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THE CAPACITY REGION OF A CHANNEL WITH
TWO SENDERS AND TWO RECEIVERS

BY R. AHLSWEDE

The Okhio State University

A characterization of the capacity region of a two-way channel is given
for the communication situation, in which both senders send independent
messages simultaneously to both receivers and all senders and receivers are
at different terminals.

0. Summary. Let X = {1, ..., a} be the input alphabet for the sender S, and
let Y = {1, ..., b} be the input alphabet for the sender S,. Denote by X =
{1, - - -, a} the output alphabet for the receiver Rz and by ¥ = {1, .., b} the
output alphabet for the receiver Ry. Let w(+, « |+, +) be a nonnegative function,
which is defined on X x Y x X « ¥ and satisfies ¥ ;.3 ;.7 W(%, §|x, y) = 1 for
every (x,y) e X« Y. Set X! = X, Y=Y, X' =Xand ¥Vt = Y forr=1,2, ....
Forevery n; n = 1,2, .. .; the transmission probabilities of a two-way channel
are defined by P(%,, 7, | X, y,) = ITim w(X, | x¢, y*) for every x, = (x4, - -, x") e
X =0 Xy =%y e Y, =1L Y % = (R -, 5 e X, = [, X
and every j, = (J, .-+, ") e ¥, = [, Y.

In Section 3 we determine the capacity region of this channel for the com-
munication situation, in which both senders send messages simultaneously to both
receivers and all senders and receivers are at different terminals. This result
was announced in [1]. The proof is based on a new approach to the coding
problem for a channel with two senders and one receiver. This approach is
presented in Section 2. It seems to extend to channels with i senders and j
receivers as long as all senders send messages to all receivers.

In case S, sends messages to Ry and S, sends messages to Ry only, no satis-
factory characterization of the capacity region isknown. We show by an example
in Section 4 that the capacity region cannot be obtained by #sing “independent
sources”, contrary to the belief expressed in the bottom lines of page 636 in [4].
In Section 5 we generalize Shannon’s random coding method. This generalized
version may be of interest for coding problems of certain multi-way channels.

1. Basic definitions and statement of the problems. We continue using the
notation introduced in [1]. There the present two-way channel was denoted by
(P, Ty,). The communication situation, in which S, sends to R; and S, sends to
Ry, was called (P, Ty, I) and the communication situation, in which S, and
Sy send to Ry and to Ry, was called (P, T, II). We used the abbreviation
(P, Ty, I), if both senders send to Ry (or to Ry) only. For 4 c X,, Bc ¥, and
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(Xu» Yu) € X, x Y, define

(1‘1) P(Alxn’yn) = ZE”GA Zine?n P(fn, y—nlxnvyn)
and
(1‘2) Q(Bl'xn’yn) = Zine}” Z?neB P(in’ .j-)nlxns yn) .

The transmission probabilities for (P, Ty, I) are those defined in (1.1). They
«, +) given by

(1.3) pE|x,y) = S;wx, J|x,y) for xeX,yeY, xeX.
Similarly one defines g(« |+, +) by summing in (1.3) over . A code (n, N,, N,,
A, Iy for (P, Ty, I) is a system {(u;,v;, A;, B;)|i=1,---,N;j=1,---, N},
where u,¢ X,, v;eY,, A, cX,, B,c¥Y, (fori=1,...,N;j=1,...,N,),
A, N A= B; n B = @ for i+ i, j =+ j and which satisfies

(1.4)

i 2052 [P(A° | uyy v5) + Q(B)* | u;, v5)] < 4.

A code (n, Ny, N,, 4, II) for (P, Ty, II)is a system {u;, v;, 4;;, B;;)|i = 1, Ni;
=1, ..., N,} where u,e X,, v;eY,, 4, CX,, ”cYn(z_l l,j_-
L., Ny), A; N Ayjo = By; 0 B,y = @ for (i, ) #+ (i, '), and which satisfies

1
(1.5) i 2050 [P(A5; [us, v;) + Q(Bi; [us v)] < 4
N1N2
Finally, a code (n, N,, N,, 2) for (P, T, I) is a system {(;, v;, A;;)|i = 1, N
j=1,---,N}, whereu,e X,,v;eY,, 4, c X, (i=1,.---,N;j=1, 2)
A; 0 Ay = @ for (i,j) # (i',J') and for which

(1.6)

NN N, P(AS; Uy, ;) < 2.
A pair of nonnegative real numbers (R,, R,) is called a pair of achievable rates
for (P, Ty, II) if for any 2, 0 <2< 1, and any ¢ > 0 there exists a code
(n, exp{(R, — ¢)n}, exp{(R, — ¢)n}, 4, II) for all sufficiently large n. The ca-
pacity region G(P, T,,, II) is the set of all pairs of achievable rates for (P, T, I).
Analogously one defines G(P, Ty, I) and G(P, T,,, I). The objective of the present
paper is to characterize the set G(P, Ty, II). We also shall comment on the
structure of G(P, Ty, I). A look at (1.5) shows that the coding problem for
(P, Ty, II) is actually a problem of simultaneous coding for two channels of type
(P, Ty, I). We assume the reader’s familiarity with Section 3 of [1], in which
G(P, Ty, I) was determined. However, the approach taken there seems to be
not adaptive to simultaneous coding. In Section 2 we give a new characterization
of G(P, Ty, I), which is derived by a more canonical argument than the one
given in [1] and which easily extends to the channel (P, T,,, IT).

The following definitions are needed in order to state the results of the later
Sections.
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Let p be a probability distribution (p.d.) on X and let ¢ be a p.d. on Y. We
define the functions R(p, 9, X), R,(p, ¢, X), and Ry(p, ¢, X) by

1.7)  R(ps g X) = S %|x, )1 PE|X,y)
(L.7) (P> ¢, X) = 2oyz P(X)9(¥)P(%| %, y) log S PO E )

(18)  R(p, g %) = Eoz POMOIPE| x, ) log - LEIX )
2. P(X)P(%] %, y)

and
(19)  Rip.q. 8) = Ty PP | 5, y) log o PEIDN)

: 2y 9O0p(E[ %, y)
Analogously, we define functions R(p, 9, ¥), R,(p, ¢, ¥) and Ry(p, ¢, ¥). One
easily verifies that all six functions are convex in p and in ¢g. The following
functions are needed in Section 4 only.

(110)  Ri(p: - ) = Toys POMOIP(F | ) log o B PREI )

(1) Rh(p 0. %) = Doy PP | x,y) log o ZrAOPEIXND)
B ’ Zew POYOP(E] %, Y)
Similarly one defines functions Ri(p, ¢, ¥) and Ry(p, ¢, Y).
Fort=1,2, ... let p* be a p.d. on X’ and let ¢’ be a p.d. on Y. For n =
1,2, ... define probability distributions p, on X, and ¢, on Y, by

(1.12) palxn) = T pP(x)  for x, = (&%, -+, x") € X, and
(1.13) 9u(yn) = [ g'0)  for y, = (" =o€y,
Finally, define the “information functions” I*, I, 1, J*, J?, and J by
- P(x,| Xus y,) .
(1.14) x,, x,|y,) = log & ;
Zz,n Pn(xn)P(xn I xn’ _y'n)
¢ P(Xy | Xns ¥n) .
(1.15) P(x,,y,|x,) = log 2 ;
2iu, In(In)P(X | X0 )
e P(in l ) .y'n) .
(1.16) I(%,, x,, y,) = log — ;
Lt PalX)3n(V) PR | X Y)
i Q(.j;n l x'n’ yn) .
(1.17) (P> X, | ya) = log - >
2o Pu(X0) QP | Xus V)
(1.18) P(Far yal %) = log —— QU Xu ya)

Zu,,, q'n(y'n)Q(y'n I Xns .y'n) ’
O(Fu| *us ¥u) .
Z Ty Uny, P’n(x'n)qn(yn)Q(.j;n l X yn)
2. A new characterization of the capacity region G(P, Ty, I). We shall need

a result, which was derived by means of Fano’s Lemma ([2]) in Section 3 of [1].
Let {(u;,v;, A;)|i=1,---,N;j=1,...,N,} be an (n, N,, N,, 2) code for

(1.19) J(Fus Xu> yn) = log
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(P, Ty, I). It follows from the inequality (1.6) that one can pick—after renum-
bering—a sequence u,, - -+, Ny with N;* = [N,/2], and a sequence v, - - -, Vs
with N,* = [N,/2], such that

(2.1 _]\71; N3, P(Ac, |upv;) < 42 for i=1,..-, N, and
2

2.2) NL* TN P(As Uy, v;) < 40 for j=1, -ee, Ny
1

Write u;, = (u}, ---, 4 for i=1,..., N* and v; = (v, ---,v,;") for j =
1, .-+, N;*. We define the following probability distributions:
(2.3) pi(x) = N*Y{i|ut = x,iefl, -+, Nj*}}|

for xeXt,; t=1,2,..-.,n;
and
(2.4) g'(y) = N*{j vt =y, je{l, -, Ny}

for yeY4yt=1,2,.--,n.
For any 2, 0 < 2 < %, the following inequalities hold (see (3.35), (3.42) and
(3.43) of [1]):
(2.5) log NN, < [X1 R(p ¢, X) + 1](1 — 42)7 + log 4
(2.6) log N, < [, R(p' ¢t, X) + 1](1 — 42)™* + log 4 for s=1,2.
We give now a few more definitions needed to formulate the main result (Theorem

1) of this Section.
Define a set F(X) by

2.7) F(X) = {(R(p» 9> X), Ru(p, 4, X), R(p, 4, X)) | p
p.d.on X, g p.d.on Y}.

Let F*(X) be the convex hull of F(X). Its elements are triples (R*, R,*, R¥),
which shall be denoted by R. Finally, we define subsets G(R, X) and G(X) of
the Euclidean plane by

(2.8)  GMR,X)={(R,R)| X, R, < R*,R, < R* for s=1,2}
(2.9) G(X) = Ureram OR, X) .

THEOREM 1. _
G(P, Ty, I) = G(X).

Proor. The relationship G(P, T,, I) € G(X) is an immediate consequence of
the inequalities (2.5) and (2.6).

We show now the converse relationship. As in [1] we again make use of
Shannon’s random coding method. The differences of the present approach as
compared with the one given in [1] consist in the choice of the “source proba-
bilities” and in the decoding employed. Here we admit “nonstationary sources”
and we apply maximum likelihood decoding.
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LetU, ---,U " be independent identically distributed random variables with
values in X, and distribution p,, that is, p,(U; = ;) = p,(u;). Let V,, ---, Vy,
be identically distributed random variables with distribution ¢,. The V,’s are
assumed to be independent of each other and of the U;’s. Write U for @ -,
Uy), Vfor (¥, ---, V), difor (u, -+, uy)and® for (v,, - - -, vy). Denote the
joint distribution of the U,’s by g,, the joint distribution of the ¥;’s by 4, and
the joint distribution of all random variables by g, x §,. For the outcome (i, 9)
of the random experiment (U, V, p x §) we define decoding sets 4,; = 4,;(#, 9)
(=1, Nyj=1,-.., Ny) by
(2.10) Ay = (%, | P(Xa|ui5 v;) > P(Ro |1y, v)) for (k, 1) = (i, )} -

The average error for the code {(u;, v;, 4;;)|i=1,---,N;j=1,---, N} is
given by

.11y A, ) = 1

N, N

2y s, P(A | Uy, 0;) .

We want to give an upper bound on the expected error
EXU, V) = T3 A@ID)A(8, D) .
Abbreviate P(A¢;|u;, v;) as A,(#, 9). For reasons of symmetry one has
EX(U, V) = E2y(U, V). Denoting p,(4,)9,(v,)P(%,|4,, v,) by P(%,, u,, v,) we can
write EA,(U, V) as
(2.12) 2pougyoy P(Xs s V)P X §
X {P(x,|uy, v,) < P(%,|U,, V;) forsome (i, j)=+ (1,1)}.
This expression is smaller than the sum of the following terms:
(2’13) Zin.ul,vl P(in’ ul’ vl)ﬁ X é
X {P(%,|u,, v,) £ P(%,|U;, v,) for some i+ 1};
(2'14) Zin'”l"’l P(fn’ U, vl)ﬁ X é
X {P(X, |uy, v,) < P(%, |4y, V;) for some j + 1};
215 ey PGt v)P % GP(E, |1y, v)) < P(X, | U, V)
for some (i, j): i+ 1, j+ 1}.
In order to give a bound on the first term we introduce for any a > 0 and for
v,eY, the set B, = {(%,, )| I"(%,, u,|v,) > log aN;}. Writing P(%,, u,, v,) as
P,,I(J’c,,, u,) - q,(v,) and using the fact that the U,’s are identically distributed we
obtain the bound
Zvl qn(vl)[Pvl(Baczl) + Nl Z(i,‘,ul)erl Pvl(in’ ul)ﬁ X é{P(in | U, ,Ul) é P()-C” | U2’ Vl)}] °
It follows from the definition of B, that the last term in brackets is smaller
than a~'. Since_}‘_,iwul'vl P(%,, u,, v,) log P(%,|u,, W) 2, Pa()P(%, | 4y, v,) equals
Zia R(ph ¢ X)), X, q“(vl)ﬁzl(Bgl) can be made arbitrarily small by choosing
aN, smaller than exp{>7_, R,(p*, ¢*, X) — kn?}, where k is a suitable constant.
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Thus, the whole term can be made arbitrarily small by choosing a sufficiently
large. By the same argument we can establish a bound on (2.14). Using a set
B = {(x,, u, v;) | I(%,, u;, v;) > log N, N} the third term can be made small by
choosing aN, N, < Y17, R(p', ¢*, X) — knt. The estimate is exactly the one of
the random coding method [3]. The proof is complete.

3. The capacity region G(P, Ty, II). Let & be a finite set of pairs (p, g) and
let ¢ be a p.d. on & With (&, 1) we associate a vector R(.Z, ), given by

(G.1)  R(F p) =min{}],, 1(p, 9)[R(p; 4, X), Ry(p, 9, X), R(p, ¢, X)],
Do P DIRAP 45 ), Re(p, 4, ¥), R(p, 9, D))} -

(It is understood that the minimum is taken componentwise.)

Set F(X,Y) = {R|R = R(Z, p) for some (&, )} and write its elements as R =

(R, R,, R). Analogously to (2.8) and (2.9) we define now subsets G(R) and G
of the Euclidean plane by

3.2) GR) ={(R, R)| 2R, £ R, R, < R, for s =1, 2}
and
(3.3) G = Urerz,p GR).

THEOREM 2.

G(P, Ty, II) = G .

Proor. We show first that G(P, Ty, IT) C G. Let {(u,, v;, A;;, By)|i=1,--+,Ny;
J=1,---,Nj}bean (n, N, N,, 2, II) code for (P, T, II). Replacing P(A4;; |u,, v;)
by P(A;;|u;, v;) + Q(Bg;|u;, v;) in the derivation which led to (2.1) and (2.2)
we obtain from (1.5) that—after renumbering of the #,’s and the v,’s—the
following inequalities hold:

1 * ¢ . N,
(3.4) N 32 P(A3; [ uy, v;) < 44 for i=1,.---,N*= [71] .
(3:3) L Tyl v) S 4 for i= 1, N
2
(3.6) I 2 P(Ag |uy, v;) < 42 for i=1 N*_l:Nz]
. e i=1 ij iv Vi) = _]_,...,2__.
N * 2
(.7 e DO lua ) S 4 for J=1,--, Ny¥.
1

For ¢t = 1,2, ..., ndefine p* and ¢ as in (2.3) and (2.4). Using (2.5) and (2.6)
for P(«|., +) and for Q(« |+, -) we obtain the following inequalities:
(3.8) log NN, < [min {X7, R(p', ¢, X), T R(P ¢ T)} + 1]
X (1 —42)7 4 log4.
(3.9) log N, < [min {337, R(p', ¢', X), Tt R(p% ¢, V)} + 1]
X (1 —42)7" + log4 for s=1,20<2<3}).
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The relationship G(P, T,,, II) C G is a consequence of (3.8) and (3.9). In order
to prove the converse relationship we select code words at random as in Sec-
tion 2. Ry uses the decoding sets A4,; defined in (2.10) and Ry uses decoding
sets B,; = {x,| Q(%, |u;, v;) > Q(X,|u,, v) for (k, 1) = (i,j)}i=1,---,N; j =
1,...,N,). Theexpectederror probabilities in both decoding systems are small, if

log N, < min {55, R(p ¢ %), Tt R(p' ¢ F)} — knt for 5=1,2

and log N, N, < min {37, R(p', ¢', X), X1, R(p', ¢*, ¥)} — knt.
Hence, there exist codes achieving all pairs of rates in G.

4. A remark about the capacity region G(P, T,,, /). Lemma 1 of [1] gives a
characterization of G(P, T,, I) in terms of dependent sources. This characteri-
zation is unsatisfactory, because it cannot be used to compute G(P, T,,, I). Until
now no satisfactory result exists. It was conjectured on page 636 of [4] that
G(P, Ty, I) equals the convex hull of the set {R%(p, 9, X), Riy(p, ¢, ¥)| p p.d. on
X, ¢ p.d. on Y}. We give here a counter-example. First of all we notice that
(P, Ty, I) can be viewed as a special case of (P, Ty, I). It is the case in which
X = Y and w(%, 7| x,y) = 0 for ¥ =+ . Here both receivers receive always the
same letters and can be identified. It suffices therefore to construct an example
of a channel for which G(P, Ty, I) is unequal to the convex hull of

{(R%(p> 9> X), Riy(p, 9, X)| p p.d.on X, q p.d.on Y}.

Choose X =Y = {0, 1}, X = {0, 1, 2} and choose for p(|., ) the following
matrix:

01 2

00 /1 0 O

01 (0 1 0

10 10 0 1/°

11 \1 00
One easily verifies that
(4.1) Riy(p, 4> X) + R(p> 4- X) = R(p, 4, X) ,
(4.2) Ru(p, 4, X) + R(p, 4, X) = R(p, ¢, X) ,
and—by the well-known convexity properties of the rate function—also that
(4.3) Riy(p, 4, X) < Ro(p, 4, X) »
(4.4) Ri(p> 9, X) = Ry(p> 9, X) -
(4.1) and (4.3) imply that
(4.5) Ry(p, 4, X) + Ry(p: 4, X) = R(p, ¢, X) .

Theorem 1, (4.3), (4.4), and (4.5) yield that the sets in question are unequal, if
the inequality max, ,[Ry(p, ¢, X) + R4(p, 9, X)] < max, , R(p, q) holds: Straight- °
forward computation shows that

(4.6) R(p,q,X) = H(p), where H denotes the entropy function,
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and that

“4.7) Ri(ps 9, X) < H(p) , with equality holding exactly if ¢(0)
equals 0 or 1.

(4.1), (4.6) and (4.7) imply that

(4.8) Ri(p, 9, X) + Ri(p,q, X) < R(p,q)  for all p and all ¢ with

q(0) +0,1.

With p* and ¢* as equal distribution on {0, 1} one obtains R(p*, ¢*) > log 2 and

thus

4.9) max,  R(p,q) > log2.

Since max, ,..0—00r1 R(p> 9) = log2, we have for all (P, 9) Ri(p,q,X) +

Ri(p, g, X) < max, . R(p, q); as was to be shown.

5. A generalization of Shannon’s random coding method. Let X', X2, X'and
X* be finite sets, p'(+|+) a transmission matrix from X' to Xt and p’(«|.) a
transmission matrix from X*to X2, Set X, = X' x X2, X, = X' x X?and define
P by

(5:.1)  PFER|x) = [Tk, pi(R | xY); =, x)ekX,, %=(F,¥)eclk,.

Furthermore, for 1 = 1,2 let p* be a p.d. on X*, let p* = p*.pi(+|.) be a
p.d. on X*, let p* = p* « p}(+ | «) be a pP-d. on X* « X* and finally set p, = ptxph
Pr=p' x P’ and p, = p' x p*. For x,¢ X,, %, ¢ X, we define

oy P(x,| x,)
5.2 I(x,, %) = log —\2212)
(5:2) (s %) = log LB1
and for x* e X2, x® ¢ X* we set
2/ -2 2
(5.3) I, 2) = log P X))
)

Let U, ..., Uy, be independent identically distributed random variables with
values in X* and with distribution p*. Furthermore, let Vii=1,..., N, j=
1,...,N,; be identically distributed random variables with values in X2 and with
distribution p*. The V,,’s are assumed to be independent of each other and of
the U,. Denote the joint distribution of all random variables by p. Let W,; =
(U, V;;) and define

(-4 A = (% | P(% | Wiy) > P(%,| W) forall (k, 1) # (i, )} .

The system (Wi Ay |i =1, N3 j=1,...,N} is a code of length N =
N, - N, for the channel P. Its error probability is N-* 3 1M, 27 P(A; | W), If
we select the code words according to the random variables described above and
apply maximum likelihood decoding, then we obtain an expected error probability

1
E[W S, B, P4, | Wij)] :
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LemMA (Generalized random coding).

1 - -
E| - Tt D PO | W) < P(xa %) I ) S logaV)
+ P, &) [ [(x*, %) < log ay Ny}
—|-_1_—|-_1_ for a,a, > 0.
a a,
Proor. For reasons of symmetry the expected error probability equals
EP(A; | Wy). Define sets B and B, by

(5.5) B = {(x,, %) | I(x,, %) > log aN}
and
(5.6) B, = {(x* )| I(x*, #) > log a, N,} .

Since EP(A; | Wy) < 2750y Pe(Wi) P(%y | W) P{P(X,y | W) < P(%,| W,;) for some j
and i # 1} 4 p{P(X,| w,) < P(%,| W,;) for some j + 1} we can conclude that
(.7)  EP(44| W) = PoB) + Zwyyzpen Po(Wus B)NPIP(Xa [ Wn) = P(%y| Wa)}
+ Pz(Bzc) + Zwu,iﬂ)ngpz(vm 7772)
X N, p{p* (% [vn) = PR | Vo)) -

For (wy, %,) € B we have:

PP(X; | wy) < P(x,| Wy)} = pofx, | P(X; | wy) = P(%, | x,)}
= pa{x, | I(wy, %) < I(x,, %,)}
=< pifx;|log aN < I(x,, X,)}
—2 - 1
=P Npy(x,) < M} < 1
’ {XZ |aNpia) = =2 51 = oN
By exactly the same arguments one obtains

2/ =2 2/=2 1
PP (R |vy) S PR Vo)) =

a; N,

.

These two bounds and (5.7) yield the statement of the lemma.
REMARK 1. One obtains Shannon’s result by choosing N, = 1.

REMARK 2. Let us consider a discrete memoryless channel with alphabets X
and X.

Let R(p) be the rate for the source probability p. Choose X' = X, , X' = X, ,
X=X,,X=X,, X'« X=X, and X' « X* = X, where n = n, + n,. Appli-
cation of the lemma yields the following result: for every 1, 0 < 2 < 1, for all
nand n, < n, and for every nonnegative integer N, satisfying N, < exp{R(p)n, +
k(2)n,t} there exists a code {(u;, v;;, 4;;)|i =1, ---,N; j =1, .-, N,}, (where
ueX,,v;€X,,4,;C X,) with an error probability smaller than 2 and a length

N = NN, = exp{R(p)n — k(A)nt}.
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(k(2) is a known function independent of n.) It seems to the author that the
existence of such codes should be of interest for coding problems of certain
multi-way channels, especially those involving time sharing.

(1]
[2]
[3]
[4]
(51
[6]
[7]

REMARK 3. The lemma easily can be generalized to more than two components.

REFERENCES

AHLSWEDE, R. (1971). Multi-way communication channels. Second International Sympo-
sium on Information Theory. Publishing House of the Hungarian Academy of Sci-
ences. 23-52.

FaNo, R. M. (1952, 1954). Statistical theory of communication. MIT lecture notes.

SHANNON, C. E. (1957). Certain results in coding theory for noisy channels. Information
and Control 7 6-25.

SHANNON, C. E. (1962). Two-way communication channels. Proc. Fourth Berkeley Symp.
Math. Statist. Prob. 1 611-644.

SLEPIAN, D. and WoLF, J. K. (). A coding theorem for multiple access channels with
correlated sources. To appear in Bell System Tech. J.

ULREY, M. L. A coding theorem for a channel with s senders and r receivers. To appear
in Information and Control.

VAN DER MEULEN, E. C. (1973). On a problem by Ahlswede regarding the capacity region
of certain multi-way channels. To appear in Information and Control.

DEPARTMENT OF MATHEMATICS
THE OHIO STATE UNIVERSITY
231 WEST 18TH AVENUE
CoLumMsus, OHIO 43210



