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RESIDUAL LIFE TIME AT GREAT AGE!

By A. A. BALKEMA AND L. DE HAAN

University of Amsterdam and
Erasmus University

The asymptotic behaviour of the residual life time at time ¢ is in-
vestigated (for # — o). We derive weak limit laws and their domains of
attraction and treat rates of convergence and moment convergence. The
presentation exploits the close similarity with extreme value theory.

0. Introduction. Consider a light bulb. It has a certain life time X, which is
a random variable with probability distribution F. Suppose the distribution tail
R(x) = 1 — F(x) = P{X > x} is positive for all x. After having burned ¢ hours
there remains a residual life time with distribution tail R, defined by

(1) R(x) =1 — F(x) = P[X — t > x| X > 1}.

It is of considerable interest to know the asymptotic behavior of these residual
life time distributions for # — co. Natural questions: What are the possible limit
distribution types? For each such limit distribution G, what is the domain of
attraction, D,(G) (= the set of all distribution functions F such that F,, suitably
normed, converges to G)? What is the speed of convergence?

This paper gives fairly complete answers to all these questions. Most of the
proofs are of a rather technical analytical nature. We have therefore collected
basic notation and some general results in the introduction. The five sections
which follow the introduction may then be read independently of each other.

Consider again the distribution tail R,(x) of the residual life time. If X has
an exponential tail, R(x) = e~*%, then R,(x) = e~** forall ¢+ > 0. It is well known
that this characterizes the exponential distribution. If R, does depend on 7, then
it is possible that the family R,, t = 0, has a weak limit S as 7 — co, i.e.,
R,(x) = R(x + t)/R(t) — S(x) weakly on (0, o) for t — co. It is not difficult to
see that this implies that S(x + y) = S(x)S(y) for x, y > 0 and hence that S is
exponential. (Compare Feller (1966) 2 VIII, 8 Lemma 1.)

Suppose now we allow a scale transformation. Let there exist a positive func-
tion a such that F,(a(t)x) has a weak limit G as t — co. It will be shown that
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the possible limit types in this situation are

Fix)=1—(1+x)" for x=0
Ox)=1—e* for x>0,

where « is a positive constant. All limit distributions vanish for x < 0. We
remark that these limit distributions bear some resemblance to the limit distri-
butions @, and A in extreme value theory (see Section 2). This resemblance is
due to the fact that both theories have a common basis, Karamata’s theory of
regular variation. In Section 5, we shall show how Karamata’s theorems trans-
late into a remarkable moment theorem: convergence of a positive residual life
time moment as ¢ — oo is equivalent to weak convergence of the (properly
normed) residual life time distributions F,. For an exponential limit the relation
between weak convergence and convergence of the first moments of F, has been
investigated by Meilijson (1972).

If we allow as norming functions for F, both a scale transformation and a
shift, then in addition to the limit distributions above, discrete limit distributions
appear. The new limit types are:

[, (x)=1—exp —7[l + alog(l + x)] for x>0
M(x) =1—exp—y[1+ x] for x>0,

with @, y > 0 and [a] the integer part of a.
The limit types constitute a two parameter family. Indeed, set p =7y >0,
pc=a*>0and

II, (x) =T, (cx) (: 1 —exp—p [1 + lcg_g_%;_l-_cij for x = 0) .

On letting p or ¢, or p and ¢ tend to zero we obtain the distributions
Iy, o(x) = L'o-a(cx)
x
IL, o(x) = II, (;‘)
IL, o(x) = II(x) .

In this paper, we consider the general situation (allowing both a scale trans-
formation and a shift). We shall derive the possible limit distributions (Section
1) and their domains of attraction (Sections 2 and 3). The Sections 4 and 5 refer
to continuous limit distributions. In Section 4 we give approximation theorems
for finite values of ¢. In Section 5 we shall prove that convergence of one mo-
ment entails weak convergence of the residual life times.

1. The limit distributions. Let X be a random variable with distribution tail
R(x), which we assume to be strictly positive. Assume moreover that for each
t > 0 there exist a scale transformation a(f) > 0 and a shift 5(7) such that for



794 A. A. BALKEMA AND L. DE HAAN
t — oo we have weak convergence of the distribution tails

2) P<X;—(t;)(t)_>x|X> t>—>S(x) weakly for 1 —> oo .
The limit function S is obviously non-increasing and satisfies 0 < S(x) < 1 for
all x. In this section we shall prove that if 1 — S'is a nondegenerate distribution
function, then it is the type of one of the limit distributions mentioned in the
introduction.

Analytically we can express (2) as

3) min (1 , R(() + xa(?)) x"(’))> . S(x)  weakly for f—co.
R(1)

Following standard procedures, such as for instance Gnedenko’s proof of

Theorem 3 in (1943), we first show that S satisfies a functional equation (4) and

then solve this equation. A complicating factor in our situation is that taking
the minimum in (3) blots out convergence on one half line.

LemMmA 1. If (2) holds and 1 — S is a nondegenerate distribution function, then
for each continuity point y of S for which 0 < S(y) < 1 there exist constants
A(y) = 1 and B(y) such that

) S(x) - S(y) = S(B(y) + xA(y))
for all x for which S(x) < 1.

PRroOF. Let y be a continuity point of S such that 0 < S(y) < 1. Without
loss of generality we assume y = 0. We know that R(b(7) + xa(?))/R(t) — S(x)
weakly on the interval I = {x|S(x) < 1} for  — co. Substituting b(#) for r we
obtain the identity

(5) R(b(b(1)) + xa(b(1))) . R(b())
R(b(1)) R(1)
R(b(1) + <b(b(’)) — b(1) + x a(b(’))>a(,))

a(1) a(?)
R(1)
If t — oo, then b(f) — oo (since R(b(7))/R(t) — S(0) < 1) and hence the left-hand
side converges weakly to S(x) - S(0) on /1.
We shall prove that there exist constants 4(0) and B(0) such that

(6) a(b(t))/a(t) > A(0) and  (b(b(r)) — b(¥))/a(t) — B(0) for t— oo.

Indeed, let (A4, B) be a limit point for t— co. Then 0 < 4, B < oo since
R(b(1))/R(t) — S(0) < 1 implies B = 0. Moreover, 4 and B are finite, else (5)
would yield S(x) - §(0) = 0 for all xe 1. If 4 > 0, then (5) gives

(7) S(x) - S(0) = S(B + xA)

for all x e 1, using the right continuity of S. In particular, for x = 0 we find
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0 < 8(B) = S(0)* < S(0) < 1. Thus S has two continuity points 0 and B at
which it assumes distinct values. This implies that 4 and B are uniquely deter-
mined by (7). If A = 0, then (5) implies S(B+) < S(x) - S(0) < S(B—) for all
xel. In particular, B is the upper endpoint of the distribution 1 — S.

Thus there is at most one limit point (4, B). This proves (6). It only remains
to show that A4(0) > 1.

Let g satisfy S(0) < ¢ < 1. Since R(b(f))/R(t) — S(0) there exists b, such that
R(b(1))/R(t) < q for t = b,. Now define b,,, = b(b,) inductively for n = 0, 1,
2, ... Then (b,) is increasing (since b(f) > ¢ for t > b,). Assume limb, = b
is finite. Then R(b,,,)/R(b,) < ¢ would imply R(b — 0)/R(b — 0) < ¢ < 1.
Contradiction. Hence b, — co.

From (6) we see that a(b,,,)/a(b,) — A(0). Assume A(0) < 1. Then a(b,)

~decreases exponentially to zero and since b,,, — b, = O(a(b,)) by (6), the se-
quence (b,) has a finite limit. Contradiction.

CorOLLARY. S(x) > 0 for all x.

Proor. Define B,,, = B(0) + B,A4(0) and B, = 0 (with 0 a continuity point
of Sand 0 < S(0) < 1 as above). Then B, — oo since B(0) > 0 and A(0) = 1,
and S(B,) = S(0)"** > 0.

REMARK. The principal argument in Lemma 1 is a form of the convergence
of types theorem. We here give another version, which is proved by similar
arguments as Lemma 1, and will be referred to occasionally in the remainder
of the paper.

Let R be a distribution tail and suppose that c, R(b, + xa,)and ¢, R(b,* + xa,*)
converge respectively to S(x) and S*(x) say for x > x,, with ¢,, a, and a,* posi-
tive and b,, b,* real. If S and S$* are strictly positive on (x,, co) and tend to
zero for x — oo, thena,*/a, — A4 > 0, (b,* — b,)/a, — Band S*(x) = S(B + xA).

The functional equation (4) does not yet completely determine the possible
limit distribution G = 1 — 8. Let Sy(x) = e for x > 1 and = 1 for x < 1.
Then S, satisfies (4) with A(y) = 1, B(y) = y although 1 — S is not of the type
of any limit distribution II, ;! The next lemma shows why.

LeEMMA 2. Let H be an unbounded non-increasing function on an interval (x,, o)
such that
H(x) = 8(x) if S(x)<1.
If for some pair (A(y), B(y)) in Lemma 1 the function H satisfies
®) H(x)H(y) = H(B(y) + xA(y)) for x> x,
then
H(x) = S(x) if Hx)<l1.

Proor. We may assume y = 0. Then x, = inf {x|S(x) < 1} is negative, and
we may assume x, to be finite since else there is nothing to prove. It suffices
to show that each left neighborhood (x, — ¢, x,) contains a point x, such that
H(x) z 1.
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If x > x, then H(x) < 1 and (8) implies B(0) + xA4(0) > 0. Hence B(0) +
x, A(0) > x, for some x, € (x, — ¢, x;). We may also assume x, and B(0) + x, 4(0)
to be continuity points of H.

Using (6) we see that the right-hand side of (5) converges to H(B(0) + x, 4(0)).
The second factor on the left-hand side converges to H(0). Hence the first factor
converges, and the limit is equal to H(x,) by (8). Finally, x, < x,, together with
(3) implies H(x,) = 1.

We are now ready to prove that the weak limit distributions of the residual
life times are exactly those mentioned in the introduction.

THEOREM 1. Let F be a distribution function such that F(x) < 1 forall x. Let
the normalized residual life time distributions F(b(t) + xa(t)) with F, as defined in
(1) converge weakly to a nondegenerate distribution function G(x) fort — co. Then
Gisof type II, 11, T', or T, . defined in the introduction.

PRooF. We use the notation R(x) = 1 — F(x), S(x) = 1 — G(x) as before and
denote by Y the set of continuity points of § for which S(x) < 1.
Thus (4) holds for y e Y and S(x) < 1.

We consider two cases.

Case 1. A(y) = 1forallyeY. Define ¢(x) = log S(x) when S(x) < 1. Then
(4) becomes

) o(x) + ¢(y) = ¢(B(y) + x) -
We fix y e Y. Then ¢(y) < 0, hence B(y) > 0, and (9) gives
(10) P(x) = ex + py(x)

with ¢ = ¢(y)/B(y) < 0 and with ¢, periodic modulo B(y). Note that ¢ =
lim,_,, ¢(x)/x is independent of y, and hence so is ¢,. We again distinguish two
cases:

(a) ¢, is constant: ¢(x) = ¢(x + d).

Define H(x) = e®**®. Then H(x) = S(x) when S(x) < 1, hence S(x) =
min (1, H(x)) by Lemma 2 and G is of type II.

(b) ¢, is not constant and has minimal period p > 0.

The function ¢ has the properties: ¢(x + p) — ¢(x) = cp by (10) and ¢(y) e
{cp, 2¢p, 3cp, - - -} for all ye Y since g, is periodic modulo B(y) = ¢(y)/c. It
follows that ¢(x) = cp[(x + d)/p]. As above, we set H(x) = exp cp[(x + d)/p]
for all x € R and Lemma 2 yields that G is of type I, with y = —cp > 0.

Case 2. A(y) > 1 for some ye Y. Define ¢(x) = log S(x) when S(x) < 1.
Suppose y;,y,€ Y. We define ay(x) = B(y;) + xA(y;) for i = 1,2. Then (4)
yields p(,(x)) = ¢(x) + p(y;) for i = 1,2 and hence p(ay(a,(x)) = p(ax(e(¥))).
Since ¢ is nonincreasing and unbounded we obtain a,(a,) = ay(a,), i.e.,

B(y,) + A(y)B(y:) = B(y:) + A(y)B(yy) -
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In particular A(y) > 1 for all y € Y and we may write

B(y) + xA(y) = % + (x — x)A(y)
where x, = B(y)/(1 — A(y)) does not depend on y. We may also assume x, = 0.

Then (4) becomes
o(x) + ¢(¥) = ¢(xA(y)) -

This implies that x - A(y) > x for y € Y and S(x) < 1. Hence x > 0 if S(x) < 1
and we may write x = ef so that (4) becomes

(&) + P(n) = (€ + a(n))

for £ > &,. This is relation (9) once more. There are two cases:

(a) (&) = c(€é + d), H(x) = e¢+® = (e%x)° for x > 0 and G is of type [,
witha = —c¢ > 0.

(b) ¢(§) = cpl(€ + d)/p], H(x) = exp cp[(§ + d)[p] = exp cp[(log e’x)/p] for
x>0and Gisof type I', , with y = —cp, a = p~™.

It only remains to check that each of these limit functions G =1 — § satisfies

. S(B(t) + xA()\ _ .
min <1 , __._S_(—t)___> = S(x)

fort > 0. [

REMARK. If we relax the condition that F(x) < 1 for all x, we could still con-
sider the class of limit tails S obtained in (2) by letting ¢ tend to the upper end-
point of the distribution F.

Using the same arguments we now obtain the tails S(x) = e~* for x > 0 and
S(x) = (1 — x)* for x € (0, 1) with 2 > 0 together with their discrete counter-
parts. In addition we can obtain any limit distribution which is concentrated
in two points. (This corresponds to the case 4(y) = 0. As an instance let F be
a discrete distribution with atoms of size p, in x, where p,,,/p, — p € (0, 1),

Xn T cand (xn+1 - n)/(x n-l) — 0. )

Since this aspect of the theory has little practical significance we shall not

develop it further.

THEOREM 2. Let F be a distribution function such that F(x) < 1 for all x. Let
F(a(t)x) with F, as defined in (1) converge weakly to a nondegenerate distribution
function G(x) for t —» co. Then G(x) = Il(ax) or G(x) = T',(ax) for some a > 0,
a > 0, with I1 and T, defined in the introduction.

Proor. In relations (2) and (3) we now have b(f) = t. Hence relation (6)

becomes
(b(b(7) + ya(r)) — b(1))/a(t) — B(y)

(we may no longer assume y = 0!). Thus B(y) = y and ¢,, defined in ('10), being
periodic modulo B(y) for all y e Y, is constant. One easily sees that II and II,
do indeed occur as limit distributions.
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2. The domain of r.Lt. attraction of I', and of II. For each of the limit dis-
tributions G derived in Theorem 1 we define the domain of residual life time
attraction D ,(G) to consist of all distribution functions F for which there exist
normalizing constants a(f) > 0 and b(f) such that F,(b(t) + xa()) — G(x) weakly
for t — co. In particular F € D (G) implies that F(x) < 1 for all x.

The concept of “domain of attraction” is well known in extreme value theory.
There the limit distributions are usually denoted by

D (x) =e "™ for x>0
A(x) =e"
T (x) = e = for x <0

with @ > 0, and if G is one of these distributions we write F e D(G) if there
exist normalizing constants a, > 0 and b, such that F(a, x 4+ b,)" — G(x) weakly
for n — oco. (The maxima of n independent random variables, each distributed
according to F, converge, properly normed, in distribution to a random variable
with distribution G.) Gnedenko (1943) determined these domains of attraction
and since then there has been a substantial list of publications on this subject.

In this section we shall prove that the domains of r.l.t. attraction for con-
tinuous limit distributions are closely related to the domains of attraction for
the extreme value limit distributions.

Let D, denote the set of all distribution functions F such that F(x) < 1 for
all x. Then with D (G), D(G), A and @, as above and II and I, as defined in
the introduction, we have

Treorem 3. D (II) = D(A) n D,.
Tueorem 4. D (T',) = D(®,) for all a > 0.

The proof of these two theorems depends on a continuation principle: if the
limit function satisfies a functional equation on a half line, then it will satisfy
the equation on the whole line. It would be very interesting, however, to have
a proof based on probabilistic arguments.

We first prove a simple lemma.

LemMA 3. Suppose F = 1 — R e D (G) with G continuous. Then R(x — 0) -
R(x 4+ 0) > 1 for x — oo.

Proof. For any ¢ < 1 there exists y such that ¢ < 1 — G(y) < 1. Thus
b(x) + ya(x) > x and R(b(x) + ya(x)) > q - R(x) for x = x, by (3). Hence cer-
tainly R(x + 0) > g - R(x — 0) for x = x,.

ProoF oF THEOREMS 3 AND 4. We shall only prove Theorem 3. The proof
of Theorem 4 is similar. '

Suppose F =1 — Re D(A) and R(x) > 0 for all x. By Gnedenko (1943),
Theorem 6, we have n - R(b, + xa,) — e~* weakly on R. Define a(r) = a, and
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b(t) = b,, for all ¢ for which (n 4 1)™* < R(f) < n~*. Then obviously R(b(f) +
xa(t))/R(t) — e~* which proves F e D (II).

Now suppose F e D, (II). Then R(b(t) + xa(t))/(t) — e~* for x > 0 for t — oo,
and since R(t 4 0) ~ R(t — 0) by Lemma 3, we may choose a, > 0 and b, so
that

(11) nR(b, + xa,) — e™*

on x > 0. It remains to prove that (11) holds on R.
Let (11) hold on (¢, co) with ¢ minimal. We have

20R(b,, + 30,,) =2+ 1R (b, + (B2 la g x Bu)g))
a

a,

n

and by the remark following Lemma 1 we obtain for n — co

e ? — 2e—(B+zA)

whence 4 = 1 and B = log 2. Convergence on the right-hand side holds for
x + log 2 > ¢, hence convergence on the left-hand side holds for x > ¢ — log 2.
In first instance this is only true for the subsequence of €éven numbers, but since
2n + 1 ~ 2n it holds for all n with the norming constants a3, ,, = a}, = a,, and
b}, = b} = b,,. Thena,*/a, — 1and (b,* — b,)/a, — O (again by the remark
following Lemma 1) and hence convergence holds for the original norming
constants as well.
This proves ¢ = ¢ — log 2, i.e., ¢ = —oo and (11) holds on R.

CoroLLARY 1. Fe D(T,) if and only if
Fy(xt) > T (x) forall x for t— co.

Proor. By Gnedenko (1943), Theorem 4, we have F = 1 — R e D(®,) if and
only if

R(t + tx)/R(t) — (1 + x)~ forall x > 0.
CoroLLARY 2. Fe D (Il) if and only if F(x) < 1 for all x and
lim,_ . P {X(_t-) ! <x|X> t} = II(x) forall x
a

with a(f) = {2 (1 — F(s))ds/(1 — F(t)) = E(X — t| X > 1).
ProoF. F =1 — Re D(A) if and only if (de Haan (1970) Theorem 2.5.1)
R(t 4 xa(t))/R(t) — e~*

for all x with a(#) as in the statement of the corollary.
This settles the question raised by Meilijson (1972) whether F ¢ D (II) entails
existence of the first moment. See de Haan (1970), Corollary 2.5.3. °

3. The domains of r.Lt. attraction of the discrete limit distributions. Let
F =1 — R be a discrete distribution function, continuous from the right, whose
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discontinuity points form an unbounded increasing sequence ¢, #, t,, - - - such
that

(123) (t'n+1 - tn)/(tn - tn—l) — er° g 1

(12b) R(t,)/R(t,) — e < 1.

Then Fe D (I, ). See introduction for definition of I, (x).

Indeed, set a, = t,,;, — t, and b, = t,,,. Then the quotient H,(x) = R(b, +
xa,)/R(t,) takes on the values R(t,,,)/R(t,), R(t,.,)/R(t,), - - - between the suc-
cessive discontinuity points 0, a,,,/a,, (@,,; + @,,5)/a,, - - - and hence converges
weakly to a function which has discontinuity points 0, e, e?° 4- e*#°, ... and
takes on the values e=?, e, ... in between. Thus min (1, H,(x)) converges
weakly to 1 — II, (x) and since F is discrete this proves that F lies in the domain
of r.l.t. attraction of I .

Obviously, if the distribution F, is tail equivalent to a distribution F, ¢ D (II,, ,),
then F, € D (II, ,). Recall that two distribution functions F,, for which F(x) < 1
for all x, are tail equivalent if 1 — Fy(x) ~ 1 — Fy(x) for x — co.

THEOREM 5. Suppose p > 0 and ¢ = 0. The distribution function F lies in the
domain of residual life time attraction of 1L, , if and only if F is tail equivalent to a
discrete distribution fuction F, which satisfies (12a) and (12b).

ProOF. One part of the theorem has been proved above.

Now suppose F =1— ReD,Il,,). Let G=1— S be a translate of II,,
such that G(0) = 1 — e~” and such that 0 is a continuity point of G. By (3)

R(b(1))/R(t) — S(0) = e~ < 1

and as in the proof of Lemma 1 we define a sequence b,,, = b(b,) such that
b, T .

We shall now prove that F is tail equivalent to a distribution F, which only
takes the values F(b,), n = 1,2, --..

Suppose not. Then, since R(b,,,)/R(b,) — €7, there exist a sequence s, — co
and integers n(k) — oo such that R(s,)/R(b,.,) — ¢ with e™? < g < 1. Now
R(b' + xa,)R(byg) and R(b,” + xa,")[R(s,) (With b, = b(b,4), ' = a(b,4),
b, = b(s,) and a,” = a(s,)) both converge weakly to S(x) on x > 0 for k — co.
By the remark following Lemma 1 we have S(x) = S(B + xA)/q and since S
only takes the values 1, e7?, e, ... this implies ¢ = e*» for some integer k.
Contradiction. '

F, clearly is a discrete distribution function. Let 1, ¢, --- be its disconti-
nuity points such that Fy(r) = F(b,) for t, <t < t,,;. Then Ryt,,,)/Ry(t,) =
R(b,.,)/R(b,) — e, which proves (12b).

By the remark following Lemma 1 and the identity

Ro(tn-i»l + xan+l) Ro(tn) — Ro(t'n + ((tn+l - n)/an + xan+1/an)an) .
Ro(tn) Ro(tn—l) Ro(tn—l)
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We obtain for n — oo the functional equation
S(x) - S(0) = S(B + xA)
with B > 0 and 4 > 1, and hence

tn+l — I — t'n,+l — I . 4,1 . a, — A

t'n - t‘n—l a, t'n - tn—l Ay

which proves (12a).

4. Approximation for finite 7. In extreme value theory, there exist convenient
sufficient conditions, due to R. von Mises (1936), for a distribution function to
belong to the domain of attraction of some limit distribution:

. F!
FeD@®) if lim,.. .1_’__%7 =
o d 1—F(r)
Fe DA f 1 — 37 =0.
€ D) B e F'(1)

By Theorems 2 and 4 these conditions are also sufficient for a distribution
function to belong to the domain of residual life time attraction of a continuous
limit distribution. For residual life times, one has in addition some simple in-
equalities which give upper and lower bounds for the normed residual life time
distributions for large values of ¢.

THEOREM 6. Let F be a distribution function which has a positive density F' for
t = t, and let a, and a, be positive real numbers such that

’
« < FO

_m=az for t = 1,.

If X is a random variable with distribution F, then

X—t
Fo(x) = P{ - < x| X> t} =T,
forall x fort = t,.

Proor. Integration between ¢ and (1 + x)¢ with x > 0 gives

du F'(u) du
a, (@+at &8 — (ara du < a, (@2t S8
1 St u = St '——_“‘1 _ F(u) = U2 Sz u

and the monotonic transformation y — 1 —ev yields the stated result. []

For the next theorem, it is more convenient to use the notation II,,. For
¢ = 0 the distribution functions II, , have been defined in the introduction. For
¢ < 0 we define the distribution function

IL,(x) = 1 — (1 + cx)~¥° if 0 x< ™.

THEOREM 7. Let F be a distribution function which has a positive, differentiable
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density F' for t = t,. Let ¢, and c, be real numbers such that

d (1 —F
cléd—t<—F’—(t)gl>SC2 for t=1t,.

If X is a random variable with distribution F, then for t > t, and all x
X—1
o) S P{7 " S XX > 1] S Ty
where a(t) = (1 — F(1))[F'(¢).
Proor. For ¢t =1t and x = 0 integration between ¢ and r 4 xa(?) gives
¢ xa(t) < a(t + xa(t)) — a(t) < ¢, xa(t) or equivalently

(13) l—]—clxga—(ti_mgl—]-czx.
a(t)

By taking the logarithmic derivative with respect to x one readily checks that

X—1 _ 1 — F(t 4 xa(t)) _ = a(r)
P{ a(?) > x| x> t} I B 7 e o 8 a(t + sa(r))

and the theorem follows from the inequality (13) above.

CoROLLARY. If ¢ and ¢ are nonnegative numbers such that

c—i<.1——ﬂﬁ>]35 for t =1t
a\"F@ /= =
then

Ho,c(x)—P{Xa;)tgx|X>tH§e forall x for t>1,.

Proor. It suffices to prove that
IHO,c(x) - Ho,co(x)l = lc - COI
for ¢ = 0 and all real ¢, and x. This is trivial for [c — ¢,| = 1 and follows from
Lemma 4 below for [¢c — ¢,| < 1 and ¢ = 0.
LemMMA 4. 0 < —(9/dc)I], (x) < 1 forc > —1if x = 0 and cx + —1.

Proor. We may assume (x, c) to lie in the region R = {¢ > —1, x > 0 and
cx > — 1} since II, (x) is constant on both components of {¢ > — 1}\R.
Observe that 1 — II, (x) = exp —¢(x, ¢) where

d(x,¢) = ctlog (1 4 cx) for c#0,cx > —1
=X if ¢c=0.
Hence (9/dc)Il, (x) = e™¢ . (d/dc)¢. Since ¢ > 0 on R it suffices to prove that

0 < —(9/0c)¢ < e on R.
Set u = log (1 + ¢x) = c- ¢. Then

_9 _log(14ex) X _gp. e —=14u
de 90 0) = c c(1 +cx) ¢ u '
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Obviously, o(u) = u=*(e™* — 1 4 u) = {j {i e~** dsdt is positive and decreasing in
u. Hence ¢ > —1 (and therefore u > —¢) implies —(9/dc)g < ¢*- o(—¢) < €.

5. Equivalence of weak convergence and moment convergence. In this section
we state the conditions for the domains of attraction in an alternative form using
certain moments of the distributions.

THEOREM 8. Suppose X is a real-valued random variable with distribution function
F and F(x) < 1 for all real x.
(@) Let0 < £ < a. Wehave Fe D(T,), i.e.,

limt_,wP{—‘?:g x| X > t} =T (x—1)

for all x > 0 if and only if \§ y* dF(y) is finite and
¢ = lim,_,, E((L?:y l X > t)

exists and is finite. Then ¢ = {7 x¢dl(x — 1) = (1 — §/a)™.
(b) We have F ¢ D (II), i.e.,

X—1
a(t)
for all positive x with (by Corollary 2 to Theorem 3)
a(ty = \¢ 1 — F(s)ds/(1 — F(t)) = E(X — t| X > 1)

limt_mP{ < x|X> t} — TI(x)

if and only if \7 x* dF(x) converges and

lim, ., E ((ﬁ(—t) ’)2 ’ X> z) = jextdll(x) = 2.

Proor. (a) We have

2y dFy) _ pS2y (L= FO)dy
xé(1 — F(x)) x4(1 — F(x))

The statement now follows from Karamata’s theorem for regularly varying func-
tions (see, e.g., de Haan (1970) Theorem 1.2.1 and Remark 1.2.1).

(b) By Theorem 3 above and Theorems 2.5.1 and 2.5.2 of de Haan (1970)
we have F ¢ D, (II) if and only if

(1 — F)(§r §2 1 — F(s)dsdv) _ |
(Y7 1 — F(s) dsy

lim,

Partial integration yields §;° § 1 — F(s)dsdv = % {7 (s — #)* dF(s) and

. X — £\ Y {2 (s—0dF(s) (1 = F(@))
tim,.... £ << a(?) ) !X > ’) = limn 20— F(1) (Y2 1 — F(s) ds)?

=2,
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COROLLARY. We thus have F ¢ D (Il) if and only if

Var(X—t|X>1) _ 1
(E(X — 1| X > 1))

lim,_,

REFERENCES

FELLER, W. (1966). An Introduction to Probability Theory and its Applications 2. Wiley, New
York.

GNEDENKO, B. V. (1943). Sur la distribution limite du terme maximum d’une série aléatoire.
Ann. of Math. 44 423-453,

DE HAAN, L. (1970). On regular variation and its application to the weak convergence of sam-
ple extremes. MC Tract 32, Mathematisch Centrum, Amsterdam.

MEILUSON, 1. (1972). Limiting properties of the mean residual life time function. Ann. Math.
Statist. 43 354-357.

Mises, R. voN (1936). La distribution de la plus grande de n valeurs. Selected Papers 2, Ameri-
can Mathematical Society, 271-294.

DEPARTMENT OF MATHEMATICS ERrAsMuUs UNIVERSITY
UNIVERSITY OF AMSTERDAM BURGEMEESTER OUDLAAN 50
ROETERSSTRAAT 15 ROTTERDAM-3016
AMSTERDAM-C HOLLAND

HoLLAND



