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CONVEXITY AND CONDITIONAL EXPECTATIONS

By J. PFANZAGL
University of Cologne

If a n-dimensional function is with probability one in a convex set, the
same holds true for the conditional expectation (with respect to any sub-
o-field). An extreme point of this convex set can be assumed by the con-
ditional expectation only if it is assumed by the original function and if
this function is partially measurable with respect to the conditioning sub-
o-field.

These results are used to prove Jensen’s inequality for conditional
expectations of n-dimensional functions, and to give a condition for strict
inequality.

NoraTtions. For any set 4 let 1, denote its indicator function and A° its
complement. For any measure g, let ¢* and g, denote the pertaining outer and
inner measure, respectively. (X, .97, P) denotes a probability space. For any
sub-g-field 7 C ., the symbol P*-f denotes the class of all conditional
expectations of f, given %7, . Instead of P*-1, we shall write P*"+(4). Let R"
denote the n-dimensional Euclidean space and <#" its Borel field. For n = 1 we
write R and <% instead of R’, <#*. The symbol =, denotes the projection from
R" into its ith component. For any convex set C c R”, C, denotes the set of
extreme points of C. The measure induced by f: X — R* and P|.% is
B— P(f—'B), Be<#™. A function f: X —» R is P-integrable if its integral,
P(f), is finite.

THEOREM 1. Let f;: X— R, i=1,...,n, be P-integrable functions and
C ¢ ZB™ a convex set for which

Plxe X: (fi(x), -+ fu(x) €C) = 1.

Then for arbitrary versions g, P*-f, i =1, .-, n,

(i) P{xeX: (9y(x), -+, 9.(x)eC}=1;

(ii) f; and g, coincide P-a.e. on the set {x € X: (9,(x), - - -, 9,(x)) € C,}.

For o7 = {@, X}, Theorem 1 reduces to the corresponding theorem for
integrals. For this special case, part.(i) is well known and will, in fact, be
needed as the following lemma in the proof of Theorem 1.

LEMMA. Let C C R" be a convex set (not necessarily measurable) and Q | ™ a
probability measure such that Q*(C) = 1. Then (Q(xy), - - -, Q(x,)), the barycenter
of Q, belongs to C. .

Proor. See Ferguson (1967) page 74, Lemma 3.
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The question suggests itself whether the detour via this lemma can be avoided,
i.e. whether a direct proof of Theorem 1 is feasible. Such a proof can, in fact,
be easily given if the convex set C is closed (and therefore the intersection of
closed hyperplanes). It is, however, rather difficult to obtain a direct proof for
measurable convex sets C in general.

Part (ii) of Theorem 1 is well known for integrals and compact convex sets C
(see e.g. Bourbaki (1965) page 218, Corollaire). The interpretation of part (ii)
is that positive probability induced by the map x — (g,(x), - - -, 9.(x)) in extreme
points of C is a remainder of the probability induced in these points by
x = (fi(x), - -+, fa(x)), which is not removed because the map x — (fy(x), - - -,
fa(x)) is 7 -measurable on {x e X: (g,(x), - - -, 9,(x)) € C,}. The interest in (ii)
is motivated by its relationship to strict inequality in Jensen’s inequality.

Proor oF THEOREM 1. (i) Letf = (f,, ---,f,): X > R". According to Doob
(1952) page 29, Theorem 9.4, there exists a function g: <" x X — [0, 1] such
that

g(+, x)| &£ is a probability measure for each xe X

q(B, +) € P*+(f~*B) for each Be #™.
For each Borel-measurable function 4 : R™ — R for which 4 o f is P-integrable,
qh, ) e P*(hof).
q(m;, o) € P+ f; for i=1,...,n.

Since P(f~*C) =1 and ¢(C, .) e P*+(f'C), there exists a P-null set N e .,
such that ¢(C, x) =1 for all xg N. As ¢(-, x)| &" is a probability measure,
the lemma implies for each x ¢ N:

Hence

(9(mys x), -+, g(m,, x)) e C .

Hence the assertion holds true for the particular versions g(r,, +) € P*-f; and
therefore for arbitrary versions g, ¢ P*f.

(if) It seems to be unknown whether C € &Z* implies C, ¢ <#*. However,
C—C ={}r+4s:r,5eC,r=+ s} ie. C — C,is the image of the measurable
set {(r, 5): r, se C, r # s} C R* under the continuous map (r, s) — 4r + isand
hence analytic (see Bressler and Sion, page 216, Theorem 5.13). This implies
that C — C, and hence also C, belongs to the completion of <" with respect
to any finite measure on <& (see Bressler and Sion, page 226, Theorem 6.9).
Hence the set C, belongs to the completion of <z with respect to the measure
induced by P and g. Since g is % -measurable, 4, = ¢g~'C, belongs to the
completion of .97 with respect to P. :

We shall show that g,1, =f;1, P-ae. for i=1,...,n To this end it
suffices to prove that

P(l,,049:) = P(1,,04f2) forall Aess,i=1,...,n.
Let A € 7"be arbitrary. If P(4) = 0 or P(4) = 1, this is obviously true. Hence
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assume P(A) e (0, 1), and choose ¢, € P*"-1, such that c,(x)€[0, 1], xe X. Let
probability measures P’ | % and P” | % be defined by

P(D) = P(D n A)/P(A)resp. P"(D) = P(D n A°)/P(A), De.s7.
Let gi, e P/.»fofi, gi" e P/Iyofi and

giECAgi'+(1—CA)gi”, i=1,..-.,n.
It is easy to check that §, € P~-f,. Hence there exists 4, ¢ % with 4, C 4,
and P(4, — A4,) = 0 such that x ¢ 4, implies (§,(x), - - -, §.(¥)) € C..

Let D, ={xeX:c,(x) =0}, D,={xeX:cy(x)=1} and D, = Dy n Dy.
For xe 4, n D, we have (§y(x), ---,8,(x))eC, and 0 < ¢ (x) < 1, hence
9/(x) = g/'(x) for i = 1, ..., n. Furthermore, P(D, N A) = P(1,¢c,) =0 and
1, (x)(1 — c,(x)) = 0, xe X. Hence

P(14040:) = P(14,04€49)) + P(1,,04(1 — ¢,)9")
= P(140400,9) + P(Lay0a0p,€49:) + P(La,0s00.(1 — €4)9:")
= P(1u0400,9) + P(Lis0a00.9/) = P(14,049))
= P(1,,9/)P(A) = P(1, f)P(4) = P(1,,04f3) -
Since 1, = 1,, P-a.e. and §, = g, P-a.e., this implies
Pl 049:) = P(1,,04f3) s for i=1,..--,n.[]

In the particular case of integrals (i.e. for .o, = {(», X}) Theorem 1 holds true
for arbitrary (i.e. not necessarily measurable) convex sets C. Therefore it seems
worthwhile to mention that in the general case of conditional expectations the
measurability assumption for C cannot be dispensed with. If the convex set is
not measurable it may occur that

{xeX: (filx), ---, fu(x)eC}=X, but
{xeX: (gl(x)’ R gn(x))ec} = @ .

ExAMPLE. Let X = [0, 1) and let M cC [0, 1) be a set with 2*(M) = 1 and
A4(M) = 0, where 2 denotes the Lebesgue-measure on [0, 1) (for existence see
Halmos (1950) page 70, Theorem E). Let %, =.<#n|[0,1) and ¥ =
{BbN M+ B,n M: B, Be &/ ,}. Wehave & c .. Let P|.% be defined
by P(B, N M + B, n M°) = }A(B,) + $A(B,), B,, B,, € 57 ,. It is easy to see that
P|%7 is a well-defined probability measure fulfilling P|.o7, = 2|.%7,. Let
fi(x) = cos 2zx, fi(x) = sin 2zx, fi(x) = 1,(x), xe€ X. We remark that f}, f, are
&7 -measurable, f; is %-measurable. Finally let

C={(rurrn)eR:n*+r'<1,0=r<1)
U {(r, 1y 1) € R®: 1y = cos 2xt, ry, = sin 2xt, t € M®; ry, = 0}
U{(r, r»r) e R®: 1, = cos2rt, r, = sin2xnt, te My ry = 1}.

The set C is convex, but not in Z°. We have (fy(x), fy(x), fs(x)) € C for all
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xeX. Letg,=f,i=1,2,and g, = 4. Theng,e P*f,, i =1,2,3. Never-
theless. (g,(x), g.(x), 9:(x)) ¢ C for all x € X.

THEOREM 2. (Jensen’s inequality). Let f;: X >R, i =1, ..., n, be P-inte-
grable functions and C € 8" a convex set such that (f(x), - - -, f,(x)) € C for every
xeX. Let, furthermore, ¢:. C — R be a measurable convex function such that
©*(f1s -+ fn) is P-integrable.

Then for arbitrary versionsg; € P*f, i = 1,. -, nandhye P*<(¢p o (f1,+ -+, f2))

(i) o (g +-+59,) < hy P-ace.

(i) If ¢ is strictly convex, then f; = g, P-a.e. on the set {x e X: ¢(g,(x), -+,
9u(X)) = ho(%)}-

For integrals rather than conditional expectations part (i) of Theorem 2 is
well known (see e.g. Ferguson (1967) page 76, Lemma 1). For conditional
expectations, part (i) is known for n = 1 (see e.g. Doob (1952) page 33). The
proof given below which rests upon Theorem 1 seems particularly simple.

Part (i) of this theorem assures that—for strictly convex functions ¢p—the
inequality given in (i) is strict with the possible exception of a set on which all
f; are “.o7 -measurable”.

Proor OoF THEOREM 2.

(i) Since ¢ is convex and measurable, the set
D={(rpr, s )eERXCirg=o(r, -+, 1,)}

is convex and measurable. Since (¢ o (fi, - -+, fL)(%), fi(x), - - -, fu(x)) € D for
each xe X, we obtain from Theorem 1 (i) that P{x e X: (h(x), g,(x), - - -,
g.(x)) € D} =1 for arbitrary versions k€ P*¢p o (fy, ---,f,) and g, € P*-f,,
i= 1, LI (B

(if) If ¢ is strictly convex, (¢(ry, = -+, I,), Iy, - -+, I,) is an extreme point of D
for all (r, ---,r,)eC. Hence hy(x) = ¢(g,(x), - -, gn(x)) implies that (y(x),
9:(x), - -+, 9,(x)) is an extreme point of D, i.e. 4, = {x e X: hy(x) = ¢(g,(x), - - -,
9.(%))} C {x e X (B(x), 9:(X), - - -, 9,(x)) € D,}, so that by Theorem 1 (ii)

(lAegp(fl’ s fa)s Ly fis oo L fa) = (lAehO’ 14,00 -0+, 1,,9.) P-a.e.
and therefore (1, f1, -+, 1, f,) = (1,91 - -+, 14,9,) P-a.e.

Acknowledgment. The author wishes to thank Mr. D. Landers and Mr. L.
Rogge for suggesting a remarkable simplification in the proof of Theorem 1 (i).
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