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CONTACT INTERACTIONS ON A LATTICE!

By T. E. HARRIS
University of Southern California

Let {¢:} be a Markov process whose values are subsets of Zj, the d-
dimensional integers. Put £(x) = 1 if x € & and O otherwise. The transi-
tion intensity for a change in &:(x) depends on {£,(»), ¥ a neighbor of x}.
The chief concern is with ‘‘contact processes,”” where &;(x) can change
from 0 to 1 only if &(y) =1 for some y neighboring x. Let py(¢) =
Prob {&: # @ | &0 = £}. Under appropriate conditions, p; is increasing, sub-
additive, or submodular in £. In the case of contact processes, conditions
are giving implying that p.(£) = O for all finite £, or that the contrary is
true. In other cases conditions for ergodicity are given.

1. Introduction. Let Z, be the d-dimensional lattice of points (‘“vertices”)
X, Yy 2y o0, x = (x, -+, x%, where each x* is an integer. Call x and y neighbors,
and write x ~ y, if }3, |x* — y¥| = 1; x is a neighbor of E C Z, (written x ~ E)
if x¢ Ebut x ~ y for some y e E. Let E* denote the union of E and its neigh-
bors. Let E be the set of subsets of Z, and E, the set of finite subsets of Z,.
Each ¢ € E can be considered a map from Z; into {0, 1}, with §(x) = 1 if xeé
and é(x) = 0if x¢ é. If E C Z,, §(E) denotes the number of points of ¢ in E.
Let |£] be the number of points in &, |§| < co. We often use notation such as
¢ U x instead of & U {x}. Let N, be the set of the 2d neighbors of x.

We will consider a class of Markov processes {§,} with state space &, whose
precise definition is given in Section 2. Roughly speaking, if §, = &, if §(x) = 0
and if §(N,) = k, there is a probability 1,4 + o(Ad) that &,,,(x) = 1, where
Ags Ay - -+, Ay are given positive numbers. If §(x) = 1, the probability is zA +
o(4) that &,,,(x) = 0; the assumption that ¢ does not depend on N, might suit
some applications (0 — 1 = infection and 1 — 0 = recovery), but in any case
seems to lead to mathematically nice classes of processes. A process {£,}is a
special case of the birth-death interactions treated by Spitzer (1971), Chapter
5, and of a broad class of interactions treated by Dobrushin (1971). It is also
related to the “artificial neuron” networks discussed, e.g., by Vasil’ev (1969),
(1970).

We will deal chiefly with contact interactions, where 2, = 0. If one thinks of
a contact interaction as the spread of an infection or the growth of a popula-
tion, then the more general case 2, > 0 corresponds to spontaneous infection,
or immigration. The case 4, = 0, 4, = 4, for k = 1 seems like a continuous-time
version of the neuron networks mentioned above, where however the process is
1 — &,(x) rather than &,(x).
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In Section 3 we define “contact chains,” which correspond roughly to paths
of propagation and are useful for getting bounds on the rate of propagation. In
Section 5 we take up, for a contact interaction {£,}, the “survival” probability
P«(§) = Prob{§, = @ |§, = £} and the expectation m,(§) = &{|£,|| &, = £}, which
are respectively 1 and oo if |§] = oco.

In a branching process with one initial object let z, and n, be respectively the
probability of survival until ¢ and the expected size at r. Then with M initial
objects the probability and expectation are 1 — (1 — #,)” and Mn,, which are
respectively concave and linear (additive) in M. We cannot expect anything so
simple for a contact process, but we will see that under appropriate sets of con-
ditions both p,(€) and m,(£), considered for fixed ¢ as set functions of &, are
monotone, or subadditive, or submodular; that is, strongly subadditive. (The
latter property corresponds to concavity; see (5.4’).) These properties are used
to give some bounds on sets of parameter values 1,, g for which p(§) =
lim,_, p,(§) = O for each & ¢ E,, and also to yield some inequalities for m,.

If {»,} is a process with 4, > 0, we associate with it a certain contact process
{€.}. In case the parameters of {§,} are such that

lim,_,, Prob {§,(x) = 1|§,=6}=0
for each & and x, {»,} is ergodic. (Section 8.)

In Section 9 we consider briefly contact processes for which p_.(§) > 0 for all
¢ #+ @, and in Section 10 certain inequalities are improved for the case d = 1.

ADDED IN ProorF. Griffeath (1974) has recently improved some of the results
of this paper. Richardson (1973) has obtained results of quite a different nature
about certain contact processes; his technical preliminaries about “paths” are
similar to mine about “chains”. I have recently seen a technical report of
Vasil’ev, Mityushin, Pyatetshii-Shapiro, and Toom (1973) about discrete-time
neuron nets. The “minorant” process of Section 3 of that report corresponds
to the contact process defined in Section 8 of the present paper and is used for
a similar purpose, although the methods of proof differ.

2. Preliminaries. Let S be a finite set and E; the set of mappings £: Z; — S.
Give S the discrete topology and E, the product topology. The measurable sets
of g are the Borel sets. The elements of S are called types, and (x) is a coordi-
nate of £&. Let C, be the continuous functions Eg — R, and Cg, the functions in
Cs depending on only finitely many coordinates of £. Norms are supremum
norms. " If § = {0, 1} write simply &, C, and C,. The terminology of Dynkin
(1965) will be used.

A nearest-neighbor interaction (NNI) is a stationary Es-valued Markov process
whose generator .97 satisfies

2.1 ()E) = Taezy Does €% & )(f(6) —f8)) s feCs-

In (2.1), &,, is defined by &,,(x) = s, §,,(y) = E() if y # x; ¢(x, §,5) = 0 is the
intensity for a jump é — £,,, ¢(x, §, 5) depends on & only through {£(y), y ~ x},
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and we take c(x, &, s) = 0 if s = £(x); we assume the translation-invariance pro-

perty ¢(x + y, & + y, 8) = ¢(x, &, 5), where (§ + y)(2) = &(z — y). If S ={0, 1}
it is convenient to write

2.1) () = Zae(x HUEw) — fE) feCo,

where §,,(x) = 1 — §(x) and &,,(y) = &(p) if y # x; ¢(x, §) is the intensity for
a jump § — §,,. There exists a unique Markovian semigroup {7} on Cg; whose
generator satisfies (2.1); see for example Holley (1972) or Liggett (1972). Since
{T,} has the Feller property and E, is compact and metrizable, we can and will
assume that any NNI to be considered is “standard” (Dynkin (1965) page 104).
In particular the sample functions are right-continuous and have left-hand
limits. Note that 7,1 = 1.

(a) Birth-death interactions. Take S = {0, 1}and let A, 4, - - -, A34, f0s f1y + * +»
ts = Obe given. In (2.1') put e(x, §) = 4, if §(x) = 0 and g, if §(x) = 1, where
k = &(N,).

(b) Contact interactions (or contact processes). In (a) take 1, = Oandall g, =
¢ = 0. In this case the generator (2.1’) satisfies

(2:2) L) = #t Tsee (fE\X) — f(€))
+ Zave Zeary(f(E U %) — f(€)) feC.

-

Let {7,} be a NNI and let ¢ map E; into E. Then {¢(y,)} is in general not
Markovian but is so under the conditions of the following lemma, which we
derive from a result in Dynkin (1965). (Put &, = ¢(y,).)

(2.3) LeEMMA. Let S =S, U S,, where S, and S, are disjoint and not empty.
Write s, = s, if 5, and s, are in the same set S,. Define ¢ Bgonto B by ¢(y)(x) = i
ifp(x)eS;, i =0, 1. Suppose foreach xe Z,and y, 7 € Eg such that ¢() = ¢(7')
we have

Zn:osq(x) (c(x, 7 S) - C(X, 0" S)) =0.

Then {§,} is a NNI. Its generator has the form (2.1") with
C(x, 8) = Zl:aiv(z) C(X, % S) ’ 5 (S E )
for any 5 such that ¢(7)) = §.

SKETCH OF PROOF. Let <7 be the Borel sets in E and let 2 be the set of
¢~!(<#)-measurable functions in C;. From Dynkin (1965), page 325, especially
(10.58), it suffices to show that the transition semigroup {T,} corresponding to
{7:} maps 2 into itself.” Let % be the generator of {T,}. From Holley (1972),
we have, even though & is unbounded,

k
(2.4) T¢f=Z7§=o%M"f, feCu, 0<t <A,

2 On the left side of (10.58) in one printing x appears incorrectly instead of 7x.
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for some A > 0 not depending on f, the series converging in norm. Since our
assumptions imply that .9, given by (2.1), maps Cs N &£ into itself, a routine
argument shows that 7, maps 27 into itself.

3. Contact chains. In the rest of this paper {§,} = {§,(w)} is a contact pro-
cess with parameters y, 4, =0, ,, - -+, 4,;, governed by probability measures
{P,, & € E} on the measurable space (Q, #°); {£,} is adapted to the increasing
family of o-fields {_#}, A, C A & (+) = §(+)dP; P(t,§,T) = PJé, eT}.
Let &,(o, x) be the x-coordinate of &,(w), sometimes written &,(x); similarly
E(E) = é(w, E) = 3,5 &(x). Since {§,} can be assumed standard (see Section
2), for each w and each finite £ C Z, the mapping t — §,(», E) has only finitely
many jumps in any finite interval.

3.1) DEerINITIONS. Recall N, = {y: y ~ x}. Let .47 be the o-field in Q
generated by {§,,0 < s<t}. Let 7(w, x) = 7(x) = inf{s: §,(x) = 1}. Since
{&: &(x) = 1} and its complement are compact, Lemma 4.1, page 106 of Dynkin
(1965) implies that ¢(x) is a Markov time and {z(x) > t} e .#;. Let % denote
the generator of {£,}, given by (2.2).

3.2) LEMMA. For each § € B, P {two coordinates of {§,} ever jump simultane-
ously} = 0.

Proor. Fix %,7e Z,, % #+ 7; let f,;(§) =1 if §(%) =i and &§(y) =j, and O
otherwise, i, j = 0, 1. Then .%7f,;(§) = 0 if simultaneously £(X) + i and §(j) #j.
Now fix i and j and let W,, be the event

{Sk/n(’_‘) =1—1i, $<k+1)/n(’-c) =i, Sk/»(j}) =1 —Js §(k+1)/n()7) :]} > 0<k<n.

Let W = {£,_o(%) = 1 — i, £(%) = i, &_((§) = 1 — J, £.(§) = j for some 1 € [0, 1]}.
Then for all sufficiently large n we have W < |JiZ} Wy, Now P(W,,) = O un-
less £(x) = 1 — iand §(J) = 1 — j, in which case P(W,,) = T, f:;(§) = o(1/n)
uniformly for those § such that (%) = 1 — iand §(y) = 1 — j. Thus P(W,,) =
o(1/n) uniformly for all £ and hence from the Markov property P,(W,,) = o(1/n)
uniformly in § and k, whence P, (U2} W;,) = 0 as n— co. The lemma is an
easy consequence of this, the argument extending to all finite intervals. []

3.3) Lemma. If§(x) = 0, then P{§(N,) > 0 everywhere on some open interval
containing t(x) |7(x) < oo} = 1.

ProOF. Arguing somewhat as in the preceding lemma we have PJ{¢,,(x U
N,) =0, &41)m(x) = 1forsomek =0,1,...,n — 1} - O as n — oo, uniformly
in &. It follows that if 0 < 7(x) < 1 then z(x) is a.s. (P,) the right end-point of
an s-interval in which &,(N,) > 0. Using Lemma (3.2), we have the desired
result if 0 < 7(x) < 1, and similarly for all finite intervals. []

3.4) LEMMA. Let A =maxi,. Then Pir(x)Zu} <1 —e™, uz=0 if
E(x) =0.
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PROOF.  P{r(x) > 1} = lim, P {é,.(x) =0,k =0, 1, ..., n}. From (2.2),
Pe{€a(x) = 0} = 1 — A/n + o(1/n) uniformly in & such that £'(x) = 0}, whence
P{r(x) > 1} = =%, and similarly for other values of u. []

3.5) DeFiNITIONS. Forn =1,2, ... call (x, - -, x,) a chain (of length n
from x, to x,) if the x, are distinct and x, ~ x, +1» 1 £ i< n— 1. The infinite
sequence X;, x,, - - - is called a chain if each (x,, - . -, x,) is a chain. The chain
(x5 - -+, x,) is a contact chain for x, relative to some sample path, if x, = xand if

(a) 7(x,) =0incasen = 1, and
(b) o >17(x)> -+ >7(x,) =0incasen > 1.

The chain (x,, x,, --.) is a contact chain (infinite) for x, if oo > 7(x) >
7(x,) > ---. A contact chain for x “reaches x before #” if z(x) < .
Let L,*(x,) be the event

{3 chain (x;, -+, x,): £ = 2(x) > -+ > 7(x,) > 0}.

Then L,%(x,) e .#;. It can be shown that the event {an infinite contact chain
reaches x, before } is precisely equal to (), L,%(x;) and hence is also .#";-meas-
urable. The event that a contact chain of length n reaches x, before ¢ is also
¥ ;-measurable.

RemARrk. If (x, ---, x,) is a contact chain for x,, the probability may be
strictly positive, if d > 1, that §.zp(X2) = 0. Hence it would not be quite right
to think of the chain as a path of “infection” reaching x,, but the analogy is
helpful.

(3.6) LEMMA. P{some contact chain reaches x, before t|z(x,) < 1} = 1, £ &,
xe€Z;t=0.

PRrOOF. Suppose £(x;) = 0. Given 7(x,) < 1, by Lemma 3.3 there is a.s. (P)
a chain x;, x;, - - - such that ¢ > 7(x,) > (%) > - - -, either continuing indefi-
nitely or terminating with some x, having z(x,) = 0. If &(x,) = 1, the result is
obvious. []

3.7 LEMMA. Let (x,, - -+, X,) be a chain. Defining A as in (3.4), we have for
every S andt =0

PO < z(x) < -+ < o(x,) < 1}

=nO=g f"l)!

Vee~rum—1dy n=1,2,...

Proor. For chains of length 1, Lemma 3.7 follows from Lemma 3.4. Now
suppose Lemma 3.7 is true for all chains of length < n — 1, for some n > 2.
Let (x, - -+, x,) be a chain and fix £. Assume 7 &(x,) = O since otherwise the
result is obvious. Letr, = 7(x,)and V, = << - <1, < 0}, l1<k<n
Let G(t) = P{V N (7, < 1)}. We must show G, (1) < F,(f). Let 1(V) = 1(V)(w)
be the indicator of the event V. To save notation in the inductive step, we take
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n = 3, the argument being exactly the same in general. Then
Gy(1) < PV, €. (%) = 0, §,(x;) = 1 for some s e (z,, 7]}
=P{Vy, (%) = 0,0, 7, <t — 1},

where (z,,f] = @ if 7, > t and 6, is the usual shift operator. Noting that
Ve N {€,(xs) = 0} e A, we have

(3-8) Gy(t) = E{1(Va, §,(%) = 0P[O, 70 = 1 — | A}
Letting H(¢', u) = P,(t; < u), we have for fixed u

PE(0,2 T, < u|./%,z) = H(E,z, u) a.s. (P) on {r, < oo}
(see Dynkin (1965) page 100), whence, by routine arguments we can put
(3.9) P01 <t — 73| Au) = H(E,p t — 1)

in (3.8). Let F be the exponential distribution with mean 1/A. From Lemma
3.4, H(,u) < F(u) if &§'(x;) =0. Hence (3.8) and (3.9) imply Gy(f) <
E{1U(V,)F(t — 1,)} = (G, = F)(t). Since the inductive hypothesis implies G, < F,,
we have G, < F,. []

(3.10) DEFINITION. Let v(n) be the number of chains of length n (= (n — 1)-
step self-avoiding walks) from any vertex, n = 1,2, .... Obviously v(n) <
2d(2d — 1)** for n = 2; for sharper estimates see Hammersley (1961), (1962).

(3.11) LEMMA. Forn=1,2, ... and E C Z, let D,*(x) be the event that a
contact chain of length > n (or an infinite contact chain) reaches x before t. Let
D=\, D,(x). Then

(3.12) P(D,(x)) < w(m)F,(1) ,
(3.13) P(D,") < [Elu(n + DF,(7),
where F, is as in (3.7). Moreover for each &,
P.{an infinite contact chain reaches some x before t} =0.

Proor. If w € D,}(x), then §(w, x,) = 0 and there is a chain (x,, - - -, x,) such
thatt > z(x)) > --- > 7(x,) > 0. Thus (3.12) follows from Lemma 2.7. Since
lim,_ v(n)F,(f) = 0, we see that a.s. (P,) no infinite contact chains reach any
x before t. Next suppose we D,'. Then, a.s. (P,), there is a finite chain
(X, + -+, x,) with & > nsuch that ¢t = z(x;) > - .. > z(x,) = 0, where necessarily
x,€&. Hence there is a chain of length n ++ 1, namely (x;_,, X;_p11, -+ *» Xi)»
such that x, e § and ¢ = 7(x,_,) > -+ > 7(x,_,) > 0. Since there are v(n + 1)
chains of length » + 1 ending at each vertex in §, we obtain (3.13) by using
Lemma 3.7. [

4. The imbedded jump process. Recall that E, is the set of finite subsets of
Z,, and is thus a countable set.
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4.1 THEOREM. If & ¢ B, then P{¢, € E, forallt} = 1;i.e., &, is stochastically
closed.

Proor. For each ¢ > 0 we have for each £ ¢ &,
P{¢, ¢ &, for some s <t} < P{r(x) <t for infinitely many x}.

But Lemma 3.6 implies that {r(x) < ¢ for infinitely many x} is a.s. (P,) a subset
of D,* for each n..Letting n — oo and using (3.13), we complete the proof. []

4.2) REMARK. If x, ---, 'x,, are distinct vertices in the initial set &, it can
be verified directly from the form of the generator in (2.2) that the random
variables inf {r: §(x;) =0}, i=1, ..., k, are independent exponential, mean
1/¢. Hence E\E, is also stochastically closed.

4.3) THEOREM. Let J, = {{§,} has infinitely many jumps for0 < s < t}. Then
P(J)=0,6€E, 0= 1< co.

Proor. For each o, x, and ¢ > 0 the function s — §,(w, x), 0 < s < ¢, has
only finitely many jumps, whence J, C {r(x) < ¢ for infinitely many x}. The
proof is completed as in Theorem 4.1. []

It follows from (4.1) and (4.3) that we can consider {§,} confined to &, as a
strictly stochastic countable state process, all the states being stable (having
nonzero holding times), £ = @ being an absorbing state. The holding time in
the state § is exponential with mean (g,)~!, where

4.4) 9e = 8] + Zae Aoy -
To see this, note from (3.6) that
Pt = 6,0 < s < 1} = PfE(x) = 6(x), 0 < s < 1, xe £*)
= P{lux) = §(x), xe £} 4 0(1), 10,
where £+ is the union of ¢ and its neighbors. Since the indicator of the set
E = {&: &'(x) = §(x), x € §*} depends on only finitely many coordinates, it is in
the domain of %" and hence
Pé e EY = 1 + 17 1,(8) + o(t) = 1 — 1q, + o(r).
Similarly the intensity ¢, for a jump § — », § + 7, is 0 except
4.5) Gey = 1 if »=2¢6x forsome xe¢,
= ey if p=&Ux forsome x~¢.
(4.6) DEFINITION. Let m,(§) = &, §.(Z,).
We establish the following crude bound.>

4.7) Lemma. If § €&,

my(§) < |§le®r-mt, t=0,

where A = max 4.
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PrOOF. Write m,(§) = m,'(§) + m,”(§), where m,/(§) = &, § (%) and m,”'(§) =
& E(Z)\EY). Write Z)\é* = Uz Ei» where E, = {x: the shortest chain from
x to any vertex of £ has length k}. Then

m"(§) £ Xi%ms Dser, Pelr(x) = 1}

From Lemma 3.6, we have {z(x) < 1} C D_,(x) a.s. (P;) if xe E,, and hence
Pfr(x) £ 1} < v(k — 1)F,_,(?) from (3.12). It can be seen that |E,| < |§|- M, k*~,
where M, depends only on d. Hence
(4.8) m"(§) = Li=s €] - Myk*Tv(k — DF,_(7)

< |§| - M/, 0s:t<t,
where M,’ depends only on d. Next, letting z/(x) = inf {s: §,(x) = 0}, note that

Pléi(x) = 0} = P{e'(x) = {0nia(¥) = 0,0 = s < 1} .

From (3.4), (4.2), and the Markov property we see that if §(x) = 1, the above
probability is = e~*(1 — e~#*). Hence
(4.9) m/(§) = Ziaee Ee(§udx)) + Lue Eel§4(x))

< 61 — eM(1 — emm)] + 2d[E[(1 — e,
where we have again used (3.4) to bound the second sum in (4.9). Combining
(4.8) and (4.9) we get
(4.10) m8) < [E|(1 + (2dA — pyt + Mr), o<,
where M does not depend on ¢ or . From (4.10) and the Markov property we

have
M) < (1 + QdA — p)h + MIYm(§), ~ O0<h<1,

which leads to Lemma 4.7. []
(4.11)  LeMMA. Forall ¢ € E, we have
m, ., (§) = e=*m,(§), t=>0,h=0.
Proor. From (4.2), m,(&) = e~*!|¢|. Lemma 4.11 follows from this and the
Markov property. []
5. Monotonicity and subadditivity. In this section {£,} is still a contact pro-
cess, with probability measure P,, and m,(§) is as in (4.6).

(5.1 DEerFINITIONS. Let p,(§) = P{§, + @}, p.(§) = lim,_, p,(§) (exists be-
cause p,(§) | in 7). Note p,(§) = 1if |§] = oo, from (4.2). Denote p,(£) by p,(x)
if & = {x}. Call {£,} increasing, subadditive,® or submodular if respectively (5.2),
(5.3) or (5.4) hold for arbitrary &, € E and ¢ = 0:

(5.2) p&) =p(E V),
(5.3) P& U ) = plé) + p1)>
(5-4) P& U )+ p€ N 1) = pué) + pin) -

3 Certain ‘‘subadditive’” processes have been studied by Hammersley and Welsh (1965), where
however the ideas and results are different from those of the present paper.
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The significance of (5.4) is perhaps clearer from the equivalent property: if
& céand £ nyp= @ then

(5-4) PUE V1) — pu€) S pu(€' U ) — pul€) -

(5.5) REMARK. We will actually prove more than (5.2) by constructing
contact processes {£,} and {£,'} on the same probability field, with the same
transition law, in such a way that §, C &/, & =&, &' = £ U 5. Thus other
functions such as m,(§) and P{&,(x) = 1} will also be increasing in §. A similar
remark applies to (5.3) and (5.4).

(5.6) THEOREM. (a) If 4, 1 in k then {§,} is increasing.
(b) If also A[k | in k, k = 1, then {£,} is subadditive.

Proor. We will exploit a method employed effectively by Vasershtein (1969)
and Dobrushin (1971) to prove ergodic theorems, i.e., defining two processes on
the same space. It is convenient first to prove (5.6b), so we assume till further
notice that 2, 7and 4,/k |. These conditions imply that for any nonnegative
integers m’, n’, and k we have

5.7 M2y < (M' 4 02,
S(m A+ 1) -

Let {n,} be a NNI (Section 2) with S the set of eight types {0, 4, 4’, B, B', AB,
A'B, AB'}, and probability measure P, corresponding to 7, = 7. The function
¢(x, 7, 5) in (2.1) will be given in Table 1. The first column in each row is the
initial type 7(x); in the second column are listed the types s for which ¢(x, 7, 5) >
0, the value of ¢ being given in parentheses after the type. Fix x and 7; let
m, m', n, n’ be the numbers of vertices in N, with type respectively in the sets
{A, AB, AB'}, {A', A'B}, {AB, A'B, B}, {B', AB'}. Let M =m + m',N=n + n’,
A =2pryusa=m'|(m' +n'), 3 =n'[(m' +n'). Takea =8 =0ifm’ +n' = 0.
From (5.7), all the indicated intensities are > 0.

Let S, = {4, 4, AB, A'B, AB'}, S, = S\S, = {0, B, B'}. Define ¢,: E; — E
by p(n)(x) = iif p(x) € S;,i =0, 1. Lety,4 = ¢,(y,). Weapply Lemma 2.3 to
show that {54} is Markov with the same set of intensities as our basic contact
process {£,}. In each row of Table 1 corresponding to a type in S,, the sum of

TABLE 1
7(x) . New Type
0 A2y — al’), A'(al’), BAn — B¥), B/(BX)
A4 0(z), A'(ad’), AB(Ax — B2'), AB/(BX’)

A4’ 0(#2), A’B(aw)

B O(p), B'(BY'), AB(Ay — ak’), AB'(ad’)
B 0(z), AB'(Ar)

4B O(p), A’BXX)

A'B 0

AB O(p)
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intensities into types in S, is 4, = 4,,,,.,» Where m 4 m' is the number of vertices
in N, with type in S,, as can be seen from the definitions of m and m’. Similarly,
in each row corresponding to a type in S, the sum of the intensities into types
in S, is u#; hence {7,4} has the same transition law as {£,}. An observer who can
see only the symbol 4, alone or in combination, will see 7,4 when he looks at 7,.

Next put ¢z(p)(x) = 1 if 5(x) e{B, B', AB, A'B, AB'}, and 0 otherwise. Let
o'(n)(x) = 1if p(x) e {A4’, B', A'B, AB'} and 0 otherwise. An argument like that
given above shows that {»,2} = {¢5(7,)} and {7,'} = {¢'(3,)} are Markov with the
same transition law as {£,}.

Let 4,, B, C Z; and consider the process {7,}, taking ,(x) = A’ if x € 4,\B,, B’
if xe B)\A4,, A'Bif xe A, n B,, and 0 otherwise. Then 74 = 4,, 5,2 = B,, 3/ =
4, U B,. Moreover 3,/ C 9, U 3,2, t = 0, since the symbol (’) can occur only
with an 4 or a B. Hence

Pl # @Y= P[0/ + @} < P, {(n* + @) U (0" # D)}
< P, {6+ @) + Puféc # O}
This proves (5.6b).
Now assuming only 4, 1, let {,} be a NNI with § = {0, 4, B}. Foranyye E;
and x € Z, let m be the number of neighbors of x of type 4 and n the number
of type B. The intensities are given in Table 2.

TABLE 2
7(x) New Type
0 A(Am), B(dmsn — Am)
4 0(2)
B A(Am), 0(2)

Let »,4(x) = 1 if »,(x) = 4 and 0 otherwise. Let 5,43(x) = 1if 5,(x) = 4 or
B and 0 otherwise. Using Lemma 2.3 as above, we see that {5,4} and {5,4?} are
Markov with the same transition law as {§,}. Let 4, and B, be disjoint subsets
of Z, and take 5,(x) = 4 if xe 4,, B if x e B,, 0 otherwise; then 74 = 4, and
7% = A4, U B,. Since 9,4 C 7,42, we have p,(4,) < p,(4, VU B)). []

It can be shown by examples that the two conditions 2, 1 and 2, < k4, together
do not imply subadditivity, at least of m,(§), for d = 2.

(5.8) LeEMMA. Let {§,} and {§,'} be contact processes with parameters p, 2,,
Ay, +--and p, A/, 2, ---. Suppose 4, < min; ;. A/, k=1,2,.... Then (with
the obvious definitions for p’ and m') p(§) < p,'(§) and my(§) < m,'(§),t = 0, £ e E.

Proor. Let {5,} bea NNI with § = {(00), (01), (11)}. Given ye Esand x € Z,,
let m be the number of neighbors of x of type (11) and m’ the number of type
(01) or (11). The intensities are in Table 3.

Let §,(x) = 1 if ,(x) = (11) and 0 otherwise; §,/(x) = 1if ,(x) = (01) or (11)
and 0 otherwise. From Lemma 2.3, {§,} and {£,} are contact processes with
respective parameters y, 4, 4,, --- and g, 1/,2,/, ---; also §, c §'. Taking
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TABLE 3

7(x) New Type

(00) O1)mr — Am), (11)(Am)
(o1) (00)(z2), (11)(2m)
(11) (00)(p)

no(x) = (11) for x € & and 5,(x) = (00) otherwise, we have &, = £, = §, and the
lemma follows. []

(5.9) LEMMA. Suppose p > 0, 2,1, & C &, &+ &, |§] < oo. Then p(§) <
PAE), 0 < 1 < 0o, Moreover p.(€) < pu(€') if pu(x) > 0. (Note po(x) = pu({x})
is the same for each x.)

Proor. Define 7,, 7,4, and 7,47 again as in Table 2, denoting the correspond-
ing probability measure by Q, if 7, = . We take y(x) = 4 if xe§, 9(x) = B
if x € &'\¢, ny(x) = O otherwise, so p,* = &, 4% = &'. Then
(3-10) P& — pu8) = Q0" # @) — C,(n* # D)

=Qv{77tAB¢®»77tA=®}’ t>0.
Suppose first that |§’| < co. Since all jumps of {5,} are jumps of {5,*} or {»,4%},
and from Section 4 the two latter processes are countable-state chains with stable
states, it follows that {»,} is such a chain. Fix T > 0. From the construction
of {»} the probability is strictly positive that the first |§| transitions of {»,}
occur before T and are changes of type from A4 to 0 of the vertices in £, whence
Q,{n:*® + @, n,* = @} > 0. This proves the first assertion of the lemma. Now
for each 1 > 0, p (&) — p.(§) = Q,{n*? # @ for each s >1t, 94 =@} =0,
say. Conditioning on 7,, 0 < s < ¢, we have, if p(x) > 0,

0 = Xtesociti<e Qr){”tA = @, 7% = {}p(5)
Z Po(x)(P&) — PAS)) > 0.
If |§'| = oo, the result is obvious because p,(§') = 1. []

6. Submodularity. Now let {1,:i=0,1,...,2d} be concave and non-
decreasing in i, with 1, = 0. Concavity means that 4,,, — 4, is non-increasing
in i, implying
6.1) Ay — A2y — = Ay — A= e, n=1,2,....
The simplest cases are 4, = k4, k =1,2,...,and 3, =2, k=1,2,....

(6.2) THEOREM. If {4} is concave and non-decreasing, 2, = 0, then p,(§) is
submodular.

Note from (5.4') that submodularity is a kind of concavity property.

ProOF. Again we use an auxiliary NNI, this time with typesin § = {0, 4, BC,
B,C’,C}. Letm,r,n, k', k denote the respective numbers of neighbors of x of
type 4, BC, B, C'. C respectively. The intensities are given by the following table.
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TABLE 4

7(x) New Type

0 A(2m), BC(ZMM - 37»)7 B(ZM+r+n — 2mir)y C'Amirinik’ — Amirin)s
C((Am+riksk’ — Amir) — (Amirintk’ — Amirin))

A4 0()

BC A(Am), O(2)

B A(Am), BCQmirikrkr — Am), 0(g2)

(o4 A(Am), BCQAm+r+n — Am), O(12)

C AQm), BCQumirin — m), C'(Amirintkt — Amirin), O()

Since 2, 7 and (6.1) holds, the indicated intensities are nonnegative.
Define four processes, whose values at x are 1 under the following conditions
and 0 otherwise:
PAx) =1 if p(x)=4
p4%(x) =1 if p(x)=4, BC, or B
748%(x) =1 if p(x)=4, BC, B, or C
74%(x) = 1 if p(x)=4, BC, C', or C.
From Lemma 2.3, these are contact processes. Let 4,, B;, C, be disjoint subsets
of Z;. Let p(x) = 4 on A4,, B on B,, C’ on C,, and 0 elsewhere, and let Q, be
the probability measure for {5,} with 5, = ». Then
Nt = A, 7' = 4, U By, 7*?" = 4, U B, U C,, 7,*° = 4, U C;.

The general idea is that »,45%"\»,4% represents the difference between a process
starting on 4, U B, U C, and one starting on 4, U B,.
We have
Pi(4, U B, UC) —p(4, U B) = Qq{’?tABC' *+ @, 0% = @} =0Q,U), say,
since 7,4 C 7,42% from the construction. Similarly,

P4 U C) — pld) = Q{0 # @, 74 = @} = Q V), say.
However, from the definition of our various processes we have U ¥ whence
Q,(U) < Q,(¥), and thus

pi(A; U By U C)) — p(A, U B)) < py(A4, U C) — py(4) - Q0

7. Computation and bounds for p, and m,. In principle we can compute p(§)
as follows. For 4 C Z, let '

94,6 =P {6, C 4,0 < s < 0,6, = @ ultimately}.

Let &, = &, £0ys Eqay» - - - be the imbedded jump process of {§,}, assuming &, € E,
(see Section 4), with the transition matrix r(¢, 7). Now let 4 be a fixed cube
oriented along the axes, and suppose 0 < g, 4;, 4, ---. Let r (&, ) be the
submatrix of r with &, » C 4. Then ¢(4, §) = lim,_, r,"(¢, ¢), £ C 4, and
1 — pa(§) = limy 15, 9(4, §), § € B,
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For subadditive processes, letting p., denote p_(§) when & = {x}, we have, for
eachn=1,2,...,

Po = Liges, (X 1)P(7)
S 20T 0) ¢ 1] Pe = P& lEm] -
If we find computationally that &,|¢,,| < 1 for some n, we can conclude p,, = 0.
This procedure apparently requires a large n; for example ifd = 1, p = 2, = 1,

A; = 2, then &, |¢,,| = 1.36 approximately, although actually p., = 0 and prob-
ably &,|&.,,| — 0. (See Section 10.)

71.1) THEOREM.* Let {§,} be a contact process with (2d — 1)4, < kp, k =
1,2, .... Thenp,(§) =0, €&,

Proor. Using Lemma 5.8 and a change of time scale, it is sufficient to treat
the case ¢ = 1, 4, = k4, where (2d — 1)A < 1. For this case denote p(£) by
m, = my(4) or m, = m,(2) respectively if & = {x} or £ is a pair of neighbors. Let
r be the transition matrix of the imbedded jump process. Examining the inten-
sities in (4.4) and (4.5), we have for any pair of neighbors &

(1.2) =24 .
1+ 2d2
_ 2 ,
(7.3) T, = mnl + 2" ré, & U x)p.(§ U x)
— U ’ —
ol s e PO (X CITRRES

+ 70" U x),
where }}’ is taken over x ~ £. The last term in (7.3) is 7,(2d — 1)2/(1 4 (2d —
1)2). Subtracting this from both sides, multiplying by 1 + (2d — 1), and sub-
tracting 7,, we get
T,—m= (14 2d— 1)) ' & & U x)(pa(E U X) — )

(7.4) S+ @2d—DA)(ry, — m) ' 1€, €U X)

= (7, — m,)(2d — )4,
where Theorem 6.2 was used to give the inequality p(§ U x) — 7, < 7, — =,.
If #, > 0, then =, >z, from (7.2). Dividing (7.4) by =, — =, shows that
2d—NDax=1ifz, > 0. ’

In Lemma (7.5), m, denotes the value of m,(€) if & = {x}.

(7.5) LEMMA. Let {£} be a contact process such that 1,1 and suppose
§o¢ m,dt = co. Then \y (my(§) — m,)dt = oo, |E| = 2.

4 At least if d = 1 this result can be improved by pushing the method harder; see Section 10.
F. Spitzer and R. Holley have recently obtained related results; in particular Holley has shown
Theorem 7.1 by different methods. (Personal communication.)
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The proof is rather like that of Lemma 5.9 and is omitted.

(7.6) THEOREM. Let {£,} be a contact process having 2, [p < k[(2d — 1), k = 1.
Then §§ m,(§)dt < co, § € E,.

Proor. It is sufficient to consider the case g =1 and 2, = ki, where
(2d — 1)2 < 1, as in the proof of Theorem 7.1. Let m,(f) and m,(r) denote m(€)
if respectively & = {x} or £ is a pair of neighbors. It follows from Lemma 4.7
that m, and m, are bounded on each finite ¢-interval. Consideration of the first
jump shows that for any pair of neighbors & we have

(7.7) my(t) = 2e % + K {{e % {% my(t —s) + X', & U x)ym_ (U x)} ds,

where K = 2 4 (4d — 2)A. From submodularity (see the remark (5.5)),
(7'8) ’nt—s(é u x) = ’nt—s(é u x) - mt—s(é) + mt—s(E)
< my(t — 5) — my(t — 5) + my(t — 5) .
From (7.8), the relation Y’ (&, £ U x) = (4d — 2)A/K, and (7.7), we have
(7.9) my(f) < 2e~%t 4+ 2 (L e Xmy(t — s)ds
+ (4d — 2)2 {ie Ko (2my(t — 5) — my(t — 5))ds .
Let M(f) = \t my(s)ds, i = 1, 2. Integrating (7.9) from 0 to T, we get

M(T) < % (1 — ex7) 4 _122 § my(s)(1 — e~x7=9) ds

(7-10) L= D 1 ms) — m(a)(1 — e =70 ds

—2)

2, 2 (4d B
< 2+ 2 meny + B2 DL @myr) — ().

Subtracting (4d — 2)AM,/K 4 2M,/K from both sides and multiplying by K/2
we get

(7.11) My(T) — M(T) £ 1 + (2d — 1)A(M(T) — M(T)) .

Since (2d — 1)A < 1, we have

M(T) — M(T) S

., T>0.
—(@d—1) =

Letting T — oo and using Lemma 7.5, we see that {3* m(f) dt < co. The desired
result follows from subadditivity. []

(7.12) ReEMARK. Using Lemma 4.11,- we see that under the conditions of
Theorem 7.6, we have lim,_,, m,(§) = 0, § € &,.

(7.13) THEOREM. Under the assumptions of Theorem 7.6, we have

limt_mPE{Et(x)= 1}:0, &eE,erd.
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Proor. From the proof of Lemma 5.8, it is sufficient to suppose 1 = 1, 2, =
k2, (2d — 1)2 < 1. For an arbitrary &, choose &, £, ... € &, such that " 1 ¢&.
From monotonicity and the Feller property of {§,} we have Pa.{f,(x) = 1} 1
P{&,(x) = 1}. From subadditivity, taking x as the origin O, we have

Peaf(0) = 1} < Toeen PA6A0) = 1} = Toeen Polb(—x) = 1}
< Neeza Polé(—x) = 1} = m(0) .
Theorem 7.13 follows from (7.12). [
Note that in Theorem 7.13, § is not necessarily in Z,.

8. An ergodic theorem. Let {7,} be a NNI with state space {0, 1} and intensi-
ties 8 and a, for the change of type 1 — 0 and 0 — 1 at x, where k = 7(N,).
We will find conditions under which {,} has a limiting distribution not depend-
ing on 7,, i.e., is ergodic. As noted before, the procedure of Dobrushin (1971)
was to construct processes {7,} and {»,’} with the same transition law, on the
same probability space. We do this here and also construct a contact process
{é.}, such that &,(x) = O implies 7,(x) = »,(x). This enables us to sharpen
Dobrushin’s result somewhat for our particular process.

8.1) DEFINITIONS. Let ¢ = 8 + min,, a,
A, = max, < la, — a,l, k=0,1,...,2d.
Note that then
(8.2) A < k2, k=0,1,2,....

Consider a NNI process with set of types S = {(000), (001), (011), (101), (110),
(111)}. Ttisconvenient to denote the process by (7,, ,’, §,), the state space being
the set E* = {(, 7', §) € E%: |p(x) — 7'(x)| < &(x)}. Given some (7, 7, §) € B,
let m = 5(N,), m’ = y'(N,), n = &(N,). Then '

(8.3) 2, = (o — ay) .

For, let m,, be the number of neighbors y of x such that »(y) = 1 and '(y) = 0.
At each such y, &(y) = 1, whence m — m’ < my, < n. Similarly m' —m < n
and (8.3) follows from the definition of 4,.

TABLE 5
(n(x), 7'(x), £(x)) " New Type
(000) (001)[2n — |a —a’l|], (011)[a’ — min (a, a’)], (101)[@ — min (a, a’)],
(110)[min (a, a’)]
(001) (000)[ 2], (O1D)[a’ — min (a, a’)], (101)[a — min (a, a’)], (111)[min (a, a’)]
(o11) (000)( B8], (110)[a*], (111)[er — a*] .
(101) (000)[A1, (110)[a*], (11D)[a’ — a*]

(110) (000)[ 31, (111)[2n]
(111) (000)( 41, (110)[a*]
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In the accompanying table, intensities are in square brackets after the new
type. For convenience put

a, = a, a, =a', min, a;, = a*, and B+ mina, = p

m

as above.

From (8.3), all the indicated intensities are > 0. From Lemma 2.3, {»},
{».}, and {&,} are Markovian, the first two having the transition law of the
process introduced at the beginning of the section, while {£,} is a contact pro-
cess with the parameters given in (8.1).

(8.4) THEOREM. Let {7} be the process defined at the beginning of this section.
Suppose 8 > 0 and

< ‘B+minn an .

(8.5) MaXgpgaa1 |[Ani1 — Al 2d — 1

Then as t — oo the distribution of {n,} converges weakly to a limit not depending on
the distribution of 7,.

Proor. Consider the process {5,, n,’, §,} defined above. Since {3} is Feller
on a compact state space it has at least one invariant distribution z. Let 5, have
this distribution, let 5," have an arbitrary distribution, and let £,(x) = 1 for all x.
Then

(8.6) Prob {7,/(x) = 7,(x)} Z Prob {£,(x) = 0} .

From (8.1), (8.2), (8.5), and Theorem 7.13, the right side of (8.6) — 1 as t — oo,
which shows that the distribution of {»,'} converges weakly to z. []

ReMARK. If 8 = 0, we again have Theorem 7.1, which will be strengthened
in Section 10 for the case d = 1.

A criterion for ergodicity for rather general processes is given in Theorem 4
of Dobrushin (1971). His result is apparently stronger than is stated in his
theorem, since in the argument on page 83 of the paper one can apparently use
f» and g,, rather than £, and g,,. The corresponding stronger result would then
give 2d in the denominator of the right side of (8.5) above, rather than 24 — 1.
Thus (8.5) is an improvement by a factor of 2 in case d = 1 and a smaller im-
provement for higher dimensions. Note that any strengthening of Theorem 7.13
for contact processes would give a corresponding strengthening of Theorem 8.4.
These remarks apply for 8 > 0. '

If d = 2, it is known that a process {7,} as defined at the beginning of this
section, with 8 > 0, can be nonergodic for certain a, > 0. This stems from the
non-uniqueness of the random fields corresponding to certain sets of parameters
of the Ising model. (See, e.g., Spitzer (1971) Chapter 7.) However, no nonergodic
example is known for 8 > 0 if d = 1. If there is none, then Theorem 8.4 is of
no use when 8 > 0andd = 1.

Another criterion for ergodicity has been given by Holley (1972¢).
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9. Permanence. We call the contact process {£,} permanent if
liminf,  P{¢,(x)=1}>0, §+ @, xeZ,.

This implies p..(§) > 0, § = @. We will show that permanent processes exist.

Related results for discrete time have been given by Toom (1968), Vasil’ev
(1969), and others. We follow them in treating a 1-dimensional process by
means of a 2-dimensional space-time diagram.® However, for the discrete-time
processes mentioned above, say, 7,, 7, - - -, the random variables {7, ,(x), x € Z,}
are conditionally independent, given {7,(x), x € Z,}, while such a property is not
true in continuous time. This is why some additional proof is required for the
case of continuous time.

If S, and S, are random subsets of Z, with respective probability laws », and
vy, We say that S, dominates S, if there is a joint law for S, and S, having v, and
v, as marginals, such that Prob {S;  S,} = 1. An interesting criterion for domi-
nation has been given by Holley (1972b). Here we use only the easily proved
remark that if under v, all the events {x € S;}, x € Z,, are independent, i = 1, 2,
and if for each x we have v,{x € S;} < v,{x € S,}, then S, dominates S,.

9.1 THEOREM. Let {§,} be a contact process. Then {§} is permanent if the
parameters A,[u, k = 1,2, ..., are sufficiently large.

SKETCH OF PROOF. We omit most of the technical details, but include enough
to indicate how the above-indicated lack of independence is treated. Setting
aside the trivial case p = 0, we can suppose 1 = 1. We suppose d = 1, since
the general case follows by embedding Z, in Z,. From Lemma 5.8 and its proof,
it is sufficient to consider the case 4, = 4, 4, = 2A.

Let a(x), i = 1,2, ---, x € Z, be independent exponential random variables,
mean 1. With each x associate a clock function t — S,(?), S,(0) = 0, running at
the rate dS,/dt = 1if §,(x) = 1and dS,/dt = A(E,(x — 1) + E(x + 1)) if £,(x) = 0.
The ith jump of {§,(x)} occurs at time #,(x) = inf {s: S,(s) = ay(x) + - - - + ay(x)}.
(See Harris (1972) for the details of a similar case.)

Fix A > 0 and ¢ € E, such that §(x) = 0 if x is odd. Pick some even y, and
suppose first §(y — 2) = §(y) = 1. Letting p' = f'(y — 1) = min (a,(y — 2),
a,(y)) and B = max (ay,(y — 2), ay(y)), note that dS,_,/dt =24 for 0 < 1t < B
and dS,_,/dt = 2 for B’ < t < B”, provided in each case that £,(y — 1) = 0. Let
A=Ay — 1) = {a(y — 1) > A};let U(y — 1) be the event

(9.2) {ﬁ(_y_z_lf_l_)_é min[A,'ﬁ”er, ﬂ';ﬁ"}}.

Considering the construction of {¢,} we find

(9.3) UnAdc gy —1)=1j.

5 G. R. Grimmett and D. R. Stirzaker have treated similar 1-dimensional processes in discrete
time by reduction to plane percolation problems. (Oral communication.)
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(Look separately at the cases A < 8/, f/ < A < §”,and A = p”.) Suppose now
that a,(y), for each even y, is realized as a,(y) = max (a*(y), a**(y)), where a*
and a** are independent with the distribution G(rf) = (1 — e™%)%, + > 0. Let
B* = B*(y — 1) = min (a*(y — 2), a**(y)), B** = max (a*(y — 2), a**(y)).
Then g* < ', p** < B”. Define U* like U but with 8* and g** replacing g’
and g”. Let w*(y — 1) be the indicator of U* n 4. Then U* c U and

9.4 w¥y—-1) &0y -1), y even.
If §(y — 2) = 1 and &(y) = 0, let w*(y — 1) be the indicator of the event

AN {a_l(yz__l_) < min (A, a*(y — 2))} s

and define w*(y — 1) similarly if £(y) = 1 and &(y — 2) = 0 except with a**(y)
instead of a*(y — 2). Again (9.4) holds. Finally, if §(y — 2) = &(y) = 0, put
w¥(y —1)=0.

From the construction we see that the random variables w*(y — 1), y even,
are independent. Moreover, Prob {w*(y — 1) = 1}is 0if &§(y — 2) = &(y) = 0
and is given by (9.5) and (9.6) if §(y — 2) + &(p) is 2 or 1 respectively:

(9.5) ™8 § §ocucoco 2 dG(u) dG(v)

X {1 —exp[—ZZmin<A, u-|2—A , u—;v)}};

9.6) €7 un0 (1 — €73min@0) 4G(y) .

We can make (9.5) and (9.6) arbitrarily close to 1 by proper choice of 2 and A,
since each expression approaches e=2 as 2 — co.

Let W,, W,, - - - be a Markov process whose state at time n is a subset of the
even integers if n is even and of the odd integers if n is odd. We may visualize
W, as a set of points in the nth row of the plane lattice & = {(x,n): n = 0, 1,
2,...;x —neven}. If x — nis even, then Prob{x — 1 ¢ Wi |Wos -+, W,}is
p if either x — 2 e W, or x e W,; otherwise the probability is 0; moreover, the
indicated events are conditionally independent for different values of x. It is
known that there is a p, < 1 such that if p > p, and W, # @, then

liminf, . ... Prob{xe W,} > 0.

(See the references cited above). Pick A and 2 so that (9.5) and (9.6) are > p,.
Take W, = £ as chosen above. Then {£,(y — 1), y even}, considered as a random
set, dominates {w*(y — 1)} because of (9.4). In turn {w*(y — 1)} dominates W,
by virtue of the remarks preceding Theorem 9.1. Hence {£,(y — 1), y even}
dominates W,. It can then be shown that {£,,(y), y even} dominates W,, and so

on. Theorem 9.1 follows. []

The proof could also be carried out using a result of Hammersley (1959) about
percolation processes, rather than the process {W,}.



CONTACT INTERACTIONS ON A LATTICE 987

10. The 1-dimensional case. We now show how to improve Theorem 7.1 if
d =1. Note that if d = 1, the conditions of Theorem 5.6 for subadditivity and
Theorem 6.2 for submodularity are both 2, < 2, < 22,. Let b = 2,/2,, assume
1 <b<2,andsuppose 4 = 1. Put 4, = 4.

Let 7, be the value of p (&) if £(x) = 1 for some i consecutive values of x and
&(x) = O otherwise, i =1,2,3,4. Letz’ = p_(§)if §(0) = §(2) = land §(x) = 0
otherwise. Let z” = p_(&) if £(0) = &(1) = &(3) = 1 and &(x) = O otherwise.
Arguing as for Theorem 7.1, we have

_ 2Am, . oom A,
nETra T i ixa
(10.1) T, = 2, n ' + 24z,

T 3422 3422 3422

1
re (Y N 4 27 4 bz .
i <2-|-b2—|—22>( 7+ 2m + bim)

From submodularity we have
(10.2) r, £ 27, — 7,
(10.3) "< 4, —n7.

Using (10.1) we can write z,, «,, 7, and =’ as linear functions of r, and z"’,
whose coefficients are certain complicated rational functions of 4 and 2 that are
positive for 1 < b5 < 2 and 2 > 0. Replacing =,, 7,, 7, and 7’ by these func-
tions on the right side of (10.2) and (10.3), we have

(10‘4) T, < aym, + apn’,

" < aym, + ayn’,

where the a,; are again positive functions of b and 2. The eigenvalue of (a;;) of
largest modulus is then positive and is given by

T(b ]) — a; + ay + ((au - 022)2 —_ 4(011 a,, — a, am))’}
9, 2 .

If 7 < 1 then (10.4) implies =, = z”” = 0, implying p_(£) = O for £ e &,.

We find computationally® that y(2, 1.18) = .9999, 7(2, 1.19) = 1.0015; also
r(1, 1.22) = .9993, r(1, 1.23) = 1.0008. (It is likely that y = 1 when 2 is the
largest root of (b + 1)2* — (b — 1)2 - 3 = 0, although this has not been
checked.)

To summarize: suppose = 1,2, =2, 4, =062, 1 <b< 2. If 7(6,2) < 1,
then p(§) = O for each & ¢ B,. This is true in particular if 5 = 2 and 2 = 1.18
orif 5 = 1 and 2 = 1.22. Other cases can be treated using Lemma 5.8.

One could push the method farther (it is not clear how far) by writing more

¢ Iam indebted to S. J. Harris for programming the computations.
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equalities such as (10.1) before closing up the system with inequalities such as
(10.2) and (10.3).
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