ON SAWYER'S RATES OF CONVERGENCE FOR SOME FUNCTIONALS IN PROBABILITY

BY NEVILLE E. O'REILLY

Rutgers University

An improvement in the rate of convergence for some functionals in probability given by Sawyer when a moment of specified order exists is obtained.

1. Introduction. Let X_1, X_2, \dots, X_n be independent and identically distributed random variables with $E(X_k) = 0$ and $E|X_k|^p < \infty$ for some $p \ge 4$. Set $S_k = X_1 + X_2 + \dots + X_k$ and let $(W(t), 0 \le t < \infty)$ denote a standard Wiener process. Then the following result is obtained in this paper.

THEOREM. Let $f(t, x) \in C^1(\mathbb{R}^2)$ be such that

$$|Df(t, x)| \leq \Omega(1 + |x|^a),$$

where D denotes either the identity operator or a first partial derivative, and the distribution function $F(\lambda) = P(\int_0^1 f(t, W(t)) dt \le \lambda)$ satisfies a first order Lipshitz condition. Then if $F_n(\lambda) = P(n^{-1} \sum_{i=1}^n f(k/n, S_k n^{-i}) \le \lambda)$ one has that

$$(1.1) \qquad \sup |F_n(\lambda) - F(\lambda)| = O(n^{-\gamma} \{\log(n)\}^{a/2})$$

for all
$$\gamma < \frac{1}{2}$$
 if $p = 6$ and $\gamma = (p-2)/(p+2)$ if $4 \le p < 6$.

Under the same conditions Sawyer [5] obtained a bound of order $n^{-r}\{\log(n)\}^{ap/8}$ where $\gamma' = p/(2p+8)$. Since $p \ge 4$, the result given here represents an improvement in Sawyer's bound both in terms of the exponent of n and $\log(n)$. For example if $E(X_k^4) < \infty$ and $f(t, x) = x^2$ then the bound here is of order $n^{-\frac{1}{2}} \log(n)$ compared with Sawyer's $n^{-\frac{1}{4}} \log(n)$. If $E(X_k^6) < \infty$ the comparison is $n^{-r} \log(n)$ for all $\gamma < \frac{1}{2}$ against $n^{-6/20} \{\log(n)\}^{\frac{3}{2}}$. The improvement results from sharpening the estimates

$$(1.2) P(|\Phi_i| > \delta), i = 1, 2, \dots, 6$$

of (2.8) in [5], where $\delta = n^{-\gamma} \{ \log (n)^{2/a} \}$. The tool for this is provided by the lemma of Section 2. The proof of the theorem is completed in Section 3.

2. Lemma. Let Y_1, Y_2, \dots, Y_n be independent and identically distributed random variables with $E(Y_1) = 0$ and $E|Y_1|^r < \infty$ for some $2 \le r < \infty$ such that Y_k is \mathscr{F}_k measurable and $E(Y_{k+1}|\mathscr{F}_k) = 0$ where $\{\mathscr{F}_k\}$ is a sequence of increasing σ -fields. Also let d_1, d_2, \dots, d_n be random variables with d_k measurable with respect to \mathscr{F}_{k-1} and $\max(|d_k(w)|, k = 1, 2, \dots, n) = O(\delta_n)$ uniformly in w for a given sequence of

Received September 13, 1973; revised January 25, 1974.

AMS 1970 subject classifications. Primary F15, G50, G99, E20.

Key words and phrases. Rate of convergence, functionals in probability.

real constants δ_n . Then for any $\varepsilon > 0$

(2.1)
$$P(|\sum d_i Y_i| > \varepsilon \delta_n n^{s/r}) = o(n^{-s+1}), \qquad \frac{1}{2} < s/r \le 1.$$

Proof. Let

$$Y_i' = Y_i$$
, if $|Y_i| \le n^{s/r}$
= 0, if $|Y_i| > n^{s/r}$

and $X_i = Y_i' - E(Y_i')$ for $1 \le i \le n$. Then

$$(2.2) P(|\sum d_{i} Y_{i}| > 2\varepsilon \delta_{n} n^{s/\tau})$$

$$\leq P(|\sum d_{i} Y_{i}'| > 2\varepsilon \delta_{n} n^{s/\tau}) + nP(|Y_{1}| > n^{s/\tau})$$

$$\leq P(|\sum d_{i} X_{i}| > 2\varepsilon \delta_{n} n^{s/\tau} - \delta_{n} n|E(Y_{i}')| + nP(|Y_{1}| > n^{s/\tau}) .$$

Since $E(Y_1) = 0$,

$$|E(Y_1')| = |E(Y_1 I_{\lceil |Y_1| > n^{s/r} \rceil})| \le n^{-s(r-1)/r} E(|Y_1|^r)$$

and so

$$n|E(Y_1')| \le n^{-s+1}n^{s/r} = o(n^{s/r}),$$
 since $s > 1$.

Hence

(2.3)
$$n^{s-1}P(|\sum_{i=1}^{n} d_{i} Y_{i}| > 2\varepsilon \delta_{n} n^{s/r}) \leq n^{s-1}P(|\sum_{i=1}^{n} d_{i} X_{i}| > \varepsilon \delta_{n} n^{s/r}) + n^{s}P(|Y_{1}| > n^{s/r}).$$

If G denotes the distribution function of Y_1 ,

$$(2.4) n^{s}P(|Y_{1}| > n^{s/r}) \leq \int_{(|y| > n^{s/r})} |y|^{r}G(dy) \to 0, as n \to \infty.$$

For some β with $\beta > (s-1)/(s-r/2)$ and βr a positive even integer, use the Markov inequality on the first term on the right side of (2.3) to get

$$(2.5) n^{s-1}P(|\sum_{1}^{n} d_{i} X_{i}| > \varepsilon \delta_{n} n^{s/r})$$

$$\leq c(\varepsilon)\delta_{n}^{-\beta r_{n}-s(\beta-1)-1}E((\sum_{1}^{n} d_{i} X_{i})^{\beta r})$$

$$\leq c(\varepsilon, r)n^{-s(\beta-1)-1}E((\sum_{1}^{n} X_{i}^{2})^{\beta r/2})$$

$$\leq c(\varepsilon, r)n^{-s(\beta-1)-1}(nE(X_{1}^{\beta r}) + n^{2}E(X_{1}^{\beta r-2})E(X_{1}^{2}) + \cdots),$$

where the second inequality is an application of Burkholder's martingale inequality. Each term on the right of (2.5) has the form

(2.6)
$$cn^{-s(\beta-1)-1}n^q E(X_1^{2i_1})E(X_1^{2i_2}) \cdot \cdot \cdot E(X_1^{2i_q})$$

where $2i_1+2i_2+\cdots+2i_q=\beta r$. If $2i_j\leq r$ then $E(X_1^{2i_j})$ is bounded. If $2i_j>r$ then integration by parts shows that $E(X_1^{2i_j})=o(n^{s(2i_j-r)/r})$. In the case that all the $2i_j$ are less than or equal to r, (2.5) is bounded by $cn^{-s(\beta-1)-1}n^{\beta r/2}$ which goes to zero as $n\to\infty$ since $\beta>(s-1)/(s-r/2)$. If, say m, of the $2i_j$, $1\leq m\leq q$, are larger than r then $\sum 2i_j\leq \beta r-2(q-m)$ where the summation extends over $2i_j$ with $2i_j>r$. Thus (2.6) will go to zero provided

(2.7)
$$s(\beta - 1) - 1 + 2 \frac{s}{r} (q - m) + ms \ge q + \beta s.$$

Since $(m-1)(s-1) \ge 0$, (2.7) holds and the proof of the lemma is complete.

3. **Proof of Theorem.** Let $\tau_1^{(n)}$, $\tau_2^{(n)}$, \cdots , $\tau_n^{(n)}$ be independent random Skorokhod stopping times such that $S_k n^{-\frac{1}{2}}$ is distributed as $W(\sum_{i=1}^k \tau_j^{(n)})$. Then as in the proof of Theorem 2 of [5] we must shows that

$$(3.1) P(|n^{-1}\sum_{1}^{n} f'(k/n, W(\sum_{1}^{k} \tau_{j}^{(n)})) - \int_{0}^{1} f'(t, W(t)) dt| > n^{-\gamma}(\log(n))^{\beta})$$

= $o(n^{-\gamma}(\log(n))^{\beta})$

where

$$f'(t, x) = f(t, x), |x| \le (\log (n))^{\frac{1}{2}},$$

 $|Df'(t, x)| \le c(\log(n))^{\alpha/2}$ uniformly in t and x. The difference on the left side of (3.1) is bounded as in [5] page 278; that is, suppressing the prime in f'(t, x),

(3.2) $P(|\int_0^1 f(t, W(t)) dt - n^{-1} \sum_{i=1}^n f(k/n, W(\sum_{i=1}^k \tau_j^{(n)}))| > 6\delta) \le \sum_{i=1}^6 P(|\Phi_i| > \delta)$ where (see [3] page 278), if $V_k = \sum_{i=1}^k \tau_i^{(n)}$,

$$\begin{split} &\Phi_{1} = n^{-1} \sum_{1}^{n} f(k/n), \ W(\sum_{1}^{k} \tau_{j}^{(n)})(n\tau_{k+1} - 1) \\ &\Phi_{2} = \int_{1}^{\sum_{1}^{n} \tau_{j}^{(n)}} f(t, \ W(t)) \ dt \\ &\Phi_{3} = f(0, 0)\tau_{1}^{(n)} \\ &\Phi_{4} = n^{-1} f(1, \ W(\sum_{1}^{n} \tau_{j}^{(n)}) \\ &\Phi_{5} = \sum_{0}^{n-1} \int_{V_{k}}^{V_{k}+1} \frac{\partial f}{\partial t} \left(k/n + \theta_{kn}(t), \ W(\sum_{1}^{k} \tau_{j}^{(n)}) + \bar{\theta}_{kn}(t) \right) (t - k/n) \ dt \\ &\Phi_{6} = \sum_{0}^{n-1} \int_{V_{k}}^{V_{k}+1} \frac{\partial f}{\partial x} \left(k/n + \bar{\theta}_{kn}(t), \ W(\sum_{1}^{k} \tau_{j}^{(n)}) + \theta_{kn}(t) \right) \\ &\times \left[W(t) - W(\sum_{1}^{k} \tau_{j}^{(n)}) \right] dt \ . \end{split}$$

The terms Φ_1 in (3.2) are now estimated individually with the use of the lemma of Section 2. Let r = p/2; then, dropping the superscript n in $\tau_j^{(n)}$,

$$E(n\tau_i) = 1$$

and

$$E|n\tau_i|^r<\infty$$
.

To estimate the term involving Φ_1 , choose γ such that $0 \le \gamma < \frac{1}{2}$ and let $s = r(1 - \gamma)$. For any $\varepsilon > 0$, by the lemma of Section 2

(3.3)
$$P(|\Phi_1| > \varepsilon n^{-\gamma} (\log n)^{a/2}) = o(n^{-s+1}).$$

If $r \ge 3$, $s-1=r(1-\gamma)-1 \ge r/2-1 \ge \frac{1}{2}$. In this case then for any $\gamma < \frac{1}{2}$ one has that

(3.4)
$$P(|\Phi_1| > \varepsilon n^{-\gamma} (\log n)^{a/2}) = o(n^{-\frac{1}{2}}).$$

If $2 \le r < 3$, the best choice of γ satisfies

$$\gamma = r(1-\gamma) - 1$$

so that

$$\gamma = (r-1)/(r+1)$$

and one has

$$(3.5) P(|\Phi_1| > \varepsilon n^{-\gamma} (\log n)^{\alpha/2}) = o(n^{-\gamma})$$

for $\gamma = (r-1)/(r+1)$.

For the second term in (3.2)

$$|\Phi_2| \leq c(\log n)^{a/2} n^{-1} |\sum_{i=1}^{n} (n\tau_i - 1)|$$
.

Hence for $0 \le \gamma < \frac{1}{2}$,

(3.6)
$$P(|\Phi_2| > \varepsilon n^{-\gamma} (\log n)^{\alpha/2}) \leq P(n^{-1}|\sum_{i=1}^{n} (n\tau_i - 1)| > \varepsilon' n^{-\gamma}).$$

Again applying the lemma with $s = r(1 - \gamma)$ yields

(3.7)
$$P(|\Phi_2| > \varepsilon n^{-\gamma} (\log n)^{a/2}) = o(n^{-\frac{1}{2}})$$

for any $\gamma < \frac{1}{2}$ if $r \ge 3$; while for r < 3

$$(3.8) P(|\Phi_2| > \varepsilon n^{-\gamma} (\log n)^{\alpha/2}) = o(n^{-\gamma})$$

where now $\gamma = (r-1)/(r+1)$.

As in [5] the terms Φ_3 and Φ_4 give no trouble. Now

(3.9)
$$|\Phi_{5}| \leq c n^{-2} (\log n)^{a/2} \sum_{1}^{n} (n\tau_{k})^{2} + c n^{-2} (\log n)^{a/2} \sum_{1}^{n} (n\tau_{k}) |\sum_{1}^{k-1} (n\tau_{j} - 1)|$$

$$= \Phi_{5}^{(1)} + \Phi_{5}^{(2)}, \quad \text{say}.$$

For $\Phi_{5}^{(1)}$ and any $\gamma \geq 0$ one has that

(3.10)
$$P(|\Phi_{5}^{(1)}| > \varepsilon n^{-\gamma} (\log n)^{a/2}) \\ \leq P(n^{-1} \sum_{1}^{n} (n\tau_{k})^{2} \geq \varepsilon' n^{-\gamma+1}) \\ \leq n^{r(\gamma-1)/2} E(n^{-1} \sum_{1}^{n} (n\tau_{k})^{2})^{r/2} \\ \leq n^{r(\gamma-1)/2} E(n\tau_{1})^{r}.$$

The best choice of γ here satisfies

$$\gamma = r(1-\gamma)/2$$
, $\gamma = r/(r+2) \ge \frac{1}{2}$ since $r \ge 2$.

Hence, certainly

$$(3.11) P(|\Phi_5^{(1)}| > \varepsilon n^{-\frac{1}{2}}(\log n)^{a/2}) = O(n^{-\frac{1}{2}}).$$

Let M > 0 and $0 \le \gamma < \frac{1}{2}$. Then application of the lemma given in [3] page 12 along with Chebyshev's inequality shows that

$$P(\max_{1 \le k \le n} |\sum_{1}^{n} (n\tau_{k} - 1)| > n^{1-\gamma})$$

$$\leq \frac{4}{3}P\{|\sum_{1}^{n} (n\tau_{k} - 1)| > n^{1-\gamma} - 2(nE(n\tau_{1})^{2})^{\frac{1}{2}}\}$$

$$\leq \frac{4}{3}P(|\sum_{1}^{n} (n\tau_{k} - 1)| > \frac{1}{2}n^{1-\gamma}).$$

Now

$$P(|\Phi_{\mathfrak{b}}^{(2)}| > Mn^{-\gamma}(\log n)^{a/2})$$

(3.13)
$$\leq P\left(cn^{-2}\sum_{1}^{n}(n\tau_{k}-1)|\sum_{1}^{k-1}(n\tau_{j}-1)| > \frac{M}{2}n^{-\gamma}\right) + P\left(cn^{-2}\sum_{1}^{n}|\sum_{1}^{k-1}(n\tau_{j}-1)| \geq \frac{M}{2}n^{-\gamma}\right).$$

By (3.12) applied to the right side of (3.13) one has that

$$(3.14) P(|\Phi_b^{(2)}| > Mn^{-\gamma}(\log n)^{a/2})$$

$$\leq P\left(c|\sum_1^n (n\tau_k - 1)| > \frac{M}{2}n\right)$$

$$+ \frac{4}{3}P(|\sum_1^n (n\tau_k - 1)| > \frac{1}{2}n^{1-\gamma}), n \text{ large.}$$

By the lemma the first term on the right of (3.4) is $o(n^{-1})$. For $r \ge 3$ the lemma shows the second term to be $o(n^{-\frac{1}{2}})$ for any $\gamma < \frac{1}{2}$. If r < 3 then the second term is $o(n^{-r})$ for $\gamma = (r-1)/(r+1)$.

It remains now to estimate the term involving Φ_6 . As in [5],

$$|\Phi_6| \le c(\log n)^{a/2} n^{-\frac{3}{2}} \sum_{0}^{n-1} Z_k$$

where the Z_k are independent and identically distributed and

$$Z_k \cong \int_0^\tau |W(s)| ds$$

where $\tau = \tau_1^{(1)}$. Let $\mu = E(Z_k)$. Then for $0 < \gamma \le \frac{1}{2}$,

$$(3.16) P(|\Phi_{6}| > M(\log n)^{a/2}n^{-\gamma})$$

$$\leq P(\sum_{0}^{n-1}Z_{k} > Mn^{\frac{3}{2}-\gamma})$$

$$\leq P(\sum_{0}^{n-1}(Z_{k} - \mu) > (M - \mu)n^{\frac{3}{2}-\gamma}), M \text{ large enough.}$$

For $2 \le r \le 3$, apply the Markov inequality to bound the right side of (3.16) by

$$(3.17) n^{-r(3-2\gamma)/3}E|\sum_{0}^{n-1}(Z_k-\mu)|^{2r/3}$$

$$\leq 2n^{-r(3-2\gamma)/3+1}E|Z_1-\mu|^{2r/3}$$

$$= O(n^{-r(3-2\gamma)/3+1}), provided EZ_1^{2r/3} < \infty.$$

The inequality in (3.17) is a result of von-Bahr and Esseen [6]. Since $Z_k \le \tau \max_{t \le \tau} |W(t)|$, application of Hölder's inequality holds

$$(3.18) EZ_k^{2r/3} \leq [E(\tau^r)]^{\frac{2}{3}} [E(\max_{t < \tau} |W(t)|^{2r})]^{\frac{1}{3}} < \infty ,$$

since by Doob's inequality, [2] page 317,

$$E(\max_{t<\tau}|W(t)|^{2r}) \leq \left(\frac{2r}{2r-1}\right)^{2r} E(|W(\tau)|^{2r}) < \infty.$$

Now choose

(3.19)
$$\gamma = (r-1)/(1+2r/3), \quad \text{for } 2 \le r < 2.25$$
$$= \frac{1}{2}, \quad \text{for } 2.25 \le r.$$

Combining the estimates for the terms involving $\Phi_1, \Phi_2, \dots, \Phi_6$ one sees that

(3.20)
$$(\sup |F_n(\lambda) - F(\lambda)| : -\infty < \lambda < \infty) = O(n^{-\gamma}(\log n)^{\alpha/2})$$
 for all $\gamma < \frac{1}{2}$ if $0 \le p < \infty$ and $\gamma = (p-2)/(p+2)$ if $0 \le p < 0$.

Acknowledgment. The author wishes to thank one of the referees for correcting and improving the original estimate of the term involving Φ_6 .

REFERENCES

- [1] BURKHOLDER, D. L. (1966). Martingale transforms. Ann. Math. Statist. 37 1494-1504.
- [2] DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.
- [3] FREEDMAN, D. (1970). Brownian Motion and Diffusion. Holden-Day, San Francisco.
- [4] Loève, M. (1963). Probability Theory. Van Nostrand, Princeton.
- [5] SAWYER, S. (1972). Rates of convergence for some functionals in probability. Ann. Math. Statist. 43 273-284.
- [6] VON BAHR, B. and Esseen, C. G. (1965). Inequalities for the rth absolute moment of a sum of random variables. Ann. Math. Statist. 36 299-303.

STATISTICS CENTER RUTGERS UNIVERSITY NEW BRUNSWICK, NEW JERSEY 08903