General o-fields. Let (Q, 57, P) be a probability triple. Let A4,, A,, - - -
be events, that is, elements of .% . Let 5, be a sub ¢-field of &, not necessarily

the same generated by A4,, - - -, 4,. Assume:

(41a) A e 7 for i=1,2,.--, and

(41b) FoCF,C -

Let

(42) pe= PlA|F )

A stopping time t relative to {5} takes the values 0, 1, - - -, co, and {z = i} € F,
fori=0,1, ...

43) PROPOSITION. Theorems (5) and (6) remain true when { "} satisfies (41),
and p, is defined by (42), and t is a stopping time relative to the .5 ,.

The proof is more delicate, since the p, may have a continuous distribution.
What you should do is construct on a triple (Q’, &', P’) a unit Poisson process
Y, and independent of Y a sequence U,, U,, - - - of independent uniform variables.
Let A, = 0. Constructr, = f,(U,) to be distributed like p,. Let 4, = —log(l —r)
and A, = 2,. Soeven A, is random. Let X, = ¢[Y(A,)], where ¢(0) = 0 and
$(n) = 1 for n = 1. By conditioning on r,, check that (r,, X,) is distributed like
(p1» W,). Construct r, = fy(r,, X;, Uy) so (r,, X,, r) is distributed like (p,, W), ps)-
Let 4, = —log(l — r)and A, = 2, + 4,. LetX, = ¢[Y(A,) — Y(A))]. By con-
ditioning on (r,, X, ,), check that (r,, X}, r;, X,) is distributed like (p;, W1, ps, W,).
In fact, given r, = sand X, = x and r, = ¢, a regular conditional distribution
for Y(A,) — Y(A,) is: the conditional distribution of

Y[—log(l — s) — log(1 — 1] — Y[—log (1 — s)]

given ¢[Y(—log (1 — 5))] = x. The construction proceeds inductively, and the
rest of the argument is the same.
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