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A UNIFORM THEORY FOR SUMS OF MARKOY
CHAIN TRANSITION PROBABILITIES

By RoBERT COGBURN
The University of New Mexico

Necessary and sufficient conditions are given for boundédness of
supn || 51 (PX(x, +) — PX(y, +))l| and supn || Z%-; (P*(x, +) — =l|, where the
norm is total variation and where = is an invariant probability measure.
Also conditions for convergence of 35, (P¥(x, +) — z) in norm are given.
These results require the study of certain ‘‘small sets.”” Two new types are
introduced: uniform sets and strongly uniform sets, and these are related
to the sets introduced by Harris in his study of the existence of ¢-finite
invariant measure.

0. Introduction. The basic technique in the analysis of recurrent Markov
chains on a discrete state space is a renewal method, dividing the chain into
interblocks between its returns to a designated state (see Blackwell and Freedman
(1964), Cogburn (1971) for a discussion of interblocks). When the state space
is continuous (nonatomic), one may attempt to approximate this method, re-
placing the state by a suitably chosen “small set.” Chapter 1 of Orey (1971)
includes a discussion of two types of small sets that have been important in the
development of the theory: the first really general theory for chains on a con-
tinuous state space (Doblin (1937), Doob (1953)) makes use of a type of small
set called a C-set by Orey, while the type of small set introduced by Harris
(1956) in his proof of the existence of s-finite invariant measure for recurrent
chains is called a D-set by Orey and in the following discussion.

The main purpose of the following study is to develop conditions for bounded-
ness and convergence of sums of transition probabilities in total variation norm.
These results require the introduction of a new type of small set. They also
require finite invariant measure. When the invariant measure is infinite, it is
possible to establish some related results for sums of transition probabilities,
but not of the uniform type (corresponding to the variational norm) discussed
here. See Duflo (1970), Metivier (1969), (1972), Neveu (1971), Orey (1971) for
a discussion of results of this type, including convergence of Y P*f for certain
special functions f.

The interblocks of a Markov chain, between its returns to a specified recurrent
set, are themselves a Markov chain. In general these interblocks are not inde-
pendent unless the specified return set is an atom, but when this set is a D-set
the interblock chain is pointwise strong mixing. This fact is sufficient to extend
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many results true for discrete state spaces to the continuous case. Other results
(even for discrete state spaces) require some type of probabilistic bound on the
return times to the specified set, or, equivalently, on the length of the inter-
blocks. This leads to the formulation of new types of small sets. The theory
for sums of transition probabilities considered below is a case in point. The
type of small set required will be called a “strongly uniform set”. These sets
have considerably stronger properties than D-sets, and there is another type of
small set, called a “uniform set” in the discussion to follow, that serves as a
natural intermediary between D-sets and strongly uniform sets. Uniform sets
have some interest in themselves and facilitate the study of strongly uniform sets.

Section 1 introduces the basic notation and recalls a few results necessary to
the following discussion. Section 2 studies the more obvious relations between
D-sets, uniform sets and strongly uniform sets. Section 3 goes more deeply into
the properties of strongly uniform sets and a related regularity property of states.
Section 4 relates uniform sets to compact sets when the state space is topological.
And Section 5 provides the theory for sums of transition probabilities.

The results in Section 5 make it desirable to know when strongly uniform sets
exist and how to identify them. This is the main purpose for the discussion in
the previous sections. Typically, the readily accessible information about a
chain includes little more than the one-step transition probabilities and the
invariant measure. When the transition probability satisfies a Feller type of
stability condition, the results in Section 4 often make it possible to identify both
uniform and strongly uniform sets to the precompacts. See Duflo (1970), Foguel
(1968, 1969A) for some related results.

1. Preliminaries. Consider a Markov chain X, X;, X,, - .. taking values in
a measurable state space (27, %) with one step transition probability P(x, A)
and n step transition probability P*(x, A).

Let M denote the Banach space of bounded real valued measurable functions
on (2, %) with supremum norm, and let ¥ denote the Banach space of finite
signed measures on (27, %) with total variation norm. The n step transition
probability defines an operator on M and on ¥ in the usual way by the equations

Prf(x) = § f(y)P"(x, dy)
WPH(A) = | Pr(x, A)W(dx) .
The transition probabilities are assumed to satisfy the Chapman-Kolmogorov
equation, or, equivalently, to define (discrete parameter) semigroups on M and ¥.

Frequent use will be made (without further comment) of the following rela-
tions, valid for g, v e ¥ with p(Z°) = v(Z°):

e — vl = supsesypus: | fdp — § fav|
= 28Up,c, |p(A) — v(A)| = 2sup,., (U(A) — v(A)).

A measure 7 (finite or not) is invariant if # = xP. The symbol = will be used
exclusively to denote an invariant measure.
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A probability distribution is determined for the chain X, Xj, X,, - - - by spec-
ifying an initial distribution, namely a probability distribution 4 for X, (of course,
¢ € ¥). This distribution on the chain will be denoted P,, and the corresponding
expectation E, (applied to real valued, measurable functions of the chain). When
¢ = 8, is the probability degenerate at x, P, and E, will be denoted P, and E,,
respectively.

A stopping time is a function = on the chain to the set {0, 1,2, - .-} U {oo} such
that [¢ = n] is a set in the o-field determined by (X, ---, X,) for each integer
n = 0. A particularly important example of stopping times are the return times
for a set A € %" let 7, be the first k > 1 such that X, € 4, ifany, and let 7, = oo
if no X, ¢ A for k = 1. Then ¢, is the first return to time to A. This terminology
will be used whether the process starts in 4 or not. Similarly, let z,™ be the first
k > 7, Y such that X, € 4, or oo if no such k exists. Then z,™ is the nth return
time to A. This notation will be used throughout; also the standard notations

L(x, A) = P,[r, < o] = P,(U5= [ X, € 4])
Q(x, A) = P, (N1 [r4™ < o0]) = P,([X, € 4 infinitely often])
A = {x: L(x, A) = 0}
and A4° for 27 — A.
For any stopping time 7, a “transition probability” P is defined by

P(x, A) = P,[r < 00, X, € A] = Y=, P,[r = n, X, € A] .

The strong Markov property is valid for Markov chains and will be used occa-
sionally below. (See, for example, Loéve (1963).)

A set Ae 57 is inessential if Q(x, A) = 0 for every x € 22, and otherwise A4 is
essential. A countable union of inessential sets is null. A null essential set is said
to be improperly essential. A non-null essential set is properly essential, also
termed positive in what follows.

It is convenient to formulate certain hypotheses in terms of an arbitrary (but
fixed) nontrivial, o-finite measure ¢ on (27, .%). The symbol ¢ will be used ex-
clusively for this measure.

A chain is ¢-recurrent, if, for every Ae & with ¢(4) > 0, L(x, A) = 1 for
every xe 2. (Such a chain is also said to be recurrent in the sense of Harris.
The present terminology follows Orey (1971).

Basic HYPOTHESIS. [t is assumed throughout this study that the chain is ¢-
recurrent.

In Doblin’s (1940) terminology, this is equivalent to saying that 22”7 is an en-
semble final. Harris (1955) shows that a p-recurrent chain has a o-finite invariant
measure «, unique up to a multiplicative constant. (Harris assumed ./ countably
generated, and this assumption was eliminated by Jamison and Orey (1967).) The
following result is stated for convenience. See Orey (1971) for a discussion.

ProrosITION 1.1. A set Ae . is null if, and only if, n(A) = 0. Also, the
measure ¢ is dominated by n, so A null implies ¢(A) = 0.



194 ROBERT COGBURN

The chain is uniformly p-recurrent if, for every A e o7 with ¢(4) = 0
sup,. . P[t, =n]—0

as n — oo. See Orey (1971) for a discussion of uniform ¢-recurrence, particu-
larly his Proposition 6.1. As he notes, uniform ¢-recurrence is closely related
to condition (D) of Doob (1953).

The next lemma is basic to several key results in this study.

LemMA 1.1. Let the chain be uniformly o-recurrent and ¢ > 0. Then there exist
constants a < oo, 0 < b < 1, (depending on ¢) such that, for every Ae .S with
p(4) = e

sup, ., Plz, 2 n] < ab".

The proof is essentially that of Lemma 5.1 of Chapter V of Doob (1953).

Say that a set 4 € . is recurrent if L(x, A) = 1 for every x € A. For recurrent
sets it is often of interest to consider the chain on A, namely the sequence X,
X, s X, 2, X, 1, - - -, where X is restricted to 4 and the chain on A takes
values in the state space (4, .%7,), where %7, = {Be .%/": B C A}. This chain
has transition probability P ,,(x, B) = P*4(x, B).

Under the basic hypothesis that the chain is p-recurrent, a set 4 € .97 is recur-
rent if, and only if, 7(4) > 0, which, in turn, is equivalent to 4 being properly
essential. Moreover, if 0 < 7(A4) < oo, then the chain on A4 has the invariant
probability measure 7, defined by = ,(B) = n(AB)/n(A), Be .%,, and the chain
on A is m, recurrent.

Certain results from Doblin’s general theory of Markov chains (Doblin (1940))
and its later developments will be used in the sequel and referred to as required.
For some comprehensive discussions of this theory see Chung (1964), Jain and
Jamison (1967) and, especially, Orey (1971). Also, from a different viewpoint,
Foguel (1969B) is of interest.

2. Small sets. A small set is one having some kind of uniform property.
Three types are considered here. As in Section 1, ¢ is an arbitrary nontrivial,
o-finite measure on % such that the chain is ¢-recurrent, and = denotes the
o-finite invariant measure (unique up to a multiplicative constant).

DEFINITION 2.1. A set Ae % is a D-set for ¢ if the process on A is uniformly
p-recurrent. (This requires ¢(4) > 0.)

DEFINITION 2.2. A set A e . is p-uniform if, for every B with ¢(B) > 0,
sup,e, P,[tp = n]—0

as n — oo. _
DEFINITION 2.3. A set Ae . % is ¢-strongly uniform if, for every B with
¢(B) > 0,
sSup, .4 E, 75 < o0
When these properties hold for ¢ replaced by =, the state set 4 will be said
simply to be a D-set, uniform or strongly uniform in cases 1, 2 or 3, respectively.
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Nork 2.1. Since ¢ « 7, in general the concepts with ¢ replaced by = appear
stronger. In fact, they are equivalent for cases 1 and 2 and also for case 3 if =
is finite, as will be seen below.

Norte 2.2. By Markov’s inequality,

SupzeA P:c[TB g n] é _’11' supxeA EzTB .

It follows that any ¢-strongly uniform set is p-uniform. When ¢(A4) > 0, it is also
true that A being ¢-uniform implies 4 is a D-set for ¢ (Proposition 2.4 below).

ProrosiTioN 2.1. If A is a D-set for ¢ then A is a D-set (for ).
This result is included for completeness. For a discussion see Orey (1971).
PROPOSITION 2.2. If A is @-uniform then A is uniform.

Proor. Let n(B) > 0. Then P, [r, = n]— 0 as n — oo for every x and these
functions of x are .o/ measurable. By Egoroff’s theorem, there is a ¢-positive
set C with sup, ., P,[t; = n] —» 0asn — co. But then, using the strong Markov
property at time 7,

SupxeA P:c[TB g m + n] é supzeAPz[TC' 2 m] + supyeCPy[TB g n] - 0
as m, n — oo, hence A is uniform. [J
CorOLLARY 2.1. If ¢(A) > 0 and, for every B C A with ¢(B) > 0,

SUp,co P[tz = n]—0
as n — oo, then C is uniform.

Proor. Let ¢*(B) = ¢(AB). Then the chain is p*-recurrent and C is ¢*-uni-
form, hence uniform. [J

ProrosiTION 3. If the chain has a D-set for ¢, then there exist uniform sets A,
Ay, - such that A, C A, C --- and 27 — Y., A, is null.

Proor. Whether = is finite or o-finite, there is a finite measure p equivalent
to «.

Let B be a D-set for ¢. Then B is recurrent, and, for everyk = 1, P [t, =
n] — 0 as n — oo for every x, hence almost uniformly —». Hence, for each &
and m = 1, there is a state set B, , such that p(2 — B, ,) < 1/m2* and
SUp,ep, , Polts® =n] >0 as n— oco. Let B, = N, B, Then pu(Z —
B,) < 1/m. '

Now for any C ¢ B with ¢(C) > 0, applying Lemma 1.1,

SUp;cs,, Plry = n] < SUP,es,, Pt = TB(k)] + SUp;ep,, Px[TB(k) = n]
< ab* + sup,.5, P,[t;* = 1],
where 0 < b < 1. Letting n — oo then k — oo, the right-hand side converges to

0. By Corollary 2.1, each B, is uniform. The sets 4, = |J7_, B, then satisfy
the assertions. []
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Orey (1959), (1971) shows that, if .o is countably generated, then there exist
D-sets Dy, D,, - -- such that D, ¢ D, c--. and |y D, = 2. Thus when . is
countably generated Proposition 2.3 is in force. It is not true, in general, that
the uniform A, can be chosen so | 4, = 2. The following quite artificial
example suffices to show why this is true.

ExampLE 1. Let N ={1,2,3, ...} and S be the set of nonnegative sequences
s = {s,} on N'such that 37 s, = 1. Of course, § is a measurable subset of [0, 1]”,
with its product Borel field. Let.&” be the o-field of Borel subsets of S. Now let
&~ = N U S and . consist of all subsets of 2~ of form M U T where M — N
and T e & Note that .9 is countably generated. Now define the transition
probability by P({s,}, {k}) = s, for {s,}e Sand ke N; P(n,{n — 1}) = 1 forne N
with n = 2, and let P(1, {1}) = 1. Then = is degenerate at 1, .2” — {1} is null
and {1} is trivially uniform. But the existence of a sequence of uniform A, such
that J 4, = 22 would imply that S can be partitioned into a countable number
of subsets § = |J S, such that the series )] s, converges uniformly on each S,,
and this is not possible.

PROPOSITION 2.4. Let ¢(A) > 0. Then A is g-uniform if, and only if, A is a
D-set for ¢ and
sup,.4 P.lt, =n]—>0
asn— oco.
PrOOF 1. (=). Let B C A and ¢(B) > 0. Then, since 7, > n,
SUp,e 4 Py = T, < SUD; e 4 Pz[TB = ”] —0
as n — oo, hence the process on 4 is uniformly ¢-recurrent. []

PrOOF 2. (=). Let B C Aand ¢(B) > 0. By Lemma 1.1, there exist a < oo,
0 < b6 < 1 such that P,[r, > r,] < ab" for every n. Also, using Boole’s in-
equality and the strong Markov property,

supzeA Pa:[TA(m g nk] é n SupxeA Pz [TA g k] .
But then
SUP,c4 Pofts = nk] < ab™ + nsup,., P[r, = k] >0
as k — oo then n — co. By Corollary 2.1, A4 is uniform. []

A ¢-recurrent chain always has a finite period d = 1, and when d = 1 the
chain is said to be aperiodic. When the chain has an invariant probability
measure 7, Orey (1959), (1971) has proven that

as n — oo for every x € 27 Note that, if % is countably generated then &7
has a countable field %, ¢ . and generatlng &7, and

a(n, x) = 2sup,.

7 TP, 4) = n(a)] .
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It follows that §(n, -) is measurable in x in this case. Moreover, by Egoroff’s
theorem, 4(n, +) — 0 w-almost uniformly as n — co. In general  need not be
measurable nor converge uniformly on any z-positive set. (See example in
Section 3.)

It will be useful to consider also

) = | i P, ) — x|

THEOREM 2.1. Let & be an invariant probability measure. Then the following are
equivalent for an Ae 7"
(i) A is uniform.
(ii) sup,., 0(n, x) > 0 as n — co.
(iii) sup,., 7(n, x) >0 asn — oo.

Proor 1. (1 =2). Let 4 be uniform. Assume first that % is countably
generated. Then there exists a set B with #(B) > 0 such that sup, ., d(n, x) — 0
as n— co. Now for any Ce % and n = m,

l d—1 pn+k — T
7 2z PrHi(x, C) (C)|

1
E, {(%[13>m] + 271 Arep=41) (7 At Xixgecr — ”(Q)H

g Pz[TB > m] + Ea: {Z;’;l X[t3=.1']

1 ,
TR PG, ©) — =(0)}
< PJtg > m] 4+ SUp,es kzn-m 0(k, ) -
If A is uniform, then
%supxeA 5(”’ x) é Supst Pz[TB > m] + SupyeB,kgn—m 5(k’ .y) - 0

as n — oo then m — oo.
If &7 is not countably generated, then there exists a countable set 4, C 4
such that

SUP, e 4, 0(1, X) = SUp, ., 6(, X)
for every n. Furthermore, there exists an admissible countably generated o-field
&7, © &7 such that, for every x e 4, and n,
3(n, X) = 25UPge, Gi 3423 Prrk(x, C) — n(C)) :

But then the first part of the proof applies to the chain on (27 .%7)) and implies
that sup, ., d(n, x) — 0.

PROOF 2. (2 = 3). Obvious.

Proor 3. (3 =1). Let sup,., r(n, x) — 0. First note that for any Ce .7,
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1=

:Iv—

Alegzn Z’I:=l X[Xkecl

SO
Plcy = n] < % Tia(l — Px, C) < 1 — 2(C) + #(n, ) -

Now given B with ¢(B) > 0 and ¢ > 0, let
C,={x:PJry=m] < ¢},
Since the chain is ¢-recurrent, C,, 1 22~ and there exists an m such that =(C,,) =
1 — ¢. But then
SupzeA Pz[TB g m + n] é SupzeA P:c[TC’m g n] + SupyeCm Py[TB 2 m]
< sup, ., 7(n, x) 4 2¢ .

The first term converges to 0 as n — oo and ¢ > 0 is arbitrary, so it follows that
A is ¢-uniform and (by Proposition 2.2) uniform. []

The concluding result of this section shows that g-strongly uniform sets are
of interest only when = is finite.

PROPOSITION 2.5. If A is a ¢-strongly uniform set with ¢(A) > 0, then the in-
variant measure w is finite.

Proor. The standard Harris proof of existence of a ¢-finite invariant measure
= shows that the chain on a D-set 4 has an invariant probability measure «,.
(See Orey (1971) for a version not requiring that .2~ be countably generated.)
A o-finite invariant measure = is then defined on 2~ by

n(B) = {4 Jpei Pofty = 0, X, € Blm,(dx) .

But then
7(27) = §u L Pulea Z nlry(dx) = E, 7,

é supzeAEzTA < (e
under the stated hypotheses on 4. []

3. Regular states and strongly uniform sets. Throughout this section the chain
is assumed to have invariant probability measure n. If n(A) > 0, then by a well-
known formula of Kac (1947)

(3.1) VJE, 7 ,m(dx) =1.
Later on in this section a generalized form of Kac’s formula is established
(Lemma 3.4). It follows from (1) that E, 7, < oo except for x in a null subset
of A. In fact, this is true globally.

ProrosiTION 3.1. If m(A) > 0, then E, v, < oo except for x in a null set.

Proor. Let D = {xe A: E,r, = oo}. Then n(D) = 0, and the set C = D°D°
is stochastically closed with 7#(C) = 1 (see Orey (1971), Chung (1964)). Let
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B = AC. Then, for every xe B, E,7;, = E,7, < co. Now let F = {xe 2"
E,t; = oo}. Then Bn F = @ andif P, [z, < 73] > 0, then E, 75 = co. Hence
Pty > t5] = 1 for every x e B, and it follows that, for n =1,2,3, ... and
every x € B,
‘ Prp >n] 2 Pler > "] =1.

But then L(x, F) = 0 for x ¢ B. Since n(B) = n(4) > 0, B is nonempty. But
then F is null (see Orey (1971) Proposition 8.1, for example), and E, 7, < oo
for x¢ Fsince t, < 7. [

DEFINITION. A state x is ¢-regular if E,7; < oo for every state set B with
¢(B) > 0. When this property holds for ¢ replaced by = it will be said simply
that x is regular. Let % denote the set of regular states.

Norte 3.1. A state x is g-regular iff {x} is p-strongly uniform. Also every
element of a p-strongly uniform set must be ¢-regular.

Nortk 3.2. If #({x}) > 0 for some state x, then Proposition 3.1 implies that x
is regular. Thus when 22” is countable z-a.e. state is regular. But in general no
regiﬂar state need exist since the null set of x such that E,r; = oo (for n(B) > 0)
can vary with the set B.

ExampLE. Blackwell (1945) constructed an example to show that an inde-
composable -2” need have no final subset. (The chain is ¢-recurrent for some
¢ if, and only if, 227 is a final set.) He let 227 = [0, c0), % be the class of all
countable subsets of 22~ and their complements, and 7(4) = 0 or 1 according as
A is countable or uncountable. The transition probability, forn < x < n + 1,
is given by

~ P, {x +1) =1 —p,

P(x, Ay = p,m(A) for (x +1)¢g 4.

Then P(x, A) is % measurable for every 4 € %7, = is invariant and, if all p, > 0,
then 2”7 is indecomposable. Also the chain is aperiodic (d = 1). If }] p, < oo,
then P"(x, «) - =, and, of course, the chain is not p-recurrent.

For the present purpose assume that )] p, = oo but p, — 0 as n — co. In this
case .2 is m-recurrent and, form < x < m + 1,

o(n, x) = ||P*(x, +) — 7|l = 2 [I3227" (1 — py) -

Then 4(n, x) — 0 as n — oo for each x, but d(n, x) > 1 as x — oo for each n.
It follows that there is no measurable, properly essential A such that sup,., d(n,
x) — 0 as n — oo. But then Theorem 2.1 implies that the chain has no uniform
set A with 7(4) > 0, and by Proposition 2.3 the chain has no D-set. Of course,
d(n, +) is not %" measurable.

Consider now the special case p, = 1/(n + 2). Foreach x,let 4, = {x, x + 1,
x+2,...}. Thenn(4,°) =1land,forn<x<n+41

ErAc_1+Z:kIH”“"(1—Pj)=1+<”+1)Z’7=‘n+11<+1:
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Thus no x is regular. If, instead, p, = (n + 2)~%, then an example is obtained
where every x is regular. But for either choice of p,, the chain has no D-set
and no uniform or strongly uniform set 4 with z(4) > 0.

An important question remains open: when 7 is finite and % is countably
generated, can the chain have no regular state? If the answer is negative, then
it would follow from Theorem 3.1 below that the chain must have properly
essential, strongly uniform sets in this case. (The theorem requires that
() > 0, but if (<) = 0, then F£°.%° would have no regular state.)

Lemma 3.1, For A, Be .57, and every x € 77,
Ety S E,t)+ sup,e, E,75.
Proor. Let 7 be the first time the process enters B after entering 4. Then
T = 7, and, using the strong Markov property,
E,c, <E,r =E,r, —I—Ex(EXTATB)é E,7, +sup,c  E 5. 0
Lemwma 3.2, If B is strongly uniform and

SupmeA EmTB < o ,
then A is strongly uniform.

This follows immediately from Lemma 3.1.

ProrosITION 3.2. If Ae 7 is @-strongly uniform, then A is strongly uniform.
If a state x is g-regular then x is regular.

Proor. Let 4 be ¢-strongly uniform and n(B) > 0. Then E,z, = 0 for x
outside a null set C. Since ¢(C) = 0, there exists a set D with ¢(D) > 0 and
Sup,cp E, 75 < oo. But then, if 4 is p-strongly uniform, sup,., E, v, < oo, and
by Lemma 3.1, sup,., E,7, < oo. Hence A4 is strongly uniform. The assertion
for a state x follows directly from this and Note 3.1 above. [T

PRrorosITION 3.3. Let A be properly essential. Then A is strongly uniform if,
and only if, A is a D-set and sup,., E,7, < co.

Proor 1. If A is strongly uniform and properly essential, then #(4) > 0 and
sup,., E,7, < . Also 4 is uniform and, by Proposition 2.4, is a D-set.

Proor 2. Let w(B) > 0. Then E,7r; < oo for m-a.e. x, hence there exists a set
C c A with #(C) > 0 and sup,., E,7; < co. Let Ar,™ = ¢, ) — ¢, ™ and
consider the equality ‘

(3.2) To =T4 + 2ner X[rg>rA("’]ATA(m .
Now A4 is a D-set, so applying Lemma 1.1 for the set C, there exist a < oo,
0 < b < 1 such that
SUP,eq E 70 S SUP, 4 E,Ty + D10 Ex{x[,pmm,]EITA(,,,(ATAW)}
SSUp, ey By, - (1 4 Xnoab™) < oo
Then, by Lemma 3.1, sup,., E, 75 < oo. []
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PROPOSITION 3.4. If the chain has a properly essential, strongly uniform set A,

then the set of regular states is
R ={x: E,;t, < oo} .

Moreover, 2 is stochastically closed, 22 — 2 is null and there exist strongly
uniform A,, A,, - -+ such that A, C A,C --- and J 4, = .

Proor. Let A4, = {x: E,r, < n}. By Lemma 3.2, each 4, is strongly uniform.
By the observations in Note 3.1 above,

AR ClxiEr,<o)=U4d,C#.

The first and last assertions follow from this. By Proposition 3.1, .27 — &2 is
null. Finally, let P(x, 227 — £2) > 0. Then, since 4 C 5%,

E,z, = E,t,P(x,dy) = oo

§o-
and x ¢ &%, so .2 is stochastically closed. [T

LEMMA 3.3. A state set A is strongly uniform if, and only if, there existsa é > 0
such that

SUP,ea,meinmr>—s EoTp < 00 .
Proor 1. Let the above condition on sup E, 7, hold. Given a positive C,

by Proposition 3.1 there exists a set Be % such that =(B) > 1 — 4 and
sup,.; E,7, < co. Then, by Lemma 3.1,

SupxeA E:cTC é SupxeA Ea:TB + SupyeB EyTC < 0 ,
and it follows that A4 is strongly uniform.

Proor 2. If the condition on sup E, z, does not hold, then there exist B, € &
and x, € A such that 7(B,) — land E, 7, — co. Without loss of generality the
B, can be chosenson(B,) > 1 —2~"forn=1,2,3, .... Let B = (| B,. Then
m(B) > 0 and

SUp, e E,7p = sup, sup,c, E,t5 = o0
so A is not strongly uniform. []

In general, .22 need not be measurable. Proposition 3.4 implies that R is
measurable when the chain has a properly essential, strongly uniform set. It is
also true that % must be measurable when & is countably generated, as will
be shown below.

THEOREM 3.1. Let & be countably éenerated. Then F# e &, n(#) =0 or
1, and if m(R) = 1 then the chain has properly essential strongly uniform sets, and
the conclusions of Proposition 3.4 apply.

Proor. Let d > 0 and

Sf3(X) = SUPe yinay>1-s EaTy -

Let %7 be a countable field generating .. Then for each 4 ¢ % and x € 27,
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there exist 4, € % such that =(4,) — n(4) and 4, = T4 in P, probability as
n — oco. By Fatou’s theorem, E,r, < liminf E, ¢ 4, It follows that

[3(%) = SUP4c yimisros Eaty s
hence f; is measurable. Now let 4, , = {x: f,(x) < n}. By Lemma 3.3, the A,
are strongly uniform, and by the same lemma each regular x must be in some
Asne Thus P = U, Aym,.- If all the 4, , are null, then & is null. If
n(#) > 0, then some 4, , must be properly essential. But then Proposition
3.4 applies and 7(#) = 1.
Let f be a numerical function defined on {1, 2, 3, .. -} and let

Af(n) = fin + 1) — f(n) .
The next result generalizes a lemma of Kac (1947). Its validity depends only on

P_ being an ergodic probability measure (the assumption that .2” is p-recurrent
is not required.)

LemMA 3.4. Let f(n) 1 forn = 1,2,.... Then for every properly essential set A,

(3.3) T(AE, (f(r0) = f()7(A) + § o_4 EL(Df(z,))7(dx) .
Proor. Let
B, = [X,e A]; B, =[X,¢A, 7, =n], n>1
C.=[XecAd,r,=n], nx=1,

Then |J C, = B, a.s.-P_since = is ergodic. Since the C, are disjoint 3} P (C,) =
P.(B,). By stationarity, for k = 2,
PK[TA = k] = ”[Xl ¢A, v, = k] = Px(Bk—l) .
The B, are disjoint, so P, B, — 0 as n — oo, and, since C, = [¢, = k] — B,,
Limnir Po(C) = Zitasa (Po(Bioy) — P(By)} = P(B,) ,
forn = 1.

Now let f(0) = 0 so Af(0) = f(1). Then the left-hand side of (3.3) is

§4 ELf(z))m(dx) = X5, flk)P(Cy)
= Zia P(C) 2525 Af(n)
= Z:=o Af(”) Z;:=n+1 P:r(Ck)
= =0 Af(n)P(B,)
= f()r(A) + § -4 E(Af(z,))m(dx) .
The reordering of the summation is justified since all terms except possibly
A£{(0) are nonnegative. []

CoroLLARY 3.1. Let & be an invariant ergodic starting distribution. Then for
any state set A with A > 0, ‘
1
E T = —
=4(74) A

1
E‘rrA(‘l.A2 = TE—A- (2E7r(TA) - 1)
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and, for anyr = 0, s = 0,

E(t,7(log 7,)) < o0 = E, (t,/*(log 7)) < oo .

Proor. The first two assertions are well known and are an immediate conse-
quence of the lemma. For the last assertion, observe that, if f(n) = n"*'(log n)’,
then

Af(n) ~ (r + 1)n"(log n)*,
and apply the lemma. []

LEMMA 3.5. LetO<Af <b. Let yt be a starting distribution such that E, f(z ;) < co
for some strongly uniform A. Then E, f(tg) < oo for every properly essential B.

Proor. Let ¢ be the first time the chain enters B after entering 4. Then

f(zp) = f(7) = f(z4) + b(z — 7.)

and
E#f(TB) é E#f(TA) + bsupmeA EmTB < o . I:l

CoRrOLLARY 3.2. If E, (7,*) < oo for some properly essential, strongly uniform
A then E, (7,%) < oo for every properly essential B.

This is an immediate consequence of Corollary 3.1 and Lemma 3.5.
This section is concluded by showing that under a very weak moment con-
dition the chain has properly essential, strongly uniform sets.

THEOREM 3.2. If the chain has a D-set A such that E, (v logt,) < oo (or,
equivalently, E (log t,) < o), then the chain has properly essential, strongly uni-
form sets.

Proor. Let 4 be a D-set such that E, (r,logr,) < co. Let ¢ = n(4)/2 and
a, b be the constants that appear in Lemma 1.1. Choose ¢ > 1 s0 bc < 1 and
observe that

(3'4) lOg (CTA) g Z::;O (lOg C)X[rAéc""] .

(When ¢* < 7, < ¢, the right-hand side is (n + 1)logc.) Using (3.4), the
monotone convergence theorem and the stationarity of Az,™ = 7,V — ¢, ™,
n=0,1,2, ..., under P, (where 7, = 0),

o > E (v logcz,)
= Dnoo(loge) Sieyzem 74 AP,
= D=0 (log ) Sac mzem Az, ™ dP,
= § {2720 (108 €) Stacgmzeny A, ™ AP} y(dx) -
Let f(x) be the quantity in brackets in this last expression. Then f is measur-

able and finite for a.e. x in A4, hence there exists a finite constant d and q state
set B C A such that 7(B) = n(A4)/2 and f(x) < d for every x ¢ B.
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Applying (3.2) and Lemma 1.1, for every x ¢ B,
EzTB = Ez(TA + Z::=l X[rB>tA('”)] ATA(M)

é lf‘OLg)é + Ez(Z::=l X[tB>tA('”)]cn)

< d + e ja(be)” < oo .
log ¢

Thus sup, . 5 E,7,< oo, and Proposition 3.3 implies that B is strongly uniform. []

4. Uniform sets and compactness. In this section Z° is a locally compact,
separable metric space and .57 is the Borel field in 2° (the o-field generated by
the open sets).

Let C denote the set of bounded, continuous, real valued functions on 2’
Of course, C is a closed subspace of the Banach space M. The transition prob-
ability P is stable on 2 if Pf e C for every fe C. This is equivalent to the
statement that the mapping x — P(x, +) is continuous in distribution.

A finite measure p on & is regular if 44 = sup pF, the supremum over all
closed F C A, for each 4e .97, Of course, every finite measure on the Borel
field of a metric space is regular and this property is essential to some of the
results that follow. It is easy to generalize this theory to the situation that 27
is a T, normal topological space provided the transition probabilities are all
regular measures on Z2°.

By making a very strong continuity assumption it is easy to establish that
compact sets are uniform.

PROPOSITION 4.1. Let P(x, A) be continuous in x for every Borel set A. Then
every compact set is uniform.

Proor. The hypothesis implies that Pf ¢ C for every simple function fe M.
Since every function in M is the uniform limit of such simple functions, PfeC
for every f e M.

Now let 4 be any positive set and define

Tf = P(xac f) -
Then T is a linear operator on M, Tf ¢ C for all feMand
Pty > n] = E, J[} 2ae(Xe) = T"1(x)
is continuous in x. Since P,[r, > n] | O for every x as n increases the conver-
gence is uniform on compacts by Dini’s lemma. []

The task now is to weaken the continuity assumption of the preceding result.

LEMMA 4.1. Let P be stable and let F be a closed set and G be an open set. Then
P(x, G), P,[ty = n] and E, are all lower semicontinuous in x, while P(x, F) and
P (tq = n) are upper semicontinuous in x.
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ProoF. Since F is closed, there exist f,e Csuchthat 0 < f, < 1 and f, | 3,
as k1 co. Then P(x, F) = inf, Pf,(x) is upper semicontinuous. Now let T, be
defined on M by

T.9 = P((1 — f)9) .

Then T, g e C for each g e C, so
P [ty = n] = sup; E, [[%21 (1 — fu(X))) = sup, T,*1(x)

is lower semicontinuous. Also E, 7, = Y=_, P,[t, = n] is lower semicontinuous.
The assertions for G follow by similar arguments. []

PROPOSITION 4.2. Let P be stable. Then the closure of a uniform set is uniform,
and the closure of a strongly uniform set is strongly uniform.

Proor. If n(B) > 0, then, since = is regular, there is a closed F — B with
n(F) > 0. Then, letting A denote the closure of 4 and applying Lemma 4.1,

sup,c i P[tp = n] < sup,. ;3 P,[tr = n] = sup,., P.[t, = 1]
Squej EmTB é Supxej EzTF == Supa;eA EzTF .
The assertions follow directly from these relations. [

LEMMA 4.2. Let P be stable and A be a given state set. Suppose that for each
¢ > 0, there is a positive open set G, and an n, such that

Supa:eGe P:c[TA g ne] é €.
Then, for every compact K,
lim, sup, ., P,[r, = n] = 0.

Proor. Given ¢ > 0, let G, and n, be stated above. Since G, is positive,
P [tg, = m] | 0 as m increases for every x. By Lemma 4.1, these probabilities
are upper semicontinuous in x, so the convergence must be uniform on compacts
by Dini’s lemma. But then

SUp,ex Pty = m + n] < sup,cx Prg, = m] + <.

The right-hand side must be less than 2¢ for m sufficiently large, and the lemma
follows since ¢ is any positive number. []

A state x is a point of increase of a measure p on 7 if 4G > 0 for every open
G containing x. The support of 4 is the set of all its points of increase. Now it
is well known, and easy to verify, that the support of g is closed and equals the
intersection of all closed sets that carry p. Since 22” is a separable metric space,
the topology is countably generated. Hence the support of p is a countable
intersection of closed sets carrying u, and g is carried by its support. Let S
denote the support of the stationary distribution .

THEOREM 4.1. Let P be stable and S be a second category subset of Z°. Then
every compact set is uniform.



206 ROBERT COGBURN

Proor. Let A4 be positive. Then n(4) > 0, and since = is regular, there is a
closed F c 4 with #(F) > 0. Now, for ¢ > 0, let

F,.={x: Py 2 n] < ¢}.

It follows from Lemma 4.1 that the F, . are closed. Since the chain is ¢-recurrent
U. Fa. = & But then U3, (S n F,,) is a covering of S by closed sets. The
category assumption then implies that, for some n, S n F, , contains a nonempty
open set G, .

Since G, . intersects S, 7(G, ) > 0. But r, < 7, and it follows from Lemma
4.2 that, for K compact,

Sup,.x P:c[TA =n]l = SUp, . x Plrp, = n]— 0

as n — oo. |:|

CoRrROLLARY 4.1. Let P be stable and S have nonempty interior. Then every com-
pact set is uniform.

This is an immediate consequence of the Baire category theorem. (Even if 27
is not complete, it is locally compact and regular, hence of second category.)

ExaMPLE. Let 27 = [0, 1] with the usual metric and

P(x, {0}) = 1 —P(x, {1 X }>=x

+ x

for all x > 0, and let P(0, {0}) = 1. Then S = {0} is a first category set. This
P is stable and 27 is compact, but 27 is not uniform since P [z, = n] — 1 as
positive x — 0 for every n.

LemMMA 4.3. Let P be stable. Then S is stochastically closed.

Proor. Suppose there is an x e § such that P(x, $°) > 0. Since S° is open,
P(., 8% is lower semicontinuous, hence there is an open G containing x such
that P(y, $°) > 0 for all y in G. Since x is a point of increase of =, '

7(S%) =z Yo P(y, $)n(dy) > 0.
The lemma follows ab contrario since = is carried by S. [
CoROLLARY 4.2. Let P be stable. Then every compact subset of S is uniform.

Proor. Since S is closed, it is locally compact (and regular), hence of second
category in its relative topology. Since S is stochastically closed, the process on
S has transition probability P (x, 4) = P(x, A) for every xe S and 4 e ..
Furthermore, by Tietze’s extension theorem, any bounded continuous f on §
extends to a bounded continuous fon 22°. Then P, f(x) = Pf(x) for every xe S,
so P, is stable on S and Theorem 4.1 applies to the chain on S. []

A function f in M vanishes at infinity if, for every ¢ > 0, there exists'a compact
K such that | f(x)| < ¢ for x ¢ K. The next result does not require that P be stable,
but a related property “at infinity” is assumed.
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THEOREM 4.2. Let the function x — P(x, K) vanish at infinity for every compact
K. Then every uniform set is precompact.

ProoF. Let K be compact and ¢>>0. Choose compact K, K, so that P(x, K)<e
for x ¢ K, and P(x, K,) < ¢ for x ¢ K,. Then, for x ¢ (K, U K))
Plex = 2] < P(x, K) + P(x, Ky) + (g, P(y, K)P(x, dy) < 3¢.

It follows that P,[r, < 2] vanishes at infinity for every compact K, and by
similar arguments, this holds for P [z, < n] for every n.

Since 227 is locally compact and separable, it is s-compact. Hence their exists
a compact K with z(K) > 0. Now let 4 be uniform. Then, for  sufficiently
large, sup,., P,[t, > n] < 1. But

f(x) = PJrg < n]l =1 — Py > n]

vanishes at infinity and is bounded below by a positive number on A, hence A4
must be precompact. []

Under mild conditions, compact sets are uniform. When can one conclude
that compacts are strongly uniform? Some condition on mean return times is
required, and the following simple result may be useful.

PROPOSITION 4.3. Let P be stable and suppose there is a compact set K such that
E,tx is bounded for x in compact subsets of S. Then every compact subset of S is
strongly uniform.

This follows immediately from Corollary 4.2 and Propositions 3.3, 2.4 and
Lemma 3.2. Note that E, 7, is lower semicontinuous by Lemma 4.1. If it were
upper semicontinuous (hence continuous) for some compact K, then the hy-
pothesis on E, 7, would be satisfied.

5. Sums of transition probabilities. Throughout this section it is assumed
that « is an invariant probability measure. Let

a(x, y) = sup,, || D= (PX(x, <) — P4y, +))||
B(x) = sup, || Xi=1 (PX(x, +) — 7)]| .
THEOREM 5.1. Let A be properly essential. Then SUp, e 4 A(X, y) < oo if, and
only if, A is strongly uniform.
Several lemmas will be established first.

Lemma 5.1. If ¢ is a stopping time, then for every n > 1, feMand xe Z,
|P* Zias PHf(%) — Dt P(%)| S 2)If]] - E,z -
Proor. The bound is trivial if E,7 = . IfE,z < oo, then Pt < o] =1,
and :
P* L3t PHf(x) — Zies P = 1B Do temit( D52 X)) — T2 X))
= EAX00 2K fllxee=ia} = 2||f1|E,< -
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LeMMA 5.2. For each properly essential, strongly uniform A, there is a constant
b, < oo such that

| 2 %=1 PH(x, B) — X3, 7, PH(B)| £ b,
for every xe A, Be .o and integer n = 1.
Proor. If the assertion is not true, then there exist B, € .% such that, letting
Ju(%) = 24(Z%=1 PX(x, B,) — X317, PXB,)) ,

the quantities ||f,|| satisfy sup, ||f,|| = oo.

Let
fo= L2
[1£3l]
Ju = —1‘—- (XB,, - —1— ZZ=1”APk(Bn)> .
I/l n
Then

fn = (2 Pkgn)XA s
and, since P ,(x, +) is carried by 4,
P(A)f'n = P (X% Pg,)
Now, P, = P4, so by Lemma 5.1, for x ¢ 4,

|P<A)fn(x) - fn(x)l é 2”g‘n”Ex TA é E:cTA .

2
I1£all
Let

an = Sup:ceA IP(A)fn(x) - f’n(x)l .
Applying Jensen’s inequality
supzeA IP{‘z)lfn(x) - P{‘A) -n(x)l é supzeA S anP{‘A)(x’ d}’) g 51;
for every k. It follows easily that

Suprea | L Er Phfi) — | < LD

Since A is positive and strongly uniform, by Lemma 5.1
2

n

inf, §, < inf, i (sup,., E,z,) =0.

But SUP,e 4 Ifm(x)l = ”fm” =1,s0

sup,, sup, 4

1 A =
- TR Ph )| = 1.
Since 7 ,(f,) = 0 for each n, it follows that for each m,

1
m D Py f(x) — m,fl=1.

SUPysiis1,0e 4
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But then 4 is not a D-set (see Theorem 7.1 part (iii) of Orey (1971)). Since Propo-
sition 2.4 asserts that 4 must be a D-set, the lemma follows ab contrario. [

The next lemma is somewhat more general than required for the theorems in
this section, but may have some independent interest.

LeEMMA 5.3. Let n(A) > 0 and_p be a probability distribution on 7. Then for
every positive integer n

1
Eved®™ = 5| S 2y SPecaim | D (PP 4) — pPHA)

ProOF. Assume the right-hand side of the inequality is finite, since the asser-
tion is trivial otherwise. For each integer / let [* = min {/, 7, — 1}. Then,
taking / > n, and using the fact that r,* is a stopping time in the third equality,

2kt F‘Pk(A) = E,,(me x4(X)
(5.1 = E(Xh=n Ategm=51 2k=3 Xa(X2)) + E(ZFo1 14(X0)

= E (X Xegm=g D= PAX;, A)) + E( D121 xa(Xe)) -
Now let

Fil) = Theroger #PH(A) for j <1
= Xk=o #PY(A) for j>1.
Then, using (5.1) at the third equality,

Eﬂfl("A(m) = E,J{Z’j:n Az g =41 Dibimin pPH(A)} + Plt,™ > I X0 #Pk(A)
= Dk=o #PHA) — E{ X X yom=in Dizh £PY(A)}
= p(A) + Ef s Aieym=5n Di=§ (PHX;, A) — pPH(A))}
+ E(Zk= 24(X4)
= E{Z%=n Xicym=51 Z4=i (PHX, A) — pPY(A))}
+ E(Zia xa(X)) + 1 — P, ™ > 1)1 — p(4)) .
Thus
IE fu(ta™) — E(Zim 24(X)) — 1]
S SUP,eum | D0er (PA(x; ) — pPHA))| + P e, ™ > 1]
Let

1 .
9; = — Z?:i_l l
J

1 i *
Yj = 1 —I— —j—' Z;L:»pf_l Ep(zgc=1 XA(Xk)) *

Then
IEpgj(TAM) - le = SUPcum | Dt (Pk(x’ A) — /"Pk(A))I

+ -;— SR, > ]

But, for each fixed k, g;(k) — km(A) asj — co. Also, y;1 n as j — oo and the
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last term on the right of the inequality converges to 0. Since g, = 0 for each j,
it follows by Fatou’s theorem that

n(A) - E(zx,™) < liminf; E,g,(c,"™) < oo .
Since 0 < g,(r,") < r,™, the lemma follows by the dominated convergence
theorem. []

Proor oF THEOREM 5.1. If A is strongly uniform, then, using Lemma 5.2,

SUP, yeu A(X, y) = 2 SUP, yea,Bes,n | 2ih=t P¥(x, B) — X7, Pk(y’ B)| <4b,.
Conversely, if a is bounded on A, then using the y(n, x) defined in Section 2

1
Supx,yeA IT(”’ x) - T(n’ .y)l é "‘1' SuPz,yeA a(x’ .y) - 0

as n— oco. Since the chain is ¢-recurrent, y(n, x) — 0 as n — oo for each x.
Hence, by Theorem 2.1, 4 is uniform, hence by Proposition 2.4, 4 is a D-set.
But, by Lemma 5.3,

1
SUp,eq E,74 = 71-(—A)~ (1 + sup, yeq | 51 (PX(y, @) — PH(x, A))|

1
< up, .. s .
S oy (LF SUPeyes atx )
Then by Proposition 3.3, A is strongly uniform. [T
CoROLLARY 5.1. If .97 is countably generated and if the set of regular states
% is properly essential, then n(%) =1 and a(x,y) < oo for every x,ye F#.
Moreover, a(x, y) = oo for every pair (x, y) with xe .Z2 and y ¢ .

Proor. By Theorem 3.1 and Proposition 3.4 n(<2) = 1and &2 = | A, with
the A4, strongly uniform and 4, 1 &2. Then Theorem 5.1 implies that « is finite
on .

If xe &2 and y ¢ &%, then for A4 strongly uniform and properly essential,
E,t, = oo by Proposition 3.4, and, by Lemma 5.3,

oo =n(A)E,t, <1+ sup,. a(z,y) = 1 4+ sup,., @(z, x) + a(x, y) .
But A4 U {x} is strongly uniform, so sup,., a(z, x) < co, and necessarily
a(x, y) = oo. []
LEMMA 5.4. Let A be strongly uniform and E, v, < co. Then
B(x) = 4(E, T4+ E.ty+ 0,
where b, is the constant in Lemma 5.2.
Proor. By the triangle inequality and Lemmas 5.1 and 5.2,
| 2 %=1 PH(x, B) — X% 7w PH(B)|
< |25 P(x, B) — § Xioa PH(ps B)PT4(x, dy)|
+ 1§ (Zh=1 P B) — Lioa my PHB))PA(x, dy)|
<2E,t,+b,.
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Integrate this inequality with respect to = and use Jensen’s inequality to get
| X4 (B) — %, 7, PB)| < 2E,7, + b, .
These two inequalities yield
| Stea (P(x, B) — 7(B))| < 2E, 74 + By, + by)
and the assertion follows immediately from this. []

THEOREM 5.2. Let A be properly essential. Then sup, ., f(x) < oo if, and only
if, A is strongly uniform and E,t, < oo (equivalently, E, 7, < o).

Proor. The “if”” assertion follows directly from Lemma 5.4, since, for A4
strongly uniform and properly essential, sup,., E,t, < co. For the converse,
let 8 be bounded on 4. Since

%) = - B(3),
A is uniform by Theorem 2.1, hence 4 is a D-set by Proposition 2.4. By Lemma
5.3 with p ==,
Beta S o (L4 $0Pies | Bt (P A) = 7(A)))
S oy L+ 0P B0} < oo

Using Lemma 5.3 again with ¢ = §,, where x ¢ 4,

By, < —(IA—) {1 + sup,e, a(y, ¥)} < —(15 {1 + 2sup,., B} -

It follows that sup, . , E,r, < oo, and by Proposition 3.3, A4 is strongly uniform. []

CoRrOLLARY 5.2. If E.t, < oo for some strongly uniform A, then n(2) = 1
and B(x) < oo, if and only if, x € .

Proor. Since E, 7, < oo, necessarily A4 is properly essential. Then, by Prop-
osition 3.4 and Theorem 5.2, #(<2) = 1 and B(x) < oo for xe #. If x ¢ &7,
then E,7, = oo, and by Lemma 5.3

0o = m(A)E,(t,) S 1 + SUPyc 4,0 | D= (PH(ys 4) — PX(x, A4))]
é 1 + supyeA ‘3(}’) + ﬂ(x) :
But then §(x) = oo since sup, ., f(y) < oo by Theorem 2. []

Orey (1971) introduces the quantity
D*(z; 43 v, B) = n(B) Niey pPH(A) — 7(A) Tis vPH(B)

and studies the boundedness of D" as n — co and its convergence (as a sharpening
of ratio limit theorems) for z o-finite. For = a probability the following result
shows that D is closely related to 3.



212 ROBERT COGBURN

ProrosITION 5.1. (a) For all x, y,
3 max (8(x), B(y)) = SUP4,pe.n D0, 45 9,, B)| = J(B(x) + B())) -
(b) For all initial distributions yu, v,
SUP4,pe o ,n [ D"(1s A5 v, B)| < § § B(x)(1(dX) + v(dx)) .
Proor. First note that
D3, 43 3,, B) = 7(B) Dty (PH(x, A) — 7(4)) — 7(4) Tioy (P, B) — (B)) -

The right-hand inequality in part (a) follows directly from this. For the left-
hand inequality, first let B = 22” to get

SUP4c o n D"(0sr A5 0,y Z7) = SUP,c o ,n Dkmr (PH(X, A) — 7(A)) = 3B(x) -

Similarly, taking 4 = 22” gives a lower bound of §(y)/2.
The inequalities in part (b) follow directly from part (a) by using Jensen’s
inequality, first for x replacing d,, then for v replacing 9,. [I

LEMMA 5.5. Let E v, < oo. Then, for any starting distribution p,

n(A)|E, v, — E, 7 | < || — 7| sup, e, B(x) + liminf, | 317, (uP¥(A4) — n(A))] .
Proor. Observe that

Dk (uPHA) — 7(A4)) = (E, — E){Zkar Xiegmi1 5=k Aixje a1}
= (E, — E){ 2 %=1 Xte g=m1 2%=k Uiz ;e a1 — 7(A))}
+ ﬂ(A)(E# - En){Z?c‘:l (n —k + I)X[1A=k]}
=141,

say. Now, using the strong Markov property,

1 = |(By — ENZ ket Xieymin 255 (PU(Xe, A) — m(A))Y
= [lp — 7| supea (),
and
I = a(A) X k(Pley = k] — P [ty = k]) + (n + 1)(Pe[ry > k] — P,[r, > k])
— n(A)E,t, — E,7,4) -
The lemma follows directly from this. [

THEOREM 5.3. If the chain is aperiodic and if E 7, < oo for some strongly uni-
form A, then

2% (Pf(x) = § f(y)m(dy))
converges uniformly for f € M with ||f|| < 1 for each regular x, and the series con-
verges in L(2°, 7, ) uniformly in ||f]| = 1.

Proor. Let A be the set in the hypothesis and b, be the quantity in Lemma
5.2. Let f(x) = 4E,7, + E,t, + b,),s0 8 < p by Lemma 5.4. Forany ¢ > 0,
let 3, = min (c, f).
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Next let xe 2. Then |34, (PX(x, A) — n(A))| < B(x) < oo for all n, hence

there exists a subsequence n,, such that
limm—»w 22’21 (Pk(x’ A) - 7I'(A))

exists as a finite limit. Let y,, = P"n(x, ). Since the chain is aperiodic, ||, —
7|| —» 0. Also

lim inf, | S5 (¢t Pi(A) — 7(A))| = lim inf, | T5_, (Pw+i(x, A) — n(A))|

< liminf, | S, (PA(x, A) — (4))| -0
asm— oco. ApplyingLemmas.5, E, r,— E,r,. But then Pmf(x) — § B(y)z(dy).
Since f, € M, it is also true that P*=f, — § 8,(y)x(dy), and it follows that
Stha>el B(y)Pn(x, dy) — Vidse1 B()(dy)

as m — oo for each c.

Let V*(x, dy) be the absolute variational measure of P*(x, dy) — m(dy). Let
feMand f(x) = f(x) — § f(y)n(dy), Then, using the invariance of r at the first
equality,

|Z 3 P = |§ T PA)P(x, dy) — n(dy))
(3-2) < VX5 P17 (x, dy) < 20| 1] § BO)V*(x, dy)
= 2e|lf1] - [1P(x, +) — =]
+ $wsa FONP(x, dy) + n(dy)) .
Now, given ¢ > 0, the integral will be less than ¢ for ¢ = ¢, sufficiently large and
n ¢ {n,} sufficiently large.

Choose n(e) € {n,,} so the integral is bounded by ¢ and ||[P*®(x, +) — 7|| < ¢/2¢,.

Then (2) yields )
sup, | 23585 POl < e(If1l + 1) -

But then, for n > n(e),

sup, | X3tk P’f(x)l Sl I S P’f‘(x)l + sup, | X hom P’f(x)l
= 2e(||fIl + 1)

Thus the series converges uniformly in ||f]| < 1 for this particular x e <2, and
this is true for each x ¢ . Since n(2) = 1 by Corollary 5.2, the convergence
holds a.e.-x.

Since the partial sums are bounded in modulus by ||f]|f and § is = integrable,
the series converges in (2, %, ) for each f ¢ M. If the convergence were
not uniform in || f|| < 1, then there would be a sequence f, ¢ M with ||f,|| < 1
for which the uniformity failed. But, letting

9u(X) = 8P | 2501 (PUiu(x) — § fuy)m(dy))| ,

the g, are measurable, bounded by B, and converge to 0 a.e.-x. Henqe

SUPe § | L5200 PYu(x) — § fu(y)n(dy)|m(dx) < § gu(¥)m(dx) — O
by the dominated convergence theorem.
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