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ON SAWYER’S RATES OF CONVERGENCE FOR SOME
FUNCTIONALS IN PROBABILITY

By NEevILLE E. O’REILLY
Rutgers University

An improvement in the rate of convergence for some functionals in
probability given by Sawyer when a moment of specified order exists is
obtained.

1. Introduction. Let X, X,,- - -, X, be independent and identically distributed
random variables with E(X,) = 0 and E|X,|? < co for some p > 4. Set S, =
X, + X; + -+ + X, and let (W(#), 0 < ¢t < oo) denote a standard Wiener pro-
cess. Then the following result is obtained in this paper.

THEOREM. Let f(t, x) € CY(R?) be such that
|Df(, x)| = Q1 + [x[%),

where D denotes either the identity operator or a first partial derivative, and the
distribution function F(2) = P(§; f(t, W(t)) dt < 2) satisfies a first order Lipshitz
condition. Then if F,(2) = P(n~* 37 f(k/n, S, n~*) < 2) one has that

(1.1) sup |F,(2) — F(3)| = O(n~"{log (m)}*”")

forally < jifp=6andy=(p—2)/(p+2)ifd4<p<E6.

Under the same conditions Sawyer [5] obtained a bound of order n~7'{log (n)}*#
where v’ = p/(2p + 8). Since p = 4, the result given here represents an improve-
ment in Sawyer’s bound both in terms of the exponent of n and log (n). For
example if E(X,') < co and f{(#, x) = x* then the bound here is of order n~4log (n)
compared with Sawyer’s n~t log (n). If E(X,?) < oo the comparison is n~7 log (n)
for all y < % against n=**{log (n)}}. The improvement results from sharpening
the estimates

(1.2) P(|®,| > 0), i=1,2,...,6

of (2.8) in [5], where = n~7{log (n)**}. The tool for this is provided by the
lemma of Section 2. The proof of the theorem is completed in Section 3.

2. Lemma. LetY,,Y,, ---, Y, be independent and identically distributed random
variables with E(Y,) = 0 and E|Y,|” < oo'for some 2 < r < oo such that Y, is &,
measurable and E(Y,,,| %) = 0 where {7} is a sequence of increasing o-fields.
Alsoletd,, d,, - - -, d, be random variables with d, measurable with respect to & ,,_,
and max (|d,(w)|, k = 1,2, - -+, n) = O(d,) uniformly in w for a given sequence of
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real constants 9,. Then for any e > 0
(2.1) P(X d Y| > ed, n") = o(n~*"), t<sr=1.

Proor. Let
Y=Y, if Y| < nir

=0, if |V >nr
and X; = Y/ — E(Y/)for 1 <i < n. Then
P(| X d;Y)| > 2e6,n')
(2:2) < P(X 4. Y/ > 2e5,m") + nP(|Yy| > ")
< P d, X > 2e0, 0 — 3, n|E(Y))| + nP(Yy] > n*") .

Since E(Y;) = 0,

|E(Y))| = |E(YII[IY11>n8/"])| < nUTUE(| YY)
and so

n|E(YY)| £ n=**'ntr = o(n*7) , since s > 1.
Hence
23) wIP(XrdYy| > 2e0,n7)
< w51 d X)) > b, m7) + nP(| Y] > ) .
If G denotes the distribution function of Y,
(2.4) P(Y,| > 1) S §oyisurn I'G(@) >0,  as noco.
For some 8 with 8 > (s — 1)/(s — r/2) and fr a positive even integer, use the
Markov inequality on the first term on the right side of (2.3) to get
nP(| X1 d, X,| > €6, n"'")

2.5) < ¢(e)9,~FrnmtEHTIE((Z1 4, X))

< (e, Nt ETRTE(ZDY X2

< c(e, NV nE(X ) + RPE(X " )EX) + --0),
where the second inequality is an application of Burkholder’s martingale in-
equality. Each term on the right of (2.5) has the form
(2.6) cn~ VI B(X P E(X %) - - - E(X ™)

where 2i; + 2i, + - .- + 2i, = Br. If 2i; < rthen E(X,*s) is bounded. If2i; > r
then integration by parts shows that E(X,*s) = o(n**i~7/7). In the case that all
the 2i; are less than or equal to r, (2.5) is bounded by cn—*¢-2~1n#r/* which goes
to zero as n — oo since § > (s — 1)/(s — r/2). If, say m, of the 2i;, 1 <m < ¢,
are larger than r then 3 2i; < pr — 2(¢ — m) where the summation extends
over 2i; with 2i; > r. Thus (2.6) will go to zero provided

(2.7) SB—1)—1+2—(q—m+mszq+ps.

Since (m — 1)(s — 1) = 0, (2.7) holds and the proof of the lemma is complete.
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3. Proof of Theorem. Let r,™, r,™ ..., 7, be independent random
Skorokhod stopping times such that S, n~* is distributed as W(2f ;). Then
as in the proof of Theorem 2 of [5] we must shows that
G.)  P(n= Tg ki, W(SE ™) — § £t W(0) di| > n7(log (n))?)

= o(n~7(log (n))?)
where
fx)=ftx), |x < (logn)t,

|Df'(t, x)| < c(log (n))*? uniformly in 7 and x. The difference on the left side
of (3.1) is bounded as in [5] page 278; that is, suppressing the prime in f'(s, x),
(-2) PSS, W) dt — n= T2 flk[n, W(EE 7)) > 63) < 18 (D] > 5)
where (see [3] page 278), if V,, = ¥z ,™,

. = n7' 1 flk[n), WDk o;%)(ntyyy — 1)
@, = I f(e, W(1)) dt

@, = £(0, O)z,™

®, = n=f(1, W(Z1 7,)

@ = 557§ L (ki + 00,00 W(TE o) + o)t — k) di

0 -
= T §hgn L (ki + 8,0, W(TE <) + 04,(0)
X [W(t) — W(Zt o ™)]dt .
The terms @, in (3.2) are now estimated individually with the use of the lemma
of Section 2. Let r = p/2; then, dropping the superscript # in 7;™,
E(nt;) =1
and
Elnt|" < oo .
To estimate the term involving ®,, choose 7 such that 0 =7 <% and let
s =r(1 — 7). For any ¢ > 0, by the lemma of Section 2
3.3) P(|®y| > en~7(log n)*?) = o(n—**Y) .
Ifr=z3,s—1=r(l—p)—1=2r2-12> 3. In this case then for any y < 3
one has that
3.4) P(|®,| > en7(log n)*?) = o(n~t).
If 2 < r < 3, the best choice of 7 satisfies
r=rl-—p -1
so that
r=(—-bhHi(r+1)



1182 NEVILLE E. O’REILLY

and one has
(3.5) P(|®,] > en-r(log n)*?) = o(n~7)
fory = (r — 1)/(r + 1).

For the second term in (3.2)

@] < e(log my*nY L3 (nz; — 1)].

Hence for 0 < r < 4,
(3.6) P(|®,| > en-7(log n)*) < P(n| 5t (nz; — 1)] > &'n7) .
Again applying the lemma with s = r(1 — ) yields
(3.7) P(®,| > en~7(log n)*”) = o(n)
for any y < 4 if r = 3; while for r < 3
(3.8) P, > en~7(log n)*) = o(n~7)

where now y = (r — 1)/(r 4+ 1).
As in [5] the terms @, and @, give no trouble. Now

(3.9) @) < en*(log m) 57 (nz,)? + en¥(log m)*” Xf (nz,)| SE (e, — 1))
=0 + O®, say.
For ®,» and any 7 = 0 one has that
P(|®,| > en~7(log n)*?)

(3.10) < P(n* 37 (n7,)? = e'n77HY)

< nTVRE( S ()

< nrTVAE(ng) .
The best choice of 7 here satisfies

r=r(l—p)/2, r=r(r+2)=3 since r=2.
Hence, certainly

(3.11) P(|@,®| > en~i(log n)*?*) = O(n7%).
Let M > 0and 0 < y < }. Then application of the lemma given in [3] page
12 along with Chebyshev’s inequality shows that
P(max,g,g, | 2T (n7, — 1) > n*™7
(3.12) = 4P 21 (nry — 1) > n'7 — 2(nE(nzy)’)?}

S 4P(1X1 (nm — 1) > gnt77).
Now
P(|®,®| > Mn~7(log n)*?)

(3.13) < P(en 5t (ne, — DISE (o, — D] > 2nr)

+ P(cn—2 T DE (nry — 1)) 2 %ln‘f).
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By (3.12) applied to the right side of (3.13) one has that
P(|®| > Mn-7(log r)°”?)

(3.14) < P(elt (nmy — I > 2 n)

+ $P(| 21 (ne — 1) > 3177) n large.

By the lemma the first term on the right of (3.4) is o(n~?). For r > 3 the lemma
shows the second term to be o(n~?) for any y < 4. If r < 3 then the second
term is o(n~7) for y = (r — 1)/(r + 1).

It remains now to estimate the term involving ®,. As in [5],

(3.15) (@] < c(log nynt 3 Z,
where the Z, are independent and identically distributed and
Z, = \; |W(s)| ds
where 7 = 7,¥. Let 4 = E(Z,). Thenfor0 <y <4,
P(|®,| > M(log n)**n-7)

(3.16) < P(537'Z, > Mni~r)

< P(ToNZ, — p) > (M — pynt-1), M large enough.
For 2 < r < 3, apply the Markov inequality to bound the right side of (3.16) by

(3.17)  nrE|TZ, — )
S 2n—r(3—2r)/3+1E|Zl — ﬂ|27/3
= O(n~r@-A4L) | provided EZ? < oo .

The inequality in (3.17) is a result of von-Bahr and Esseen [6]. Since Z, <
t max, ., |W(t)|, application of Holder’s inequality holds

(3.18) EZ" < [E(e)F[E(max, . [W(OP)] < o,
since by Doob’s inequality, [2] page 317,

2 2r
iry < 2r .
B(max, W) < (52— ) EWE)) < oo
Now choose
(3.19) r=(r—1/1 4 2r/3), for 2 <r<«2.25
=%, for 225 < r.

Combining the estimates for the terms involving ®,, ®@,, . . ., @, one sees that
(3.20) (sup |F,(A) — F(A)|: —o0 < 2 < o0) = O(n~7(log n)**)
forally < Jif6<p<ocandy=(p—2)/(p+2)if2=<p<e6.
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