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CRITICAL AGE-DEPENDENT BRANCHING PROCESSES

By WARREN W. EstY
The Cleveland State University

The asymptotic behavior of the joint generating function of a critical
age-dependent branching process is derived and used to obtain conditioned
limit laws and a limiting diffusion.

1. Introduction. In this paper we derive a new technique for obtaining limit
theorems in age-dependent branching processes.

Since the useful functional iteration formula of the Galton-Watson and con-
tinuous time Markov branching processes, namely,

(1.1) F(sp, 535 1y 13) = F(5,F(5,5 ), 1) »

does not hold for the age-dependent process, we derive a lemma giving natural
conditions under which (1.1) is asymptotically true. There are numerous ap-
plications of the lemma. In the last section we obtain a limit theorem and a
limiting diffusion as examples. Others will be found in succeeding papers.

Let Z(t) be the number of particles at time 7 in an age-dependent branching
process (as defined in Athreya-Ney) with particle production generating function
f(s) and lifetime distribution G(¢). The conditions on f(s) and G(r) are the same
for each result in this paper. Therefore, for conciseness, we state them once
only.

Assume throughout that f'(1) = 1 (the process is “critical”), f"'(1—) = ¢* < oo,
§¢tdG(t) = p < o0, and lim,__, t*(1 — G(t)) = 0. Define K = ¢*/2p.

We proceed with the statement of the main lemma after introducing the
following notation for the continued fraction associated with a sequence
{xsi=1,2,...}

(1.2) »i(x;) = 1/x;, and having specified y,(x;, x5, « -+, x,), let y, (x5, - -+
Xop1) = Yal(Xps + o5 Xppy X, + X30)-

MAIN LEMMA. Let 0< d, < oo, t,=d;t, and 0 < s5,(t) <1 such that
limKt(1 — s(t)) = L;, 0 < L, < oo fori = 1,2, .-, n. Then, writing s, for s,(t),
(1.3) Lim t[1 — F(sy, Sgy + =5 8,5 by tyy + 205 1,)]

(1.4) = Um 1 — F(s, F(s3 (- + - $5o1F (S5 1,)5 taca)s -+ -5 11))]

1 .
= — Yu(dy Ly, dy, Ly, - -+, d,, L,)
K
with the interpretation that 1/co = 0, i.e., if there exists a least index j such that
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L; = oo, then the limit (1.4)

J

1 ,
(1.5) = 7{.y,j_l(dl, L,dy Ly ---,L;_,,d;) if L;=oco.

Note that this is > 0 if L, > 0 for at least one i.

Before turning to the proof (Section 4), we insert a section of routine pre-
liminary lemmas without proof, and a section on the joint generating function
integral equation.

2. Preliminary lemmas. The following result of Goldstein plays a central
role.

@.1)  Lemma.  lim, . [I_?MJ K1 —s)pt+1]=1,
—5
uniformly in 0 < s <1.

The proof may be found in Athreya-Ney as well as in Goldstein.
We state a number of consequences of this lemma without proof.

(2.2) LemMmA. If 0 < x(f) < 1 and lim ¢(1 — x(t)) = L < oo, then

L
KL + 1

(2.3) LeEMMA. Let 0 < x(2), p(2), s(f) < 1. If lim#(1 — x(¢)) =lim#(1 — y(¢)) =
L < co and lim (1 — s(t)) = M < oo, then

lim #(1 — F(x(t)s(®), t)) = lim #(1 — F(y(1)s(t), 1)) -

2.4) LemMA. If 0 < z(r) < 1 and n = [t]p] (where [x] is the greatest integer
in x), then

lim #[1 — F(x(¢), )] = (interpreted as 1/K if L = oo) .

lim #|F(2(1), ) — fu(2()| = 0.
2.5) LeEmMA. For any ¢ > O there exists a 6 > 0 and a t, such that for 0 <
)< landt >t
! frena(Z(®) — frenmazn(@Z®)] <.
(2.6) Lemma. If f'(1) = 1and 0 < 5, r < 1, then

flsr) z sf(r) -

Proor. Comparing slopes of lines through the origin and (r, f(r)) and (sr,
f(sr)) yields f(sr)/(sr) = f(r)/r and (2.6).

3. The joint generating function integral equation. In this section we give
an integral equation for the joint generating function associated with (Z(,),
Z(t, + 1), -+, Z(t, + t, + -+ + 1,)). We will then indicate the proof that this
equation does have a unique bounded solution, which is, in fact, a joint gen-
erating function. '

The integral equation is known in the one dimensional case. The nth dimen-
sional equation is in terms of the n — 1st and lower dimensional joint generating
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functions, which will satisfy the existence and uniqueness theorem by the induc-
tion hypothesis.

Let T, = Z§=1tj, i=1,2,...,nand

F(sp sz, D) Sn; t1s taa ] tn)
(3.1) = Z(a‘l,jz,m,in)go 571871 <o 5,0
X P(UT) = ju» Z(Ty) =Jo -5 AT,) =) -

THEOREM. Let f be a (not necessarily critical) probability generating function and
G(-) a distribution on [0, co) with G(0 +) = 0. Then the equation
(B:2)  F(s15 8y v+ oy Sy tyy gy = v vy 1)
(2) = §o f(F (51 S35 =+ o5 Sa3 bt — P51y« -5 1,)) dG())

+ 5§02 f(F (59 835+ 25 8,5 Ty — s g, -+ -, 1,)) dG()

(k) 818 S S2h_ f(F (S <+ o5 80 Ty — Ps tigas =+ +5 1,)) dG(Y)

b 8180 5us VEn_ f(F(s,3 Ty — ) dG()
(n) + 58y - sn(l - G(Tn))

has a solution which is an n-dimensional joint generating function for each (t,, t,, - - -,
t,) = 0, and which is the unique bounded solution.
(3.2) may also be written

F(s15 S35 = o5 8,3 by byy + v #5 1)
(3.3) = Yo f(F (S Sgs + =5 S5ty — Py by + -+, 1,)) AG(P)
— 8 S0 f(F (89 Sg <+ 05 8,5 To — 5 1y -+, 1,)) AG()
F 1 F (S Sg5 o o0y Sy Ty tgy <205 8,)
Furthermore, if f'(1) = 1,
(3,4) Sy 8y e st(s:Hl’ ceey Sy b v, n) < F(Sp ey Sty e, t”) s
JEn.
(3.5) F(S15 Sg5 + =+ 8p5 by tyy + =+, 1,) is non-decreasing in t,, i = 1,2, ..., n.

The derivation of (3.2) is similar to that of the one-dimensional equation and
is omitted. The reader is referred to Athreya-Ney for that derivation and other
“known” results.

Proor. The theorem is well known for n = 1 and reads then
F(s, 1) = s(1 — G(1)) + §if(F(s, t — y)) dG(y) .
(3.6) Assume (3.2) for n = k and define

(3'7) Fo(1s + =5 8o Sppas s+ 0 0y bys tyyr) = SlF(Sz’ Sgs vty Spprs s By o0y Byy)
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and

(3-8)  Fipa(S1 Spy ++ s Spuns s By 0+ tis1)
= Stt)lf(Fj(Sv Spy vy Spas L — Yo by 00y Beyy)) AG(Y)

F 5 s ST fF (s -5 Spis Ty — Ps tins =+ 5 1140)) dG ()

+ 50 (1 — G(Tyy4))

where the last (k + 1) terms are as in (3.2). Write F,,, for (3.8). Thus F; is
defined recursively, with terms of the kth and lower dimensional joint generating
functions, for which the theorem is assumed true by the induction hypothesis
(3.6). That these F; have a limit F, which is the unique bounded solution of
(3-2), and which is a joint generating function, follows as in the one-dimensional
proof.

That (3.2) may be written as (3.3) follows by adding and subtracting

Sy S5 f(F (55 835+« +5 Sp403 Ty — Polys ooy beyn)) dG(y) .

Factoring out s,, we recognize

02 f(F(sps =+ o5 Spp1s Ty — s =+ +5 141)) dG(Y)

plus the last k terms of (3.8) to be just F(sy, - -, Syp13 Tas fs -« tesa)-

(3-4) and (3.5) are properties of the critical joint generating function necessary
to the proof of the main lemma, but, because they extend one-dimensional
results, the reader may wish, at first reading, to skip now to Section 4, even
though the proofs do contain some fine points.

We now proceed with the proofs of (3.4) and (3.5). They are known for
n=1.

(3.9) Assume (3.4) and (3.5) for n = k.

To prove (3.4) we show F; is non-decreasing to F. Therefore F, < F. Repeated
application of this fact in lower dimensions yields (3.4).

(3.10) Iffry=1,F,,— F, =0.
The proof is by induction. For i =0,
Fi — Fy= §af(Fo(s, « -5 Siqs b — P+ + =5 1)) dG()
— Sy NG S(F (525« 5 Spaas To — Y5 by -+ +4 1,41)) dG(Y)

+ 51 F (S + oy S Tas B+ o o5 tyy)

— 5 F(Sys oy Sppns by tyy -0 0 fy11) 5

writing F, as in (5.3). Recalling the definition of F,, (3.7), and applying Lemma
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(2.6) and the induction hypothesis (3.9), yields

Fy — Fy 2 G(t)51 f(F(53 « + +5 Sins By =+ 5 Biy))
— 51 G(E)f(F(53 -+ 5 Spss T B35 =+ +5 B4))
+ S F (s, ey Spqns Tos By -0 05 Bg)
— 51 F (81« ooy 815 B By c s Biyn)
= S1([F(sas =+ o5 Spans T oo o5 tign) — F(Sas v o5 Spyas By = -+, Bp)]
— G T s ) = fE( 3 1 o2 )
=0,

since A — B = f(A) — f(B) for A > B, and using the induction hypothesis (3.9)
and (3.4). Thus F, = F,.
Assume (3.10) for i = j. Then

F:i+2 - Fj+1 = 531 (f(F:‘H(Sv ct s Spgas L — Vs ooy tk+1))
—JFi(S1s =+ s Spps 1 — P -+ 05 tr))) AG()
=0,
by the induction hypothesis, and the fact that f is increasing. Thus
(3.11) if f’(1) = 1, F, is non-decreasing to F.

Repeated application of (3.11) to F, in lower dimensions yields (3.4).

Since the F; converge to F, to show F non-decreasing in ¢, we show that the
F; are non-decreasing in #,, We do so by induction on j. F, is non-decreasing
int,i=12, ...,k + 1Dby the induction hypothesis (3.9). Assume
(3.12) F;is non-decreasingint,i=1,2, ...,k 4+ 1. Let0 < ¢t/ — ¢, < min,¢,.
We will show F (-« ¢t/ ---) — F;,(--+ t, ---) = 0 by subdividing the ranges
of integration in (3.8) into intervals in which the integrand is > 0 by either the
induction hypothesis (3.9) on k, or (3.12) on j.

LetT)/ =T, ifk<iand T)) =T, + (¢, — t,) if k > i.

Fa’+1("‘ ti"")—Fi+1("' ti"')
= S (f(Fi(Sp =+ Sups b= o o oo by ooy ty1))
— S(Fi(S1s + s Spqps L — Y5 o o5 by =005 B1y)) dG(y)

A A A S;:_l (f('F(sv o Sy T — Py oy b))
—JESe s S T = 95 05 ) dG(y)

Fos e s S5O (f(FGo - s T — s -+ s )
— S f(F(Sis1s » 5 Seass Tin — Vs o 05 14a))) dG(Y)

T+ 8000, S%i}f(F(sHv Tiv — ) — $1414G(y)
+ 5. Sk+1(1 - G(TI:+1)) .
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The first integral is > 0 by the induction hypothesis onj. From the ith integral
on we break up the range of integration (T;, T;,,] = (T;, T/] U (T/, T;1]. In
the second of these ranges the integrand is > 0 by the induction hypothesis on
k. 1In the first we note that T,,, — y < ¢,,, and the result follows from (3.4) and

Lemma (2.6).

4. The main lemma. The main lemma is the primary tool used to obtain
conditioned limit laws and limiting diffusions in critical age-dependent branching
processes. It relates joint generating functions to compositions of simple gen-
erating functions and enables the explicit calculation of certain types of asymp-
totic expressions which regularly occur in the derivation of limit theorems. Two
examples may be found in Section 5.

To prove the main lemma we show the difference between the expressions in
(1.3) is 0. The right side can then be evaluated explicitly using the one-dimen-
sional lemma, (2.2).

The proof of (1.3) is complex. By induction we reduce (1.3) to the simpler
(4.4), which is then rewritten by adding and subtracting appropriate terms. The
resulting expression, (4.6), has three pairs of terms, the first two of which are
easily shown to be small. Then, by showing the iterates F, to be close to f; as
well as to F ((4.11) and (4.12)) we obtain Lemma (4.10) which proves the third
pair also small.

To show the first equality, (1.3), we proceed by induction.
(1.3) is trivial for n = 1.

4.1) Assume (1.3) for n = k.
(4.2) Lim #([1 — F(s;, <5 Speqrs By =+ 5 Bpn)]
—[1 — F(s; F(sy -+ F(Spp5 tigr) * - +5 1))

(4.3) =lm ¢ ([1 — F(s;, +++y Sppns B+ oo ey)]

— [T — F(s, F (S35 + = 5 Sp415 g+ * *5 L) 11)]

F [ = F(5; F(Sgs +++5 813 Bas ++ 5 Bn)s 1))

— [1 — F(s, F(sy + -+ F(Spar> tigr) =+ +5 1))
adding and subtracting the same term.

By the induction hypothesis (4.1),
lim t(l - F(st sy Spyrs By e tk+1))
= lim #(1'— F(sy F(s5 - - - F(Sy41 fepr)s =+ o5 1)) -
Applying Lemma (2.3) with 1 — F(s,, - - -, 84415 fas + - +» f441) = X(?) to the second
pair in (4.3) we get (4.2)
(4.4) = Lim ((F(s, F(Sgy ++ +5 Spi1s By =+ 05 Bpya)s 1) )
— F(Sp o5 Spqas s o005 By)) -

Thus to prove (1.3) we need only show (4.4) = 0. We will show that for any
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¢ > 0 there exists a #, such that for ¢ > ¢,
4.5) —e K H[F(sy F(Syy =5 Spy1s tas ** *5 i) 1)
— F(Sy, + o5 Spqns B -0 )] < €

Again let z = Fy = §,F(Sy, -+ +5 Sy tys + = +» f4a)-  On the one hand the inside
of (4.5)

(4.6) = (F(z, ty) — fu(2) + fu(2) = facs0(2)
+ faara(®) = Flsi - o5 Sy o = * 05 yd)) -

For appropriate n and 4 this will be shown to be > —e.

On the other hand, replacing (1 + ) with (1 — ), (4.6) will be shown to be
< e. The conclusion (4.5) and therefore (1.3) follows when these steps are
completed.

Choose ¢ > 0. By Lemma (2.4), with n = [#,/¢],

4.7 tF(z, t)) — f.(2)] < % for ¢ large enough.
By Lemma (2.5)
(48) 1fu®) = frara@] < 5 and

4.9)  tf(2) — faa-0(D)] < % for 0 small enough and ¢ large enough.

Thus the first two pairs in (4.6) can be made small.
To prove the third pair in (4.6) small we need the following:

(4.10) LEMMA. Let z = Fy(sy, -+ -, tyy1). Then
_G*i(tl) éfz(z) - F(sl’ c s Spas By ooy tk+1) é 1 — G*i(tl) s
i=1,2,....

Proor. Define, as in the existence and uniqueness proof for the joint gen-
erating function integral equation (3.7) and (3.8), the iterates F,.
(4.10) will follow immediately from the following two inequalities:

(4.11) 0 < F— F, < G*(1) and
(4.12) 0 fi(2) — F, =1 — G*(1y for i=0,1,2, ...

We prove each by induction on i.

PRrOOF OF (4.11). That0 < F — F,wasshown in (3.11). Fori =0, F—F, <
G*(t,) = 1 is trivial. '
(4.13) Assume (4.11) for i = j. Then

F— Fyy = S8 (fFC sty = o)) = fE(- sty = 3, ) 4G ()
(4.14) SYUF(s =3y o) = Fy( oy ty =, ) 4G(y)
= §5G*i(1, — ) dG(y) = G*9* (1),

and (4.11) is proved.
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PROOF OF (4.12). f(z) — F, =z — z = 0 and (4.12) is true for i = 0.
(4.15) Assume (4.12) for i = j. Then

fin(2) = Fion = §0 f(fi(2)) — fF,(- -5 i =y -+ ) dG(y)
+ (1 - G(tl))f;'+l(sl F(sz’ ] tlc+1))
(4.16) — 5 ngf(F(sz’ S Ty — s o0, 640)) dG(y)

' — 5185+« Spqa(l — G(Th))
Noting that f;,,(x) = f(x), (4.16)

2z @ f(fi(2) = fIF(-- -, ti — p, -+ +)) dG(y)
+ (1 = G(Tyy1) + G(Topn) — G(Ty) + -+ — G(TY))f(5y F(S3s + + 5 )
= 8:(G(Ty) — G(T))(F(Sp * -+ S5 By =+ =5 Byyr))
— 8518(G(Ts) — G(T))f(F (S35 -+ +5 Siass Tas * + *» Byy1))

— 55« (1l — G(Tyyy)) -

Grouping the (G(T,,,) — G(T,)) terms, each is > 0 by (3.4) and Lemma (2.6).
The first term is greater than or equal to 0 by the induction hypothesis (4.15).
We have shown the left-hand inequality in (4.12). The right-hand side follows
more easily. Dropping negative terms from (4.16) we get

fina(2) = Fipa = §0 f(f(2)) = fF(- - -5 6y — 35 +++)) dG(y) + (1 — G(1,))
= $0fi2) = Fi(- - =y, -+ ) dG(y) + (1 — G(1))
it (1 = G¥i(t, — ) dG(y) + (1 — G(t,)) , by (4.15)
1 — G*Uth(y).
Thus (4.12) is proved. (4.11) and (4.12) yield (4.10).

We use the following consequence of Baum and Katz to prove the third pair
in (4.6) small.

A

(4.17) LemMA. If p = (FtdG(t) < oo andlim (1 — G(1)) = 0, and if 6 > 0,
then

if i= [_;7(1 + 5)] then  1G¥i(r)— 0

(4.18) if i= [% (1— 5)1 " then t(1 — G*(1)) 0.
Applying (4.17) with ¢ = 1, to the left-hand side of Lemma (4.10) we get
(4.19) U faora(@) = Flop o ity o0 )] 2 —

3
for ¢ large enough, recalling n = [#,/p]. Similarly, applying (4.18) to the right-
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hand side of Lemma (4.10), we get

(420) @ = Flsp o5 Sass fi 5 )] S
for ¢ large enough.

Combining (4.19), (4.8) and (4.7) as in (4.6) we have the left-hand side of
(4.5). Combining (4.20), (4.18) and (4.7) as in (4.6) but with (1 — J) replacing
(1 + 0), we have the right-hand side of (4.5). Thus (4.5) is true and the first
equality (1.3) is proved.

The second equality of the main lemma, (1.4), follows by induction using
Lemma (2.2) in a lengthy but straightforward calculation which we- omit.

5. Applications. The main lemma, (1.3), may be used to prove convergence
in finite-dimensional distributions of several conditioned and scaled critical age-
dependent branching processes to diffusions. We give one example here, (5.7),
and mention three others, the proofs of which are left to a succeeding paper.
With two variables, the main lemma is the tool we use to determine the limit
of {Z(ct)|Kt| Z(t) > 0,0 < ¢ < 1}, (5.1), as t — oo, as well as other limit laws
of a similar nature which will be found in a later paper.

If we condition a critical age-dependent branching process on non-extinction
at time ¢, as in the expression (5.1), we get a limiting diffusioninc, 0 < c < 1,
as t — oo. If we condition on extinction in the interval (¢, #(1 4 ¢)], we get a
limiting diffusion, as t — co and ¢ | 0. Another approach is to define the “age-
dependent Q-process” by defining its transition probabilities to be the limits of
the transition probabilities of a process conditioned on non-extinction at time
T, and letting T — oo. Again, a limiting diffusion may be obtained using the
main lemma.

5.1 THEOREM. {Z(ct)/Kt|Z(t) > 0,0 < ¢ < 1} converges in distribution, as
t — o0, to the sum of two independent exponential random variables with means ¢
and c¢(1 — c).

Proor. The Laplace transform of {Z(ct)/Kt| Z(t) > 0} is
L(u,c,t) = E (exp <_u_ZK(§t_)> ’ Z(t) > 0)

= Z e‘“"/’“P(Z(ct) =_]IZ(t) > 0)
P(Z(ct) = j) — P(Z(ct) = j, Z(t) = 0)

— Z e—ui/Kt
P(Z(r) > 0)
_ F(e™, ct) — F(e="™", 0; ct, t — ct)
1 — F(0, 1) ’

recalling the definition of the joint generating function in (3.1). Thus

t(1 — F(e=/®, 0;ct, t — ct)) (1 — F(e=*, ct))
(1 — F(0, 1)) t(1 — FO, 1)

(5.2) L(u,c, t) =
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By (2.1),

(5.3) lim #(1 — F(0, f)) = % .

By Lemma (2.2),

() limil = e ey = tim =€)

K1 —e" et + 1~ K(eu+ 1)

Using the main lemma with n = 2, 5, = e=%%, 5, = 0,d, = c,and d, = | — ,
L, = lim K(1 — e~*/%*) = y, and L, = co. Thus

(5.5) lim #(1 — F(e=%, 0; ct, t — ct)) = 71{_ e u 1 —¢).
Using (5.2)—(5.5) we get

i =9
(5.6) _(—cqu+1 &

_(l—c)cu+1 cu + 1
- <uc(1 _lc) T 1) (cu-li- 1>

the product of the Laplace transforms of the stated distributions. Theorem (5.1)
is proved.

We may consider {Z,(tT)/Kt| Z,(0) = x,Kt 4 o(¢)} to be a sequence of processes
in T, indexed by 7. These converge in distribution to a limiting diffusion.

(5.7) THEOREM. The finite dimensional distributions of
{Xt(T) = _Z_tI%L); 0< T‘ Z,0) = x,Kt + o(t), x, > 0}

converge, as t — co, to those of a diffusion {X(T)} with initial state x,, infinitesimal
mean 0, and infinitesimal variance 2x.

The transition function has associated density

oy = L (2 )

PX(T+ 1) =0|X(T) = x) = e~**.
This process is also the limit of the corresponding sequence of Galton-Watson
processes. Feller (1951) derived a related limiting diffusion assuming f*(1) = 1.
We use the following relation of the diffusion and its finite dimensional Laplace
transform.

(5.8) Lemma. Let0=T, < T < T, < -+ < T,andd, = T, — T,_,. If the
Joint Laplace transform of a process {X(T); T > 0}, is

Efexp(— X u, X(T;))] = XD (— X Vanu(dis Uys dy, Uy, - " d,, u,) if x>0,
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and where y,,(+) is the continued fraction notation of (1.2), then {X(T)} is a diffusion
with infinitesimal mean O and infinitesimal variance 2x and initial state x,, with the
above transition function.

The transition function density is obtained by inverting the Laplace transform.

PROOF OF (5.7): Let b, =0 < b, < b, < -.- < b, and define
1
(5.9) Wa = Bl 4 2(b;1) -

The u; will be the variables of the joint transform.
Letd, = b, — b,_y, t; = d;t, and 5, = 5,(t) = exp(—(u,/Kt)), i = 1,2, ..., k. If
Xy > 0,
(5.10) lim E(e~"w | Z,(0) = Kx,t + o(%))
=Um[l — (1 — F(sp + -+, 845 85, - -+, )7 .
By the main lemma (1.3)
(5.11) lim Z,0)(1 — F(sy -+ -5 S5 1y, + -+, 1)) = XoYa(dis Uy -+ -5 dyy 1) .
Thus (5.10) =
(5'12) exp(—xoyz,,(dl, Upy = oy dk’ ”k)) ’

which is the joint transform of X(T) by (5.8). (5.7) is proved.
The one-dimensional limit law when 7' = 1 is of special interest.

(5.13) THEOREM. {Z,(1)/Kt|Z,(0) = x,Kt 4 o(¢), x, > O} converges in distribu-
tion, as t — oo, t0 a Poisson (with mean x,) sum of independent identically distributed
exponential random variables with mean 1.

ProOF. Let

s = 2o -+ (40) 20 =+ o]

— [F(e—u/Kt, t)]zoKt+o(t) .

Since (x,Kt + o())(1 — F(e=*/%t, 1)) — xouf(u + 1) = x,(1 — 1/(u + 1)), by Lem-
ma (2.2), lim L(u, t) = exp[—x,(1 — 1/(x + 1))] which is the composition of the
Poisson and exponential transforms.
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