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DEDUCTION OF WOLD REPRESENTATION OF STATIONARY
PROCESSES FROM CRAMER REPRESENTATION
OF SECOND-ORDER PROCESSES!

By Z. Ivkovi¢

University of Belgrade

The Wold representation of wide-sense stationary processes with con-
tinuous parameter is obtained trom a general Cramér representation of
second-order processes, continuous in quadratic mean.

1. Introduction. The concepts and notation will be the same as in [1]. For
a wide-sense stationary, purely nondeterministic stochastic process {x(¢),
—oo < t < oo}, there is the well known Wold representation [2]
(1) x(t) = (Lo 9(t — u)dz(u), te(—oo, o)
where {z(f), —co < t < oo} is a process with orthogonal increments such that
E|dz(t)|* = ||dz(¢)||* = dt and H(x; t) = H(z, t), t € (— o0, o0). The function g(¢),
t = 0, is a nonrandom function such that

I8 l9(n)f dt < oo .

For any purely nondeterministic second-order process {x(f), —co < t < oo},
continuous in quadratic mean, there is the Cramér representation [1]
@) X(1) = Lia (la Gults #) dz,(u) 5 te (=00, )

where {z,(f), —o0 < t < o0}, n =1, N (N may be infinite), are mutually or-
thogonal processes with orthogonal increments for which

3) H(xi f) = T3, @ H(z,i 1), te(—o0, ).
The measures dF,(t) = ||dz,(?)||*, n = 1, N, are ordered by absolute continuity
4) dF, > dF,> .. > dF,.

The nonrandom functions g,(¢, #), —co < u < t, n = 1, N, satisfy the condition
=1 $ie [94(5, W) dF,(u) < o0,

for each t ¢ (— o0, o0).

Let R, be the class of measures equivalent to the measure dF, with respect
to the relation >. According to [1], the correlation function r(s, f) = Ex(s)x(f) =
(x(s), x(1)), —o0 < 5, t < o0, of the pi'ocess {x(#)} uniquely determines its spectral
type, i.e., the sequence R, > R, > --- > Ry, where dF, e R,, n =1, N.
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The subject of this note is to obtain, starting from the general representation
(2), the representation (1) for stationary process, i.e., for a process whose cor-
relation function r(s, ) depends only on the difference of the arguments s — ¢.

2. Deduction. The condition r(s, f) = r(s — ) is equivalent to the existence
of a one-parameter group of unitary operators {U,, —oo < t < oo} in H(x) such
that

(5) x(t) = U, x(0) , te(—o0, ).
Leta, b (a < b) be two arbitrary numbers and let H(x; a, b)) = H(x; b) © H(x; a).
We have
H(x;a,b) = X%, P H(z,; a, b) .
Consider the cyclic space H(z,; a, b). Itis generated by the “arc” {z,(f), a < r < b},
in the sense that any element y of H(z,; a, b) is of the form

y=Gfw)ydz,(u)y,  f(u) e Ly(dF,).

Consider now the cyclic space H(z,; a + t, b + r) where ¢ is an arbitrary number.
According to the definition of U,, we have

UH(z,a b =Hz,,a+tb+1).

Since we know that isomorphic cyclic spaces have the same spectral type ([3]
Chapter X), we deduce that the measures
an(u) = ”dzn(u)“z ’ a é u é b

and

A Fy(u + 1) = |ld,2,(u + D], agusbh
corresponding, respectively, to the generating “arcs” {z,(u), a < u < b} and
{z.(u 4 1), a < u < b}, are equivalent.

So we have for each ¢,

d,F,(u+ t) = ¢,(t, u) dF,(u) (p.(0,u) = 1),
where ¢,(t, u) > 0 a.e. (dF,) is the Radon-Nikodym derivative.
Setting
d,Z,(u + 1) = ¢,7Ht, w)d, z,(u + 1)
d,Z,(u+1t) =0 if ¢, (t,u) =0)
we have
. Zo(u + 1) = |ldZ,@)|I* -
The only solution of the last equation is
142, @)||* = k,du
where k,, is a positive number.
Let
2,(1) = k,2,(1)
and .
G'n(t’ u) = ga'n%(t’ ll)k”’*’g”(t, ll) ¢
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Then (2) becomes

(6) x(t) = X7, . Go(t, u) dZ,(u) . te(—o0, )
where
Hx; )= XY ®HZ,; 1), te(—oo, o)
and
|dZ,(u)|[* = du, n=T,N.

So we proved that the measures dF,, n = 1, N, are equivalent to the ordinary
Lebesgue measure du.
We have
x(t) = U,x(0) = U, i, {0 Go(0, u) dZ, ()
= 0¥ 1% G0, w)d, z,(t + u) = NV, {4 G0, v — 1) dZ,(v) .
If we set G,(0, u — £) = g,(t — u) in (6), we get
) x(f) = NV, Ve 0.t — w) dZ,(u), te(—oo, ).

It remains to be shown thatin (7) N = 1. Let us suppose that N > 2. Consider
the nonzero element

7 = {7 a(u) dZ,(u) — 7 9:(w) dZ,(u) ;
it belongs to the subspace H(Z,) ® H(Z,) of the space H(x). A syort calculation
yields
(x(¢),z) =0, t<0
= {4 9,(t — u)g,(u) du — §} 9,(t — u)g,(u)du =0, t>0
for all 7€ (— o0, o0). That means z is orthogonal to H(x), which contradicts

0 + z e H(x). This contradiction shows that in (7) N = 1, which completes the
deduction.
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