The Annals of Probabzlzty
1974, Vol. 2, No. 5, 958-963

THE MULTIPLICITY OF AN INCREASING
FAMILY OF ¢-FIELDS!

By M. H. A. Davis AND P. VARAIYA

Imperial College and University of California, Berkeley

Let (Q, &, P) be a probability space and let .57, t € Ry, be an increas-
ing family of sub-¢-fields of % such that & is trivial and & = V; . %7.
Let _#2 be the family of all square-integrable martingales m; with my = 0.
Suppose that L%(Q, &, P) is separable. Then there exists a finite or count-
able sequence in _#2, m¢!, m:2, - - -, such that (i} the stable subspaces gener-
ated by m,¢, m,7 are orthogonal for i # j; (ii) <m'> > <m?> > - .- where {mi)
is the nonnegative measure on the predictable ¢-field on Q x R, induced
by the quadratic variation process {mi)> of mi, and (iii) every m in _#?2 has
a representation m; = }; Sf, @i(s) dmsi a.s. for some predictable integrands
¢i. Furthermore, if n!, n;2, - - - is another such sequence, then <{ni) ~ {m>
for all i.

1. Introduction. This paper extends the results of Cramér (1964), (1967) and
Motoo and Watanabe (1965) to the case of all processes defined on a separable
probability space. The main results are in Section 3.

2. Preliminaries. Throughout (Q, &7, P) is a fixed probability space and .,
teR,, is a fixed, increasing family of sub-s-fields of &~ with & trivial and
F =V, F, #*denotes the family of all martingales m, (with respect to
(Q, &, P), te R,) such that m; = 0 and sup,.,, Em* < co. .#* is a Hilbert
space under the inner product (m, n) = Em,n,, (see [4] Theorem 1). The pre-
dictable g-field .77 is the o-field of subsets of Q@ x R, generated by all the adapted
process y, on (Q, % ,, P) which have left-continuous sample paths. A process x,
on (Q, & ,, P)issaid to be predictable if the function (v, #) - x,(v) is .&-measur-
able. The set of all predictable processes is also denoted by &

To each m e _#" is associated a unique predictable process denoted (m} with
non-decreasing sample paths and with {(m), = 0, such that m> — (m}, is a mar-
tingale. If m, narein _#", then m,n, — {m, n), is a martingale where 2(m, n) =
(m+ 1y — (my — (ny.  Let L((m, ny) = {p € | E § g, [2|ddm, n,| < oo},
p = 1,2. For each ¢ € L*((m)) there is a unique martingale ¢ o me 2" such
that

{pom,ny, = \{p,dl{m,n),, forallne 7*.

A closed subspace .&” of the Hilbert space 7 is stable if m ¢ &, ¢ € L*({m}))
implies ¢ o me .. If 4" C 7 then £(_4"7) is the smallest stable subspace
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containing 4. £ (m) = {¢ o m| ¢ € L}({m))}. If £ is a stable subspace &<+ =
{me_2Z?%(m,n) = Em_n, = 0 for all ne &£}. If & is stable so is <+ and
each m e _#7* can be uniquely decomposed as m = n + n’ such that n e .~ and
{n'syy =0forallye . If &£ = <(y) then in the decomposition above n =
(d{m, y)[d{y)) o y-

3. The main result. For m, n in _7?, {m) > (n) ({m) ~ {n), {m) | {n))
means that the measure (n) on . is absolutely continuous (mutually absolutely
continuous, singular) with respect to {m). It may be worthwhile noting that
by measure {n) on &7 we mean the measure

(my(A) = E{§ (@, 1) d{n)(@)}, Ae Z.
The next result is elementary and is included in ([5] Theorem 4.1).

ProOPOSITION 1. Let & = A (m', - .., m¥), K < oo®. Then there exists a se-
quence n', - - ., n* in & such that n' = m' and

i) “n, -, 0% = &,

(ii) A(n*) L A(nd), i #].

THEOREM 1. Let & = L (m', ..., m¥), K < co. Then there exists a sequence
n', -, n®, in & with R < K and n* % 0 for all i such that

i) An -, 0" = Z

(il) A(n") | And), i +j

(iii) (n*y > (n*y = n¥y > ...

Proor. By Proposition 1 it can be assumed that . (m') | Amd), i+ j.

Applying the Lebesgue decomposition theorem to the measures {m*) for i > 1,
there exist measures p,%, g, on &2 such that

my = ' + '
m' < L m?)
p' L 252 (m7y
and sets 4, € & such that
mA) =0,  (miyA)=0  j=1,..,i—1.
Now set 4, = Q x R, and define

(1) W=y, L

—_— IA_ omt.
2’E<ml)m i

Clearly n' € #°. Tt will be shown that it has the following properties:

(a) m'e. AnY)
(b) (n*y > (m®) for all i.

2 K = oo simply means that m!, m?, - .- is a countable sequence.
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To prove (a) let B = (U, 4,)°. Then
2E{m .
2E<mm1>lBon1: f=1y%£?ianAiomt:IBoml'
Now (m')(A4;) = 0 for i = 2 so {(m')(B°) = 0. Thus I;. o m' = 0 and hence
m, = 2E{m S, o nte A(nY) .
To prove (b) take E € & such that (n')(E) = 0. Since the m? are orthogonal,
this implies, from (1), that
(2) {mYEnNA)=0 i=1,2,....
For i = 1 this says {m')(E) = 0 so that {n') > {m') and the result is established
by induction, if
3) {miNE) =0 for j=1,...,i—1
implies (m‘)(E) = 0. Suppose (3) is true. Now
(my(E) = {mH(E 0 A4;) + {mH(E 0 A7)
= {mYE n A) from (2)
= 1} (E N A since p,(A4°) =0.
But u,* < Yiz} {(m?) so that, using (3), {m')(E) = 0 as required.
Thus n' satisfies (a) and (b) above. Now let ¢*, i = 2, be the projection of m’
on (Z(n"))* i.e.,
PR— d{m’, n*) — i
4) q_m—_d@Tonl, =m'— a,on' say.
Apply Proposition 1 to (g% ¢% ---) to obtain a sequence p? p?, ... with
P = ¢t such that g, ¢, ---) = L, p*, - +) and L(p') L Lpi), i # ).
Then, using (4), it follows that

LK = ;Q”(n‘, m?, md, ...) = g(nl,Pz,Ps, ...)_

To obtain n?, start with the sequence p?, p?, - - - and construct »* in the same
way that n' was constructed from m!, m?, . ... Then n* will have the properties

(a') p*e L)

(b)) (n*y > (p*) foralli = 2.
Now m? e A (n', n?) since m* — p* = m* — ¢* € £(n') by (4) and p’e Z(n’) by
(a"). Also from (4)

(g = (my + Cay o ny — 2ty ago .

From (b) above, {(n*) > {m') for all i so that this equation implies (n') > {g*)
and consequently {n') > {(n").

Having constructed n? one projects p*, p*, - .- on (<(n', n"))* and then r° is
constructed. This procedure continues for n*, n, ... and it is clear that the
sequence thus obtained satisfies the assertion. []
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THEOREM 2. Let & = A(m’, - .., m*) = L (n', -- -, n¥) forsome K, R < oo
and suppose that

(i) Am') L LAmi); Ln') L L(w), i+ ]
(i) Cmty > (it > -5 (Y > Gty =
Then {m*)y ~ {n*) for all i, in particular K = R.

Proor. Because of (ii) there exist predictable processes ¢, € L({n")),

&, = d{n*) ,
¢ d{n*)
such that for 4 ¢ &2
(%) {n'y(A) = E ¢ I, ¢, dl{n*) i=1,2,....
Also for each i m'e L (n', .-, n®) so that there exist predictable processes

fii € L*({n?)) such that
mt = 3 fisoni.

Because of (i) it follows from this representation that

{mt, miy, = 33, §6 fu fir dn*)

= 2 Vo fuufin b A0 from (5).
In particular, putting i = j gives
d{m’
(6) d<<n1>> = 2 fixPe »
and since £ (m?) | L (m?) for i = j
) 2 fufirde =0 as. (n') for i £j.

It is immediate from (6) that {m') < {(n') and by symmetry {(n') < {(m"'), thus
(m'y ~ L'

Now assume that (m*y ~ (n®) for i=1,...,r. It will be shown that
{m™*'y ~ (n™**y. By the Lebesgue decomposition theorem there are measures
¢, p?on P with {m™+'y = p* + 42, such that

/11 < <n'r+1> s /12 _L <nr+1>
i.e., there exists B e Zsuch that p*(B°) = 0, {n"**)(B) = 0. Suppose p*(B) > 0.
Then {m"+*)(B) > 0 and there exists B, C B, B, € &’ such that
(8) §o I, d{n™*y = 0 a.s.
d(,'nr+1>
d{n*)
Now (n') > (n"**) > (n*) for k = r 4 1, so, using (5), (8) implies

(9  E\pI d{m™y >0  and >0 as. () on B,.

(10) L, =0 as. {m) for k=r+1.
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Also (n') ~ {m') > (m*)y > (m™**) for 1 < k < r + 1 so that from (9)

(11 ii’:f; >0 as (my on B, for l<k<r+l.
Combining (7) with (10) it follows that

(12) e fiifikde =0 a.s. (n'y on B, for i=+j
whereas from (6), (10) and (11)

(13) e fid >0 a.s. <n') on B, for 1<i<r+1.

Now fix (w, ?) € B, such that (12), (13) hold, and let x* € R" be the vector with
Jjth component equal to (¢,(w, 1))¥f;;(w, t). Then (12) implies that x*, x7 are
orthogonal in R” for 1 < i #j < r 4+ 1 whereas (13) implies that these vectors
are nonzero which is a contradiction so it must be the case that {(m"*') < (n"**)
and by symmetry {m"*') > (n"*'). The result follows by induction. J

DEFINITION. The multiplicity of the family (Q, 57, P),.,, is the length K of
. (any) sequence m*, m*, . - ., m* of nonzero martingales which satisfied (i), (ii), (iii)
of Theorem 2 for .#” = _#*. Denote the multiplicity by M(_Z?).
From Theorems 2 and 3 follows immediately the following result.

COROLLARY. If &A(n', ..., n") = _#7* then R = M(_?).

ReMARK 1. Kunita and Watanabe ([6] page 227) have shown that every mar-
tingale which is measurable with respect to the family of o-fields generated by
a vector Brownian motion can be represented as a stochastic integral with respect
to the Brownian motion. This result implies that if (Q, .5, P),., is generated
by a Gaussian process then the definition of multiplicity given here coincides
with the one due to Cramér.

REMARK 2. The definition of multiplicity and the main results similarly extend
the corresponding ones given in Motoo and Watanabe (1965) for the case of mar-
tingales of a Hunt process.
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