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SENSITIVE DISCOUNT OPTIMALITY IN CONTROLLED
ONE-DIMENSIONAL DIFFUSIONS!

; BY MARTIN L. PUTERMAN

University of Massachusetts

In this paper we consider the problem of optimally controlling a diffu-
sion process on a compact interval in one-dimensional Euclidean Space.
Under the assumptions that the action space is finite and the cost rate, drift
and diffusion coefficients are piecewise analytic, we present a constructive
proof that there exist piecewise constant n-discount optimal controls for all
finite n = 1 and measurable co-discount optimal controls. In addition we
present a sequence of second order differential equations that characterize
the coefficients of the Laurent series of the expected discounted cost of an
n-discount optimal control.

1. Introduction. In this paper we consider the problem of optimally control-
ling a one-dimensional diffusion process on a compact interval, where the coef-
ficients of the infinitesimal operator and the costs are piecewise analytic functions
and the set of possible actions is finite. We extend Pliska’s results [12] concerning
the existence of piecewise constant optimal controls for the expected discounted
cost criterion to the case where the discount rate is allowed to decrease to zero.
The optimality criterion used for studying this problem is n-discount optimality.
Our results and those of Pliska depend heavily on Mandl’s work [10].

The criterion of n-discount optimality was introduced in the finite state and
action Markovian decision problem in the case n = 0 and n = + o by Blackwell
[1] and extended to include all n = —1 by Veinott [16]. In these papers it is
proved that there exist stationary n-discount optimal policies for all n. In the
paper by Veinott [16] it is shown that these results are also valid for the con-
tinuous time model. In [2] Denardo applies this criterion to Markov renewal
programming. Jaquette [9] introduces a new optimality criterion, moment opti-
mality and using expansions analogous to ours proves that there exists moment
optimal policies for all small interest rates.

In order to prove the existence of n-discount optimal controls, we first prove
the validity of the Laurent expansion of the expected discounted cost in powers
of the discount rate. This approach was first used by Miller and Veinott [11] in
the finite state and action case. In Section 3 we give a development of this
theory. In Theorem 4 we present a recursive scheme for computing the terms
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CONTROLLED ONE-DIMENSIONAL DIFFUSIONS 409

of the Laurent expansion of the expected discounted cost of a controlled diffu-
sion. This theorem is the essential tool in proving the results of Section 5.

In Section 4 we extend Veinott’s definition of n-discount optimality to include
controlled diffusions. In Section 5 we prove that there exist piecewise constant
n-discount optimal controls for all finite » in both the conservative and non-
conservative cases. Further, we present a quasi-linear second order differential
equation for the nth term in the Laurent expansion of the expected discounted
cost of an n-discount optimal control. These results appear as Theorem 5. Im-
plicit in the proof of this theorem is an algorithm for computing nr-discount
optimal controls.

In Section 6 we give a nonconstructive proof that there exists a measurable
oo-discount optimal control.

2. Model description and known results. Consider a system that is observed
continuously through time at all 7 € [0, co). At each time ¢, the system is found
to be in a state x where xe I = [r,, 1], —o0 < r, < r; < co. We will call I the
state space of the system and denote the interior of I by I°.

We will need the following preliminary definitions. Let J be an arbitrary finite
set. We say that the set valued function Z,: I° — 27 is piecewise constant in x
onl°if Z, + ¢and Z, 2 Z,, for all xeI°, and I is the union of finitely many
closed intervals with disjoint interiors such that Z, is constant on the interior of
each. Let Z = [],.,. Z, be the set of all functions w: I° — J with w(x) ¢ Z, for
each xeI°. If N C Z, define the section N, of N at x € I° by

N,={zeZ,: z = w(x) for some weN}.

We say the N is piecewise constant if N, is piecewise constant on /°.

A function w € Z is called piecewise constant if w is right continuous on /° and
I is the union of finitely many closed intervals with disjoint interiors such that
o is constant on the interior of each. Denote by N” the set of all piecewise con-
stant functions in N £ Z. Note that if N is piecewise constant, then N? # ¢.

A function f(x) will be called analytic on a closed interval [, if there exists an
open interval I, O [, and a function g(x) which is analytic on I, such that f(x) =
g(x) for all x in 1,°. A function f(x) is called piecewise analytic on I° if I is the
union of a finite number of closed intervals with disjoint interiors on each of
which f is analytic and if f is right continuous on /°.

When the system is observed in state x at time ¢, an action is chosen from the
piecewise constant set valued function Z,. The finite set, J, is called the action
set, Z® the control set, and a function w € Z? a control. Corresponding to choosing
ze Z, at time t a cost ¢(x, z) dt is incurred during the time interval [z, 1 + dfr).
We require for each zeJ, that ¢(., z) be a piecewise analytic function on I°.
The function c(x, z) is said to be the continuous movement cost rate.

We let a(+, z) > 0 and b(-, z) be piecewise analytic functions on I° for each
zeJ. If action z is chosen when the system is observed in state x, the behavior
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of the system is that of a diffusion process with its infinitesimal operator given by
d d
a(x, z) — + b(x,z)—.
(x> 2) dx? (*, 2) dx

The boundaries of 7, r, and r,, will be assumed to be regular in the sense of
Mandl ([10] page 25). At r,and r, the behavior of the system is determined by
a boundary condition of the form ®,(f, g) = 0 for i = 0, 1 where

(1) Qi(f5 9) = (0; + w)f(r;) — 0, §; (f(%) + vi(x)) dpei(x)
— (=1)m, f'(r) + ol9(r)) — ¢) — £iTs

for a given function g. Here 0,, x;, 7,0, = 0; 0, + «, + 7, + 0, > 0; p(+) is a
probability measure on I°; f'(r;) denotes the derivative of f evaluated at r; and
each of the constants corresponds to a particular kind of boundary behavior at
r,. The constant §; corresponds to jumps from the boundary into I° according
to the measure g,(+), £, to absorption, =, to reflection, and o, to adhesion. A more
detailed treatment of the boundary behavior can be found in Mandl ([10] pages
37-68), Feller [5], and Pliska [12].

In addition (1) includes a cost structure that corresponds to the boundary
behavior. There is a cost y, = 7(r;), corresponding to the termination of the
process at r;, which is relevant only if x, > 0. There is a cost v,(x) associated
with a jump into the interior from the boundary r,, which is relevant only if
6, > 0. We require that v,(-) be integrable with respect to the measure y,().
Last there is a cost ¢; corresponding to adhesion at r,, this cost being relevant
only if ¢; > 0.

We will say that the process is conservative if £, + £, = 0 and both boundaries
are not purely adhesive, i.e., 6, + 7, > 0 for i = 0 or 1. The problem will be
formulated so that (1) is independent of the control  and hence will be either
conservative or nonconservative for all controls.

Corresponding to the control w € Z?, define the infinitesimal operator, A,, by

d2
dx*
where a,(x) = a(x, w(x)) and b,(x) = b(x, w(x)).

The hypotheses on o, a(-, «), and b(., +) are sufficient to insure that there
exists a diffusion process corresponding to w € Z* and (1) in which all of the
costs have been set to zero and g = Af for 2 > 0 (Mandl [10] pages 37-47).

We define P(t, x, G) for t€[0, o), xe1, and G a Borel set in / to be the
transition function of the diffusion process corresponding to @ and we define the
family of linear operators {T,*; ¢t = 0} by

Tef(x) = §: f()P(ts x, dy)
where f e C,, the Banach space of bounded, continuous functions on / with the
norm of f given by
/1l = supaer [f(X)] -

@) A, = a,(x)

d
b il
+ b,(%) Ir
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Let X,* be the random function associated with the diffusion process deter-
mined by the cohtrol » and for x ¢ 1, let E, denote the expectation corresponding
to the process starting at x. We note that for fe C,, E, f(X,*) = T,“f(x). For
4 > 0, the expected discounted cost starting from x and using control o, v,,(x, 4),
is given by
(3) Vu(%, ) = E, {5 e~ dC (1)
where
@) G = 00 e(X,, (X)) ds + Tiso §7v(INA( dY) + Aega (XL -

Here the random variable N;“(, dy) represents the number of jumps from r,
into the interval [y, y + dy) made by the trajectory up to time ¢ and the non-
negative random variable § represent the termination time of the process. We
note that E,{§ < oo} if and only if x, + &, > 0. The function X5 IS the charac-
teristic function of the set {§ < 1.

Define the domain of the infinitesimal operator 4,, for w € Z# and given g by

%) 29) ={feC;: f"eC, and @(f,9) =0 for i =0,1}.
The following theorem of Mandl ([10] page 149) enables us to compute v,(x, 2).
THEOREM 1. If a, > 0, b,, and c, are piecewise analytic on I° and 2 > 0, then
v = v,(x, 4) is the unique piecewise analytic solution in Z(v,) of
(6) (A4, — Ay +4+¢,=0.

The problem of minimizing the expected discounted cost can be stated as fol-
lows: choose an @ € Z such that

@) va(x, 4) = inf, . 5 v,(x, 2) = U(x, 2) for all xel.

In the nonconservative case, v,(x, 0) is the expected total cost. In the conserv-
ative case, where v,(x, 2) diverges as 1 decreases to zero, the long run average
cost criteria has been considered. This will be discussed below.

The following theorem is Pliska’s [12] extension of a result of Mandl ([10]
page 159).

THEOREM 2. Suppose for each zeJ that a(+,z) > 0, b(-, z), and c(+, z) are
piecewise analytic functions on I°, Z is piecewise constant, and either 2 > 0 or A = 0
and the system is nonconservative. Then the differential equation

®) min, s {(4, — )0 + ¢} = 0
has a unique piecewise analytic solution v = 9 € Z(20). Moreover v = min,, ., v,,
) N={oeZ: (4, — A0 +c, =0} £ @

is piecewise constant, N* + (), and w € Z® minimizes v, over Z? if and only if w € N*.

In the case where the problem is conservative, v,(x, 0) is infinite. In this set-
ting, Mandl [10] chose to minimize the long run average cost. For a control o,
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we define its long run average cost, ©,, by
0, = lim,_, 1'C(?),

which exists almost everywhere and is independent of x. It is well known that
0, = lim, , 2v,(x, 4) .

Letting 2 decrease to zero in (8) we can formally pass to the following result
which appears in the case where a(x, z), b(x, z) and c(x, z) are continuous and
J is compact as Theorem 6, Mandl ([10] page 168). Theorem 3 follows from
Pliska [12].

THEOREM 3. Suppose the hypotheses of Theorem 2 are satisfied and in addition
the problem is conservative. Then there exists a unique number 6 such that

(10) min,. , {4,v + ¢, — 0} =0
has a solution v in .@((:)), and v is unique up to an additive constant.
Furthermore, ® = min,, ,» ©,,
N={weZ: Av+c,—0=0%0
is piecewise constant, N* = (3, and w € Z” minimizes (:)w over Z* if and only if @ € N*.
3. The Laurent series expansion of v,(x, ). In this section we prove the
existence of the Laurent series expansion of v,(x, 4) and present a recursive

scheme from the computation of the coefficients of the expansion. The validity
of the Laurent series expansion depends on the fact that v, has the representation

(11) vw = R(z’ Aw)cw

where R(2, 4,) denotes the resolvent of A,. In the nonconservative case R(4, 4,)
admits an ordinary Taylor series expansion around 2 = 0, but in the conserv-
ative case R(0; 4,) is unbounded and the expansion does not exist.

The recursive scheme for computation of the coefficients generalizes the results
of Veinott [16] for the finite state case and enables us to actually compute these
expansions. In the past this has proved to be a much more complicated task.

We introduce the following notation before stating Theorem 4. Let c,*(x) = 0
for all xe I'and n + 0, and for n = 0 define c,“(x) by

(12) CU(X) = ¢ (x), xel°
= =0, v,(y)dp(y) — 0.¢; — K745 x=r,i=0,1.

Notice that ¢,(r;) = c,(r;) is independent of w for all i and n. Further define
o (f,9)forn=—1,0,1, ... by

(13) O (f, 9) = (0, + £)f(r;) — 0,5, f(x) dp(x) — (= 1), f'(7)

+ 0, 9(r;) + ¢, (1) for i=0,1.
Let y,*(x) = 0 for alln £ —2, we Z?, and x € I, and define Z,(g) for all n by
(14) Z,9)={f; f"eC;, and ®(f,9)=0,i=0,1}.
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THEOREM 4. Let w € Z°. Then for 0 < 2 < constant

(15) V(X A) = X Ap,0(x)
where
(16) A’ + €0 — iy =0 and  y,° € Z(ya,) -

Conversely if y,, —1 < n < m satisfies (16) then y, = y,* for —1 < n < m and
Ym = Yu* + k where k is any constant in the conservative case and k = 0 in the
nonconservative case.

Proor. The proof is in two parts. We first show that (15) holds. As noted
above the result is valid in the nonconservative case. In the conservative case
the result follows from noting that T,* converges exponentially fast to P*, the
stationary measure of the diffusion process corresponding to @. (Doob [3] page
256 and Friedlin [6] page 60.) For 2 > 0 we have the representation

R(% A,) — 2P* = {2 e (T — P¥)dt.

This together with the exponential convergence of 7, is sufficient to ensure the
boundedness of R(2; 4,) — 2'P* at 2 = 0. Hence this operator admits a Taylor
series expansion. We conclude (15) from (11).

From Theorem 1 we have that v, is the unique piecewise analytic solution of

(17) (I — 4w, =c, in D(w,).
Substituting (15) into (17) we have that
(18) Tra A, — T Ay =,

Further since v, € Z(2v,), @,(v,, 4v,) = 0 for i = 0, 1. On substituting (15)
into (1) we get
(19) (0: + £) Zaoa 29a2(re) — 0, §1 [Zw-ca 29,°(%) + vi(%)] dpey(x)

— (=)' T A(r) + ol Dra o yi () — ¢ — ki =0

for i = 0, 1 and all small enough 2 > 0.

Equating the coefficients of like powers of 2 to 0 in (18) and (19) we have that
¥, satisfies (16).

We will prove the converse by induction on m. We first consider the non-
conservative case. For m = —1, (16) implies
(20) A,y.,=0.

From Theorem 1 with 2 = 0, (20) has the unique solution y_, = 0in Z_ (y~,).
The general step follows from Theorem 1 with ¢, replaced by ¢,* — y2_, therein.
Next consider the conservative case. For m = —1 we have

(21) @,y s yos) = Opya(ri) — 0, §; yo(x) dp(x) — (—1)'m, yiy(r) = 0.
Since A, is a second order linear differential operator, (20) has two linearly inde-
pendent solutions, (Mandl [10] page 30). It is easy to see that the constant
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function satisfies (20) and there exists a strictly increasing solution of (20) u,
such that #’ > 0. (Feller [4] page 483 and [5].) Hence any solution of (20) has
the form
Ya(x) = k + ju(x)
where k and j are constants to be determined from (21).
Substituting y_,(x) into (21) we have

(22) Ok + ju(r)) — 6. §; (k + ju(x)) dp(x) — (= 1)m ju'(r) = 0.
Noting that {, dy,(x) = 1 and regrouping terms (22) becomes

(23) JlO:u(r) — 0, §; u(x) dp(x) — (= 1)'=u'(r)] = 0.

Recall both boundaries cannot be purely adhesive. Thus either =, 4- 6, > 0
or m; + 6, > 0. In the former event u(r)) = 0 and 6, §; u(x) duy(x) + 7, 4'(r,) is
positive so by (23) fori = 0, j = 0.

In the latter event, u(r)=1>; u(x) du,(x) and hence 0,u(r,)—0, §, u(x)dp,(x)+
m, W' (r) is positive. Thus, by (23) for i = 1, j = 0. Thus j = 0 always and k
cannot be determined from (21). This implies that y_, = y*;, + k where k is an
arbitrary constant. This completes the case m = —1.

Suppose the result is true for m, so y, = y,* for n < m and y, = y,° + k,.
Then the equation for y,,,, becomes

(24) Ay Ymir + Cop1 — Y = 0.
Substituting in the general form for y,, we have

(25) Awym+l = _c%+1 + ymw + km *
The general solution of (25) is of the form

(26) Imir = Kpys = Jmia¥h + 9 — kb,

where k, ., and j, ., are arbitrary constants, k,,,, — j, % is the homogeneous
solution of (25), g is a particular solution of
Awg == _c%+1 + ymw ’
and 4 is a particular solution of
A= —1,
subject to A(r,) = k(r,) = 0. Noting that h(x) = E,z, where = = inf{t > 0;
X,» = r, or r} it follows that A(x) > 0on I° and #'(r;) > 0 and #'(r;) > 0.

Define the operator G, on the space of continuously differentiable functions f
on I by

Gif = 0.(f(r) — §1 f(x) dp(x)) — (= 1)z, f'()
for i = 0, 1. In this notation, since y,,,, € Z,,,.(V.), We have
(27) D™ Y (Ymi1s Ym) = G Ymir + 0:Yu(1) + Cpia(rs) = 0
for i = 0, 1. Substituting (26) and y,, = y,* + k,, into (27) gives

(28) Jn1Giu + kW (Gh — ;) = @™y, y,*)
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for i = 0, 1. Note that (28) is independent of k,,,, which is therefore not re-
stricted by the boundary conditions. Now we know that k,, = 0 satisfies (28)
for some j,,,, because (16) is satisfied by (y2,,, y,*). Thus, it remains to show
that no other value of k,, satisfies (28) for some j,,,. This will be so provided
the determinant

G G,h —
(29 A= G:: G:h B Z: = (Gou)(G,h — 0)) + (—G,u)(Goh — ay)
is not zero. Now from the properties of # and u we have G,u < 0, —G,u < 0,
G,h £0,and G2 <0,s0A > 0. In fact, since §, + =, + o, >0for i =0, 1,
G.h — o0, < Ofori =0, 1. Alsosince (0, + =,) + (6, + =;) > 0, either G,u < 0
or —G,u < 0. Combining these facts we see that A > 0, completing the proof.

4. Characterization of discount optimality. In this section we present a char-
acterization of n-discount optimality that is analogous to that first presented by
Blackwell [1] for n = 0 and + oo and Veinott [16] for all finite n > —1. In the
case of n = +co we must modify Blackwell’s definition to account for the non-
finiteness of the state space. A control is then shown to be n-discount optimal if
and only if it lexicographically minimizes the first n 4- 2 terms in the Laurent
series expansion of the expected discounted cost. We note that Veinott’s [16]
notion of a transient problem correspond to a nonconservative problem in our
terminology.

We will say that a control @ € Z* is n-discount optimal if for all x ¢ I and w € 27,

(30) limsup, , A="[vy(x, ) — v,(x, )] < 0.

It is clear that if @& is n-discount optimal, then it is m-discount optimal for
m= —1, ..., n. In the nonconservative case all controls are — 1-discount
optimal since v,(x, 0) is finite for all @ € Z» and hence lim sup, , Av,(x, ) = 0.
Equivalently this follows from noting that y¢ (x) = 0 in this case. In the con-
servative case we see that — 1-discount optimality corresponds to minimizing the
long run average cost ©,. This follows from the fact that ©, = lim, , 4v,(x, 2).
The results in this case appear in Theorem 3.

A control @ e Z* will be called co-discount optimal if for each x ¢ I, there exists
a 2*(x) > 0 such that

31) (x5 2) — Dy(x, A) < 0

forall 0 < 2 < A*(x), xe I, and w € Z7.

We show that a control is n-discount optimal if and only if it lexicographically
minimizes the first n-coefficients in the Laurent series expansion of v(x, 2). Simi-
larly a control will be shown to be co-discount optimal if and only if it is n-
discount optimal for all n, or what is the same thing, lexicographically minimizes
the entire vector of coefficients of the Laurent expansion of v(x, ). We follow
the notation and development of Veinott [16].

Denote by D, the set of we Z? for which o is n-discount optimal, for
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n=-—-1,0,1,.... It is easy to see that D_, D D, 2D, 2 --- 2D, Let
Fy=(f-isfoo -5 fx)s —1 < N < oo, be a sequence of real valued functions
on /. We say that F is lexicographically nonnegative, written F,, > 0, if for each
x € I, the first nonzero element is positive. We say that F, is lexicographically
greater than G, denoted by F,, > Gy, if F, — Gy > 0.

For we 27, we let Y,» = (y2,(x), yo“(X), -+, yy*(x)) for N= —1, Y,*» =0
for N < —1and Y* = (y2,(x), y,“(x), - --). Suppose we have a Laurent series
Ay = X5, Xa;. Then limsup,,,4 "4, = 0 if and only if the vector of the

coefficients of 4, up to the nth power of 2 is lexicographically nonnegative.
This is sufficient to give us the following proposition.

ProposITION 1. Let D, and D,, be defined as above. Then

D,={weZ?: Y *>Y,2 forall acZ?} n= —1,0, ...
and
D={weZr:Y*>=Y* forall acZ}.

5. Existence of n-discount optimal controls. In this section we show for all
finite n > —1, that the set of piecewise constant n-discount optimal controls is
nonempty. Further we present second order quasilinear differential equations
that characterize the nth term in the Laurent series expansion of the expected
discounted cost of an n-discount optimal control. The idea of the proof is similar
to that used by Veinott [15] in studying the finite state and action Markov deci-
sion problem.

Let y2, =0forallwe 2*, E.,= Z,and D_, = Z*. If D, + @, let , = y,*
for all w e D,. We now generalize Theorem 4 to obtain the main result of this
paper.

THEOREM 5. Foreachm > —1,D, + @. Alsoy, =, for —1 < n < mand
Ym = Pm + k where k is any constant in the conservative case and k = 0 in the non-
conservative case if and only if
(32) min’”eEﬂ—l (Aw}’n + ¢ — yn—l) =0 and Yn € =@('n(.y'n—l)
where
(33) E,={wecE, : A,y, +¢,° — y,., = 0}.

for all —1 < n < m. Furthermore for'each m > —1, E,, is piecewise constant,
E,? = D,,_, in the conservative case, and E,» = D, in the nonconservative case.

ProOF. The proof is constructive and is by induction on m. We discuss the
nonconservative and conservative cases separately, beginning with the former.
Let m = —1. Then for all w € E?,, y_, = 0 is the unique solution of

(34) A,y,=0 and y_ eZ_(0).

Hence y_, = 0 is the unique solution of (32) and E_, = Z is piecewise constant,
E?, + @, D_, = E?,. Suppose now that the theorem holds for m and consider
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m + 1. Then by Theorem 2, there is a unique y,,,, satisfying (32) forn = m + 1,
Vmar = Milgep Yoy = Ppias B,y is piecewise constant, and D, ., = Ef,,.

We now consider the conservative case. It suffices to show by induction on
m that (32) has a solution, E, is piecewise constant and E,» = D,_, + @ forall
n < m, and each solution of (32) has the form y, = y, for n < mand y,, is unique
up to an additive constant. This is trivially so for m = —1 since for all v € E?,
y_, satisfies (34) if and only if y_, is a constant. Thus E_, = Z and E?, = D_,.
Suppose the assertion holds for m and consider m 4 1. By the induction hy-
pothesis we have

(35) minwéEm_l (Aw(ym + k'm) + cmw - ﬁm—l) = 0 and ym + km € 9(m(.}}"'m—-l)

for constant k,,. Notice that E,, is independent of k,,. Now for each w ¢ E,» =
D,,_,, it follows from Theorem 3 with Z = {w} that there is a unique constant k,,*
for which there is a y,,,, satisfying

(36) Ay Ymir + (Cpgr — Yu) — ku® =0 and Im+1 € Zpsi(Vm + kn®) -

From (35) and the definitions involved, for each such w, y,_, = y%_, and

BN A+ k) + G —yaa =0 and  (y. + kn*) € Du(ya-) -
Thus from (37), (36), and Theorem 4, we have y,* =y, + k,. Now by Theo-

rem 3 again, but with Z = E,, this time, there is a unique constant k,, for which
there is a y,,,,, unique up to an additive constant, satisfying

(38) minweE,m (Awym+1 + (c;”n+1 - .ym) - ]}m) = 0 and .ym+1 € g‘n&l(ym + ]}m) .

Also k,, = min,., _ k. E,,, is piecewise constant, and » € D,,_, and k,,* = &,
if and only if w € E%,,. Hence

Vn + k= yu +ming.p k0 =mingep  Yul = I

m—1 ™

andweD,,_, and y,* = y, ifand only if w € E?,,. Thus E?,, = D,, completing
the proof.

Implicit in the proof of Theorem 5 is an algorithm for finding the set of n-
discount optimal controls, and the first n 4 2 terms in the Laurent series expan-

sion of the expected discounted cost of an n-discount optimal control. We state
the algorithm in the conservative case.

I. Letm=0,E_, = Z, D_, = E’:l and Yo = 0.
II. Find a constant, k,,_,, such that
minweE,m (Awym - km—l + cmw - ym—l) =0

has a solution, y,,, in Z,(y,_,). Note that 9, = y,_, + kp_,.
III. LetE, ={w€kE,_,: Ayym — €p® — Vu_y =0}. Then D,,_, = E,?.
IV. If m — 1 = n, stop; otherwise let m = m 4 1 and go back to Step II.

6. Existence of co-discount optimal controls. In this section we prove that
there exists a measurable co-discount optimal control in both the conservative



418 MARTIN L. PUTERMAN

and nonconservative cases. The author is not sure if there exists a diffusion
process on [r,r] corresponding to a measurable control. Partial affirmative
results in the n-dimensional case appear in Stroock and Varadhan [13] and [14].
In the special case where there exists a unique n-discount optimal control for
some finite n, that control is co-discount optimal.

THEOREM 6. There exists a measurable w € Z that is co-discount optimal.

Proor. On supplying 7 with the usual topology for the real line and J with
the discrete topology, we see that I x J is compact in the product topology.
Let E, be the closure of E,, E, = Ny._, E,, and E, = N=._, E,. LetE,, =
{zeJ: (x,2)eE,}, and define E,,, E,, and E,, similarly. For each xel,
E_,, > E, DE,> ... are nonempty compact subsets of Jso E,., = N=_, E,,
is nonempty and compact for each x € I. Similarly, E, is nonempty and compact.
Also E,, is nonempty for each x € I°. Now by Theorem 5, E, is piecewise con-
stant so E,, differs from E,, for at most finitely many x e / depending on n. Thus
E,, differs from E,, for at most a countable set Q, of x € /.

Now denote by z,, - - -, z, the elements of J. Define the Q,, - - -, Q, inductively
by Q, ={xel—- U} Q;: (x,z)eE.},i=1,..., k. Clearly, Q,, Q,,- -+, Q, is a
partition of 7into measurable sets. Now let w(x) = z,forxe Q;andi= 1, ..., k,
and choose w(x) € E,,, arbitrarily for x € Q,. Then w ¢ E,, and o is measurable,
$0 @ is co-discount optimal.
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