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A STOPPED BROWNIAN MOTION FORMULA!

By HowARrRD M. TAYLOR

Cornell University

We determine E[exp (aX(T) — 8T)] where X(¢) is a Brownian motion
having arbitrary drift and variance and T is the first time the process drops
a specified amount below its maximum to date. From this result, the
moments of X(7T) and T and some asymptotic distributions may be found.
Applications in process control and financial management are mentioned.

1. Introduction and summary. Let M(r) = max {X(x); 0 < u < t} be the max-
imum process associated with a Brownian motion X(¢) starting from X(0) = 0
and having drift parameter ¢ and variance parameter ¢*>. For a fixed a > 0 we

are interested in the Markov time
T=T,=inf{t = 0: M(t) — X(t) = a},

the first time the process drops a units below its maximum to date. Our main
result is the identity

N B _ 0 exp(—(a 4 7)a)
(LD Elexp(aX(T) = P = 5o 5a) — (a + 7) sinb (3a)

which holds for 8 > 0 (and even 8 = 0 when g == 0) and @ < @ where
6 = o coth (da) — 7y >0
and
r=plo
0 = [(¢/o) + 28/0"]F .
This is, of course, the joint moment generating function and Laplace trans-

form for X(T') and T. Using conventional techniques, we can determine moments
and some asymptotic distributions from it. Some of this is done in Section 3.

2. Derivation of the formula. Because the processes are continuous, X(7) =
M(T) — a and the quantity we seek differs from E[exp(aM(T) — BT)], which
we will study first, only by the factor ex*. Introduce the random lifetime ¢,
independent of the Brownian motion and having the exponential distribution

Pr{{>1t=e", t=>0.
Because of the assumed independence,

Pr (T < ¢} = E[Pr (T < {| T}]
= E[e~].
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In view of the independence of { and the Brownian motion, and the nonnega-
tivity of e*”™, we may write?
E[exp(aM(T) — BT)] = E[ex™ ™ Pr {T < {|T}]
= E[e™™E[17<q | X(+)]]
= E[E[e" " 7<) [ X(+)]]
= E[e*™ "1, ]
= E[ex™ D, T < (]
= ir<ge™™® Pr {dw}
= $ir<q §0 1(z < e ™) dz Pr {dw}
=1z £ e, T < {)Pri{do}dz
= {FPr{e™™ =2z; T < {}dz.
Observe from the proof that changing “e*™ > z” to a strict inequality in the
last expression will not change that expression’s value.
In a moment we will look at the other case, but first suppose a > 0. Then
e*™T) > 1 and we continue in the manner
El[exp(aM(T) — BT)] = (4 Pr{T < {}dz + {7 Pr{e" ™" > z; T < {} dz
= E[e 7] 4 {3 Pr {e*"T) > e**; T < (} dfe~"}
=E[e "] 4 (¢ Pr{M(T) = x; T < {}ae** dx .
Now go back and suppose a < 0 so that e2”™ < 1. Then
E[exp(aM(T) — BT)] = (3 Pr{e® ™ = 2z, T < {} dz
= B[P {l <&} — Pri{e™ <z, T < (}]dz
= E[e7#"] 4 {5 Pr {e*"") < e, T < {} d{e*}
= E[e~#"] 4 §¢ Pr {M(T) > x, T < {Jae**dx ,
and we obtain the same expression as before, except “M(T) = x* has become a
strict inequality. As mentioned, the value remains unchanged.
For x = 0, introduce the Markov time
T = ‘L'(X) = lnf{tz 0: M(t) = x}.
Because M(+) is monotonic, M(r) = x if and only if 7(x) < ¢. This holds for all
t and, indeed, holds for the random T as well. Thus, M(T) = x if and only if
7(x) < T and our expression becomes
E[exp(aM(T) — BT)] = E[e~*"] 4 (¢ Pr{z(x) < T, T < {}ae** dx .

Now the bivariate process (M(f), M(t) — X(t)) is Markov and application of the
strong Markov property at the random point (M(z(x)), M(z(x)) — X(z(x))) = (x, 0)

2 Notation. 14 = 1(4) denotes the indicator random variable associated with an event 4 and
E[+; A1 = § , - Pr{do} is expectation restricted to the event 4.
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leads to
Priz(x) ST < =Pr{T<{|e(x) =T, 7(x) <} Pri{r(x) < T, 7(x) < &}
=Pr{T < }Pri{r(x) < T, 7(x) <}
= E[e*]/(%)
f(x) =Pri{z(x) < T, t(x) <} .
These results simplify our expression to

E[exp(aM(T) — BT)] = E[e~*T}{1 + {& f(x)ae®* dx} .

where

The problem has been reduced to that of determining E[e~#7] and f(x) =
Pr{z(x) < T, 7(x) < {}. Begin with the latter. Again the strong Markov prop-
erty applied at the point (M(z(x)), M(z(x)) — X(z(x))) = (x, 0) together with the
spatial homogeneity of the Brownian motion and the memoryless nature of {’s
exponential distribution show

fx+y)=Priz(x +y) = T, 2(x +y) < &}
=Prirx +y) =T, r(x +y) <&l2(x) = T, 7(x) <}
X Prir(x) = T, 7(x) < {}
=Prir(y) = T, 7(y) <G Prie(x) = T, 2(x) < &}
= f(f () for x,y =2 0.
Cognizant of the bounded nature of f(.), we deduce
f(x) = e, x=0

for some constant § = 0, and so

E[exp(aM(T) — BT)] = E[e~**){1 + §¢ f(x)ae* dx}

2.1) = E[e ?"){1 + a {§ exp(— (6 — a)x) dx}
=<0Ea>E[e“”] for a<0,
= oo for a=96.

We turn to the problem of determining . With

e (@) Y]

bring in the martingales
Z(t) = exp(—alX(t) — pt).
We check the martingale property: ‘
E[Z(t + 5)| X(); 0 S u < 1] = Z(NE[Z(t + 5)]Z(t) | X(u); 0 S u £ 1]
= Z()E[Z(s)]
= Z(¥)
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since
E[Z(s)] = exp(—adus + 3a*2a’s — fs)

=1
because {a’2%¢® — alpy — B = 0 when 2 = 2, is given by (2.2). Apply the mar-
tingale optional stopping theorem to the Markov time T' A 7(x) = min {T, z(x)}.
The conditions for this theorem are easily met since X(r) is constrained to
—a < X(t) < x when t < T A 7(x), and so Z(¢) also is bounded in this range.
We note too that T' A 7(x) < 7(—a, x), the first time X(¢) reaches —a or x.
Then, applying the theorem,
1 = E[Z(T A 7(x))]
= E[exp(—aiX(z(x)) — Br(x)); t(x) £ T]
+ E[exp(—aAX(T) — BT); T < =(x)]
= e~ E[e=5®; 7(x) < T] + e E[exp(—aiM(T) — BT); T < =(x)]
= e~*%f(x) 4 e**E[exp(—aiM(T) — BT); T < =(x)].
Insert f(x) = e~ and rearrange to read
(2.3) e~*l[1 — exp(—(ai + 0)x)] = E[exp(—aiM(T) — BT); T < =(x)] .
If we divide on the left by x > 0 and let x | O the limit obtained on the left is

(2.4) (a2 + f)e-se = Iimxw% R.H.S. of (2.3),

and this holds whether we take 2 = 4, or 2 = 2_. We begin a similar evaluation
of the right-hand side, up to terms of order x as x | 0. On the portion of the
sample space where {T < 7(x)} we have 0 < M(T) < x so that e=*#" is trapped
between 1 and e~***. That is e~***" differs from 1 by terms of order x as x | 0
and so

Elexp(—adM(T) — BT); T < 7(x)] = (1 + O(x))E[e~#"; T < ©(x)] .
We again divide by x > 0, let x | 0, and obtain

2.5) limm.:c_ R.H.S. of (2.3) =lim“0%E[e‘ﬂT;T<f(x)].

At this point we may either continue what is a long and tedious direct evaluation
of the limit on the right, or we may do as Harry Kesten suggested and note from
(2.5) that this limit does not depend on' 4, and that therefore we may equate the
left side of (2.4) when 2 = 4, with itself when 2 = 2_ and deduce
(ald, + O)e~¥*+% = (ad_ + f)e~**-2.
We solve this for ¢ (or make the long direct evaluation) and obtain

0 — al_e~**-* — q e **+e

e~%3ia __ p—al_a
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Abbreviate y = pfo* and 6 = [(p/o?)* + 28/d*]t so that ad, = y + . Then we
may simplify the expression for ¢ to

(2.6) 0 — (r — 0)e*® — (r + 0)e~*e

e~9e __ glo

= d coth (da) — 7.

For later use, note that (2.4) and (2.5) state
lim, L E[e#7; T < o(x)] = (ak, + O)e~<i+e
x

= 0[coth (da) ++ 1] exp(—(r + 0)a)
(2.7) — 0 [% _I_ 1] e—(rtae

— 5[ e’ :le_(r+b)a

el _ g—da
__ de7r®
" sinh (da)
We have determined §. Equation (2.1), our reduced formula for E[exp(aM(T)—
BT)], contains only one factor remaining unknown, namely E[e~?"], and we
turn to determining it. Again invoke the strong Markov property at the point
(M(z(x)), M(z(x)) — X(z(x))) = (x, 0) and use the spatial homogeneity to see
E[exp(—B(T — 7(x)) — Br(x)); 7(x) < T] = E[e”*"]E[e#®; o(x) < T].
Insert this into the decomposition
E[e~*T] = E[e~#T; 7(x) < T] + E[e~*T; 7(x) = T]
= E[exp(— (T — t(x)))e="; 7(x) < T] + E[e*"; o(x) = T
= E[e~#*®); r(x) < T]E[e~*"] + E[e~*T; 7(x) = T]
and solve for E[e~#”] to obtain
E[e~#T; 7(x) = T]

(2.8) E[e#7] = — B v < T

Recognize the denominator on the right as 1 — f(x) = 1 — e~%, so that

E[e*"; T < 1(x)]
1 — e )

E[e_ﬂT] =

As this holds for any x > 0, it holds in the limit as x | 0. Divide numerator and
denominator by x > 0, let x vanish and refer to (2.6) and (2.7) to see

E[e~*7; T < t(x)]
1 — e
_ lim, , xE[e*"; T < 7(x)]
lim, , x%(1 — e~%%)

E[e~*7] = lim,,
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1

(2.9) = 5 (@ + Oy

de 1 .
Sinh Gacoth Gy —7] (e (2:6) and (2.7))

Oe~7°
d cosh (da) — 7 sinh (3a)

From the third equality above and using (2.7)

(2.10) OE[e~*T] = (ad, + O)e~*i+
__ deTr®
"~ sinh (da)

Return to (2.1) which reads, when @ < 6 = 4 coth (da) — 7,
Elexp(aM(T) — FT)]

_ OE[e~f]

0 —a

— de-1®

= Sinh Ga)coth 0a) — @ £ 7] rom (2:6) and (2.10)
de-r®

d cosh (3a) — (a + 7) sinh (da)
Finally,

’ E[exp(aX(T) — BT)] = e~**E[exp(aM(T) — pT)]
ae—(a+r)a

- , 0.
5cosh (3a) — (@ + pysimb (oa)°

This completes the derivation of (1.1).

3. Moments and asymptotics. Using standard techniques we can extract the
moments, marginal transforms and asymptotic distributions from the identity
just derived. Here are some sample results, stated in terms of y = p/¢* and
0 = [(¢/0®)* + 2B/a*]t. The proofs, of less interest than the results themselves,
follow.

(@)

3.0)  E[er™] = re " for a<6 if p#0,
-1 [e] 7 cosh (ya) — (a + 7) sinh (ra) or @< toeE
e~ ‘ 1 .
1 — aa or < a s
(Recall (2.6): 6 = d coth (da) — 7.)
(b)
(3.2) E[X(T)] = zir [ —1]—a if p=0

=0 if p=0;
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(©)

(3.3) Var [X(T)] = [e it T SR
(d) When ¢ <0,

(3.4) lim,_,, Pr {X(T) + a > x} = e771%, x>0;
(¢) When ¢ > 0,

3.5) lim,_,, Pr {e7**X(T) > x} = e~ ne x>0;
(f)

(3.6) lim, , Pr {[X(T) + a]ja > x} = €7, x>0;
(8

3.7) E[e?"] = ger®

d cosh (da) — 7 sinh (Ba)
(h) When g = 0 this reduces to

1
3.8 Ele#" = -~
9 = o @)
(1) 1
E[T] =_{L[em_ 1 _a} T
v 2y
g
() fp>0
lim,_, Pr {e=°T > 1} = e~ ;
Finally,

(k) If ¢ < O then asymptotically for large a, U= (T — af|p))/(ad®/| )t is
normally distributed with zero mean and unit variance.

The proofs of these results use standard techniques learned in a first course in
probability. First suppose ¢z % 0. Then, when 8 = 0, we have 6§ = ((p/o?)")t =
|7] and the basic identity becomes

e+
|r| cosh (Jy|a) — (a + 7) sinh (|y|a)
This gives (3.1) immediately when y = p/o® > 0. When y = plo* < 0 we sub-
stitute |[y| = —7 and obtain

$(a) =

§(@) = Ele™] =

_re—(:x+r)u
—y cosh (—ya) — (« + 7) sinh (—7a)
ye~ttne

r cosh (ya) — (« + 7) sinh (ya)
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because cosh (+) is an even function while sinh (+) is odd. This shows 3.1)
when p4 = 0.
Continue to suppose ¢ # 0, and differentiate ¢(a) = E[e*¥] to get

N — bl sinh (ya) _
#(a) = ¢(a) {r cosh (ya) — (« + 7) sinh (ya) a} .

Then ¢(0) = 1 and

"0y — sinh (ya) .

#0) 7 cosh (ya) — 7 sinh (ya) ¢

= %[em— 1] —a.

Since E[X(T)] = ¢'(0), this verifies (3.2) when p = 0.
Again differentiate ¢'(a) and set & = 0 to get

e sinh (ra) :

so that
Var [X(T)] = ¢"(0) — [¢'(0)]?
. { sinh (7a) }2
~ ly[cosh (ya) — sinh (ya)]

= 12 [er® sinh (ra)]?

7
_ e _ l:lz
= [ ]

which verifies (3.3) when p = 0. Now let us suppose # = 0. When 8 > 0,

4, # A_which is enough to obtain the basic identity withy = Oandd = (28/s%)t.
That is

de~®
d cosh (6a) — a sinh (3a)

Elexp(aX(T) — BT)] =

As B0, the left side increases to E[e**™] by monotone convergence. Use
cosh (da) = 1 + o(da) and sinh (da) = da + o(da) to see

E[es*D] = lim fem
*°8(1 + o(da)) — a(da + o(da))
_ e—ae ) o < —1—
1 — aa a

as claimed. We repeat the derivation of moments with ¢(a) = e~**/(1 — aa).
Then ¢'(a) = aa’$(a)/(1 — aa), and, easily

E[X(T)] = ¢'(0) =0,

E[X(T)"] = ¢"(0) = a*.



242 HOWARD M. TAYLOR

Equation (3.4) states that when p < 0, asymptotically X(T) + a is exponen-
tially distributed with parameter v = 2|u|/o®. The corresponding moment gener-
ating function is
v

5 e e~ dx =

, a<vy.

v —«a
Thus, to verify the asymptotic distribution, we need only show
lim,_.., E[exp(a(X(T) + a))] = »/(v — a)
and invoke Lévy’s theorem on the convergence of generating functions. We have
E[exp(a(X(T) + a))] = e**g(a)
— re’r

~ rcosh (ra) — (a + 7)sinh (ya)
re’’”

A R
= 2T .
A + 1 — (@ + e — 1)

When y = p/o* < 0, then €7 — 0 as @ — oo sO

_r
r+a-+r
2y
2r +a

Y

lim,_.,, E[exp(«(X(T) + a))] =

Yy —«a

since v = 2|y| = —2y when y < 0. _
When ¢ > 0 we still arrive at an asymptotic exponential distribution, but the
normalization changes. Let U = e~*°X(T). Then

2re 7% exp(—aae™"%)
Her + %) — (e - p)er — e )
2yre1% exp(—aae?r)
27 + ae 'r%)e"1* — qe~*rver®
2y exp(—aae™*?)
Qr +ae¥) —a

Now let @ — co. Since y > 0 we have

E[e"‘”] =

2y

lim ./
2y —a

dorco E[eal/] —

which shows that the limiting distribution of U = e~*°X(T) is exponential with
parameter 2y = 2p/e®. This proves (3.5).
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Next, let U = (X(T) + a)/a. Then

E[e¥] = _ e*r exp(—(a/a + 7)a)
7 cosh (ya) — (a/a + 7) sinh (ya)
e

" /(1 o(ra)) — (afa + 1)(ra + o(ra))’
and
1

—a

lim, , E[e*V] =

This is enough to prove (3.6).

Equation (3.7), the Laplace transform of the distribution of T, is an immediate
consequence of the basic identity under « = 0, and (3.8), the simpler form when
¢ = 0 follows easily.

One may obtain E[T] when p = 0 from Wald’s identity E[X(T)] = pE[T],
or one may take the longer route and compute E[T] = —0E[e~*"]/0B|,.,. We
omit the derivation. When g = 0, one may use the identity E[X(T)*] = ¢*E[T],
or differentiate. Again, this is omitted.

The asymptotic exponential distribution of 7 when ¢ > 0 follows from Lévy’s
theorem and the convergence of the appropriately normalized Laplace transform.
From the Taylor series expansion, note that 6 = y + f/ye* + o(B) as f — 0.
Then

20e"71°
5(e"“ + e"’“) _ r(eaa _ e—ba)
_ 20
(0= et 4 (5 + p)e@re

- 2(r + O(B)
l:.r—‘i? + 0(‘8)} exp[[zT + 0(,8)]0] -+ [27" - O(ﬁ)]e—o(ﬁ)a
. S
IB 2ra

E[e‘”] =

[1+ 0(8)]

b

and with U = e~%4T,
E[e*] = E[exp{+(Be"")T}]

- 2y
= [1 + O(e~¥%)] {____}
( 2r + Blro’
— _—%@—2—— as a—oo.
27%* + B ‘
This is the Laplace transform of the claimed limiting exponential distribution.
Our last claim is the asymptotic normal distribution of (T 4 a/sx)/(as?/|u[*)?
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when ¢ < 0. We will use the expansion
26\¢
0 = ( Irl* + —}3)

_ L
=+ [rle*  2[rPo

=7l + O0(8) .

Then

20e"7°
6(65"' + e—&a) — T(eaa — e—éa)

20
(0 — 7)e®+n + (6 + y)e-Cne
_ 2[|7] + O(B)]
[2]r] + O(B)]e®*7* + O(B) exp[—[2]7] + O(B)]a]

= [1 + O()et+r»

= 11+ 0@ exb { — 5% + 55

E[e#T] =

and

E[e®] =E [exp {—.3 <T — lrt|z"2 )/(ﬁ;)i}jl
= efalif [exp {——W@I—E)? T}]
= e [140 () |exp {- (a/wﬁwé o+ <<a/|f|/ﬂ>* ) 2|77304}

[1+o (]

As a — oo this converges to the (symmetric) moment generating function of the
standard normal distribution. This completes the proof of convergence.

4. Examples. Here are two applications of the formula of Section 3. The
second problem is the one that motivated the study.

Quickest detection. A process starts as a Brownian motion with drift v, > 0.
At some random and unobservable time © the drift drops toy, < 0. We want
to detect the shift time © as soon as possible after it occurs. The Markov time
T is a natural candidate.

This model is further motivated by an analog in discrete time process control.
Here U,, U,, - - . are observations on a process. While “in-control,” these ob-
servations are independent and identically distributed with mean p, At the
random time © the process goes “out-of-control” and the mean lowers to p; < Hor
The well-known cumulative sum control scheme for monitoring such a process,
introduced by Page [2], looks at the partial sum S, = U, + ... + U, — nh.
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Here k is a constant, often chosen to be £ = (¢, + #,)/2. The method signals
detection when S, first drops a specified amount below its previous maximum.
Our Brownian motion is the continuous time analog to §,, and T = T(a) com-
pares to the one-sided cumulative sum detection time.

Returning to the continuous case, of interest in evaluating quickest detection
schemes are the average run lengths in-control, ARL, and out-of-control, ARL,,
defined to be the mean times

ARL, = E[T|p = v, > 0]
and

ARL, = E[T|p =v, < 0].
The exponential role of y = u/s* in

U1 ae qq
@.1) E[T]:;_{E;[e 1] - af

shows that, as desired, the ARL is high when in-control (¢ > 0) and small when
out-of-control (# < 0). These continuous time average run lengths might well
approximate the discrete time situation and it would be of interest to compare
the two numerically or seek weak convergence justification.

Also of interest here is the probability of false alarm, Pr {T < ©}. In the
common case where O is assumed exponentially distributed with parameter 8,
we have a ready formula in (3.7):

(4.2) Pr {T < ©} = E[e~#7]
_ de~1®
d cosh (3a) — 7 sinh (da) °

The random walk model for stock prices. In 1900 Bachelier [1] proposed that
prices of securities traded in a perfect market should fluctuate randomly, and
from this he derived, at least informally, the Brownian motion process. A bet-
ter model, because it maintains nonnegative prices and exhibits the observed
long run exponential growth, is the geometric or multiplicative Brownian mo-
tion W(r) = e* (see e.g. Samuelson (1973)). Let us suppose we are holding a
stock whose price W(t) fluctuates according to this model, where X(¢) is a
Brownian motion with drift # and variance ¢*. If we sell at time T = T(a) our
discounted mean return is

5e—(1+r)a,

(4.3) eI = 5 osh (6a) — (T + 1) simh ()

where 8 > 0 is the discount rate.

The selling time T embodies the Wall Street maxim “Ride your winners and
cut your losses.” One would hope that such a rule would maintain an investor
in the better stocks longer than in the poorer ones. Out of a group of n stocks
having parameters (g, ,%), « -+, (¢,» 0,%), pick a stock at random and sell it at
time T, then pick another stock at random and hold it until its 7, and so on.
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The rate of growth of a portfolio managed under this strategy is found by solving
for 8 in E[e~#"W(T)] = 1, where now we consider (z, ¢®) to be random. Ac-
cording to (4.3), with y, = /0, and 6, = (7,* + 2pB/0,*)* we solve for 8 in

1 = _1_ i 9, exp{—(1 + 7,)a} .
n <75, cosh (9,a) — (1 + 7,)sinh (3,a)

Whether or not this rate is higher than the growth rate of the group as a whole
depends on how g, varies with ¢ in the group, and must be checked numerically
under any given assumptions.

5. Related results. Stated in our notation, Brockwell (1974) has shown
Pr{r(x) < T} = exp{—2yx(e’* — 1)7"}.

This coincides with the special case § = 0 in our f(x) = e~?. Brockwell, in
addition, points out applications of his formula in cell growth models and heavy
traffic queues.
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