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For a sequence {X,: 1 < n < oo} of independent, identically distributed
random variables with moment-generating functions, a 1952 theorem of
Chernoff asserts that n-! log P(S, = an) — log p, where Sy, is the nth partial
sum of the Xp’s, 2 > 0, and p is a constant depending on 2 and the distribu-
tion of X;. A 1969 theorem of Sievers, as strengthened by Plachky in 1971,
established the convergence of n-1log P(Wy = z») to a constant, where the
W.’s have moment-generating functions and belong to a class of random
variables more general than partial sums, and the z,’s are numbers such that
n-lz, — 2 > 0. In a format related to that of Sievers, Behadur in 1971 an-
alyzed the behavior of n-!log P(W, = z,) in situations when it may not
converge to a constant. The goal of the present article is to extend the
theorems of Chernoff, Sievers, and Bahadur in the direction of obtaining
convergence rates (to 0) of the large deviation probabilities P(Wy = zx)
where the z,’s are numbers such that n-#z, — co. The method of proof is
based on the proof of Chernoff’s theorem given, in passing, in a 1960 paper
of Bahadur and Ranga Rao.

0. Introduction. If {X,: 1 < n < co} is a sequence of independent, identi-
cally distributed (i.i.d.) random variables with E(X;) = 0 and Var (X,) = 1, the
most elementary form of the central limit theorem asserts that P(S, = int) —
1 — ®(2) as n — oo, where S, = ) 7, X, and ®(x) is the standard normal dis-
tribution function. It follows that P(S, = z,) tends to 0 as n — oo whenever
n=tz, — oco. Chernoff (1952) considered the case z, = An, for 2 > 0, and
showed, for random variables with moment-generating functions (mgf’s) ¢(r) =
E(exp(tX,)) < oo for some nondegenerate interval of #’s, that n='log p(S, = in) —
log p, where p is a constant depending on 4 and ¢. The only condition on X,
for Chernoff’s theorem is that the function Q(r) = ¢'(r)/#(¢) take on the value
A for some t. Chernoff’s result has been shown, in the monograph of Bahadur
(1971), to hold for random variables not having an mgf if the definition of p
is expanded slightly. Sievers (1969) considered large deviation probabilities
P(W, = z,) for {W,:1 < n < oo}, a sequence of random variables with mgf’s
{p(t): 1 En< o0}, and {z,: 1 £ 1 < oo} a sequence of numbers such that
n='z, — 4 > 0. Sievers’ theorem includes Chernoff’s theorem as a special case.
As strengthened by Plachky (1971), Sievers’ theorem holds under relatively
simple conditions on the functions log ¢,(7) and their first three derivatives.
With conditions no more restrictive than those of Plachky, we extend Sievers’
theorem to all sequences {z,: 1 < n < oo} such that n=#z, — co. The main
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CONVERGENCE RATES FOR LARGE DEVIATIONS 517

theorem of this article, Theorem (2.1), asserts that the difference between
(2,Q,7%(2,)) " log P(W, = z,) and a known sequence converges to 0 as n — co,
where Q,(t) = ¢'(t)/#(t), while Sievers’ theorem established the convergence to
0 of the difference between n-'log P(W, = z,) and a known constant in the
case n-'z, — 4 > 0.

Bahadur (1971) considered a sequence of random variables Y, with mgf’s
¢, satisfying some “standard conditions,” and investigated the behavior of
n='log P(Y, = 0) when this sequence of numbers may not converge to a con-
stant. In particular, if we define p, = inf{¢,(r): 0 < < oo}, then Bahadur’s
conditions imply that

lim, ... n{log P(Y, = 0) — log p,} = 0.

The main theorem of the present article generalizes this statement somewhat,
by implying for Y,’s of certain kind the existence of a sequence of numbers
r, — oo such that

lim,_, r,~{log P(Y, = 0) — logp,} = 0.

Here r,, the “true” rate of convergence, is often not asymptotic to n. Our
random variables W, are related to Bahadur’s Y, by the equation Y, = W, — z,,
where the z,’s are positive numbers such that n~iz, — co. The rate of con-
vergence r, can be expressed in Bahadur’s notation as r, = z,¢,7%(0,)-

Feller (1969), interested primarily in the law of the iterated logarithm, derived
theorems of the form r,~*log P(S, = z,) — —1, where the S, are row sums of
a triangular array of random variables with mgf’s. As can be expected from
the generality of the triangular array setup (containing the possibility of a lack
of normal convergence), Feller’s conditions are quite complicated, and the re-
lation between z, and r,, even in simple cases, is not always clear. Our theorem
(in which normal convergence is assumed) implies directly that, for n-tz, — oo
and n~'z, -0 as n — oo, r, = (2n)~'z,? when S, is the nth partial sum of a
sequence of i.i.d. random variables, and that r, = z,0,7%(z,), or a known mul-
tiple thereof, in a triangular array situation satisfying all the conditions on Q,.

In Section 1, we develop the mathematical preliminaries and lemmas needed
for the rest of the paper. The main theorem is stated and proved in Section 2.
We then use the main theorem to derive, in Section 3, large deviation theorems
for weighted sums of the form }}7_, a,, X,. In particular, we obtain extensions
of a recent theorem of [3] which established the rate of convergence to 0 of the
probability P(31%-; @ X, = 4 L1 Qui)-

1. Preliminaries. The development follows the main lines of the proof of
Chernoff’s theorem given on pages 1015-1018 of Bahadur and Ranga Rao (1960),
as an aside to their derivation of a much sharper large deviation theorem. We
have a sequence {W,: 1 < n < oo} of random variables with E(W,) = 0 and
Var (W,) = n for all positive integers n, and whose mgf’s ¢,(7) all exist in an
interval |f| < B, where B < oo is a positive constant.
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For each n, we define a random variable Y, = n~}(W, — z,), which has mgf
¢a(t) = exp(—n~iz,1)¢,(n"tf) and distribution function (df) G,(y). For each #,
|h| < B, we construct an “associated” random variable ¥, through the defini-
tion of its df G,(y) by

dG,(y) = [€"[¢(1)] dG,(y) -
The mgf ¢,(¢) of ¥, is

Gu(t) = $ult + B)[Pu(h) = exp(—n~tz,0[p,(n=H(t + b))/, (n"tR)] .

The proof of the following lemma is identical with the proof of Lemma 2 on
page 1017 of Bahadur and Ranga Rao (1960):

(1.1) LeEMMA. For each h, |h| < B,
P(W, z z,) = exp(—n~iz, k)¢, (n"*h)h {7 e [G,(y) — G,(0)] dy .
By successive differentiation of the mgf ¢, (7) of ¥,,, we obtain:

(1.2)  LeMMA. If Q.(f) = 6./(1)/.(t), then

E(Y,) = n—*Q, (n"th) — n~tz,
and
Var (¥,) = n1Q,/(n~th) .

We now put our first condition on W,: for all sufficiently large n, we require
that z, lie in the range of Q,. (We will formalize all the conditions in the
statement of the main theorem.) When n-'z, — 0, this condition is actually
weaker than condition (ii), case k = 1, of Plachky (1971), for the latter con-
dition requires that Q,(7) = nc,(¢) for || < B. Because Q,(0) = 0and Q,'(r) > 0
always, being the variance of a nondegenerate ‘“‘associated” random variable,
the Sievers-Plachky condition really requires that Q, take any value which is
less than a constant multiple of n. The next lemma follows immediately from
Lemma (1.2).

(1.3) LEMMA. If z, lies in the range of Q,, there exists a unique solution b = h,,
to the equation E(Y,) = 0, and h, = n*Q,~(z,).

We next impose the condition that there exist numbers ¢,* and ¢, such that
0< 0= nQ,/(Q,7Y(z,)) < 0 < oo for all sufficiently large n. This condition
is comparable to Plachky’s conditions (ii), case k = 2, and (iii), which require
that n=*Q,’(f) — ¢,(f) > O for each ¢ such that |¢f| < B.

Our third condition, akin to Plachky’s condition (iv) that n~'Q,”(#) be locally
bounded on the interval |f| < B, requires that n-Q,” (¢, + Q,~%(z,)) be a bound-
ed sequence for all sequences {t,: 1 < n < oo}such that 7, —»0asn— co. We
obtain: :

(1.4)  LemMMA. If the above three conditions hold and G,* = Var (¥,), then
lim,_, G,(y3) = ©(y).
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ProoF. We apply the continuity theorem for mgf’s of Curtiss (1942), after
showing that ¢,(5,~'f), the mgf of ,'Y,,, converges to exp(#}/2) for |f| < B, < B.
We have

log ¢,(6,7%) = —n~¥z,6,7t + log ¢,(n"%G,~ 't + Q,7(2)) — log $,(Q.,~'(,)) -

Set B,(1) = max,g,.. [n7'Q," (n"%G, 'u 4+ Q,7%(z,))] < oo for |u| < |#|, and take
B, < B, where B comes from the third condition stated above. By expanding
fa(t) = log ¢,(n"%G,~'t + Q,7*(z,)) in a Taylor series with remainder about t = 0,
we obtain for || < B, that

[(0) = 1og (Q,7%(z,)) + n7*6,71Q(Q,7N(2,)) + 3n7'6,7°1°Q,(Q.7Y(2,) + R,

where |R,| < 6-'n~%G,~%*B,(u,) for some |u,| < |¢|]. By Lemma (1.2), ¢, =
n'Q,'(Q,~X(z,)) = o,* for sufficiently large n, so log ¢,(5,7t) — r*/2 as n — oo.

2. The main theorem. We can now state and prove the following extension
of the theorem of Sievers (1969):

(2.1) THEOREM. If {W, .1 < n < oo} is a sequence of random variables with
mgf’s {#,(f): 1 < n < oo} such that, for Q,(t) = ¢,/(1)/p(t) and{z,: 1 < n < oo}
a sequence of real positive numbers with n~tz, — co as n — oo,

(i) E(W,) =0, Var(W,) = n, and ¢,(t) < oo for |t| < B for all n, where

0< B < oo

(ii) z, lies in the range of Q, for all sufficiently large n, and z,0Q,7*(z,) — oo as
n— oo,

(iii) there exist numbers ¢, and ¢ such that 0 < ¢} < n7'Q,/(Q,7Y(z,)) =
o) < oo for all sufficiently large n; and

(iv) for some B, 0 < B, < B, and all sequences {t,: 1 < n < oo} such that
|t,| < B, and t, — 0 as n — oo, the sequence of numbers n='Q,"'(t, + Q,7%(2)) is
bounded, then

lim, ., (2,Q.7"(z.)){log P(W, 2 z,) — log ¢,(Q,7'(z.)} = —1.

Proor. Taking k = t, = n}Q,"%(z,), we have from Lemma (1.1) that
P(W, = z,) = exp(—2,0,7%(2,))9.(Q,7(z,)) 1,, where I, =t, {5 exp(—1t,y) X
[G.(y) — G,(0)]dy. For the proof of the theorem, it suffices to show that
lim, ., (2,0,7%(z,))*log I, = 0. Because 0 < G,(y) — G,(0) < 1 for all n and
y, we know that 7, < 1, so that limsup,_. (z,Q,7(z,))"logl, < 0. On the
other hand, by Lemmas (1.2) and (1.4) and condition (iii), we know that,
for y >0, liminf,_ ,G,(y) = ®(s,"'y). Therefore, for ¢ >0, we have
I, 2 1,57 exp(— 1, )[Gu(y) — Go(0)]dy = [G(e) — Gu(0)] exp(—1,¢) which
implies that liminf, . (z,Q,7%(z,))"'log I, = lim, . ntz,~%¢ = 0, because
lim inf,_,, [G,(¢) — G,(0)] = P(0,7%) — @(0), and z,Q0,7Y(z,) — oo and n~tz, —
oo as n— oo. That completes the proof.

Notk. In the language of Feller (1969), the result of the theorem would be



520 STEPHEN A. BOOK

expressed as
P(Wn = zn) = exp(—rn + o(rn))

as n — oo, where r, = {1 — log ¢,(Q,%(2)}2,Q.~%(2.)-

Theorem (2.1) is related to Theorem 2.2 of Bahadur (1971) in the following
way. Bahadur started with random variables Y, whose mgf’s ¢,(7) assume
minimum values p, < 1 on their domains, say at points r = 4,, i.e. p, =
¢a(h,) < 1. Then he showed that lim,_, n~'{log P(Y, = 0) — log p,} = 0. If
we define W, =Y, +z, then §,(1) = ewg,(1) and Qu(1) = 4,/ (1)/p.(1) =
z, + {¢.)(9/¢.(0)}. Therefore Q,(h,) = z, if and only if ¢,’'(h,) = 0, i.e. if and
only if p, = ¢,(Q,7%(z,)). In this case, log ¢,(Q, %(z,)) = z,0,7'(z,) + log o,
and so log P(Y, = 0) — log p, = log P(W, = z,) — log ¢,(Q,~(2)) + 2,Q,7(z.)-
From our Theorem (2.1), it then follows that

lim,_., (z,Q,”%(z,)){log P(Y, = 0) — log p,} = 0.

The value of this complement to Bahadur’s statement is that it covers cases
when z,0,7(z,) may not be asymptotic to n. Examples of such cases are dis-
cussed in Section 3 of this article.

When the sequence {z,: 1 < n < co} is such that n=z, -2 > 0 as n— oo,
we obtain the theorem of Sievers in the form given by Plachky (1971):

(2.2) CoroLLARY. (Sievers-Plachky). If {W,: 1 < n < oo} is a sequence of
random variables with mgf’s {¢,(t) : 1 < n < oo} such that, for Q, (1) = ¢,/(1)/P.(t)
and {z,: 1 < n < oo} a sequence of real numbers with n='z, — 2 > 0 as n — oo,

(i*) E(W,) =0, Var (W,) = n, and ¢,(t) < oo for [t| < B for all n, where
0 < B < oo
(ii*) for 0 < t < B, lim,_, n~'log ¢,(f) = ¢,(f) < oo}
(iii*) for 0 < t < B, lim,__, n7'Q,(f) = ¢\(t) < oo, and there exists an h, 0 <
h < B, with ¢,(h) = 2;
(iv¥) for 0 <t < B, lim,_, n7'Q,/(t) = cy(t), where 0 < cy(f) < oo; and
(v*¥) for 0 < t < B, the sequence n='Q,''(t) is locally bounded, then

lim, ., n~tlog P(W, = z,) = c(h) — Ah.

3. Weighted sums. The results of this section are all concerned with a se-
quence{X,:1 < n < oo}ofi.i.d. random variables with E(X}) = 0, Var (X)) = 1,
and mgf ¢(¢) = E(exp(tX;)) < oo for |t|, < B, where 0 < B < co. We have a
double array {a,,: 1 < k < n,1 < n < oo} of nonnegative real numbers such
that Y1»_ a2, = 1, and we impose the following condition on these weights so
that the sum }}7_, a,, X, is not dominated by a relatively few terms:

Condition W. The weights are normalized so that };»_ a2, = 1, and there
exist numbers a and 6, 0 < a < 1, 0 < 6 < 1, such that, for every sufficiently
large n, at least an of the a,’s exceed or equal fo,, where ¢, = max{a,,:
1<k <}
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The theorem in [3] constructs a sequence {r,: 1 < n < oo} of positive num-
bers such that

limn-weo r'n_l log P(ZZ:I ank Xk 2 2 ZZ=1 ank) = - 1

for a range of positive numbers 2. In this section, we use the theorem of Sec-
tion 2 in order to extend the theorem of [3] to probabilities of the form
P(X%e1 Qe X Z AT -1 @i)?) Where § < g < oo,

As in the earlier sections of this paper, we deal with a sequence of positive
numbers {z,: 1 < n < oo} such that n~tz, — co. To simplify the notation,
we set

P(n) = P(Sto @ X, = n7z,) .

We obtain the first result with no conditions on the mgf of X, beyond existence
in a nondegenerate interval.

3.1 THEOREM. If n~'z,— 0 asn— co, then
lim,_,, 2nz,~*log P(n) = —1.

Proor. In Theorem (2.1), we take W, =n! 32 a,X,, and so ¢,(7) =
11z, é(nta,,?) and Q,(f) = nt 3 2_, a,,Q(n*a,,r). Under Condition W, we have
that 1 < nte, < (af®)~t. The range of Q, contains z, because n~'z, — 0 and
n~t 3t a,,Q(nta,t) = ntanfo,Q(n*do,t) = afdQ(07r). Furthermore, if A, =
Q,7(z,), then n~'z, = af0Q(0h,) so that 1, < 0-'Q~Y((«)'n~'z,). It follows that
h,—0 as n—oo. In a Taylor series expansion, Q(¢f) = Q(0) + Q'(0)r +
30" (0)* = t + 3Q"(0)¢*, where 0 < ¢ < t. Therefore

n—lzn = n_lQn(hn) = n_é ZZ:I Qux Q(néa‘nkhn)
=n"t 31 a,{nta,h, + 30" (0,)na, 13}
= hn + %nih"nz ZZ=1 afmk Q”(ank) ’

where 0 < 4, < nla,,h, < nlo, h,— 0 as n— co. Therefore

L e N D S O (]
< §nth,0|Q" (nto, hy)|oy Tihey ar
< inte,h,|Q"(nte, k)| — 0

as n — oo because nis, < (af?)~%, |Q"(0)| = |E(X{?)| < oo, and h, — O0asn — co.
From this, it follows that A, ~ n~'z,, where the symbol “~” indicates that the
ratio of the two sides tends to one as n — co. Conditions (iii) and (iv) of The-
orem (2.1) follow without difficulty using the bounds on ¢, and the fact that
2t a, = 1. It remains to investigate the behavior of (z,4,)"'log ¢,(k,). A
Taylor expansion yields

log ¢(r) = log (0) + Q(0)r + 30'(0)7* + ($)Q"(9)7*
= 3"+ 3)Q"(O)
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for 0 < 0 < t. Therefore

log ¢n(hn) = ZZ:I log ¢(n§ank hn)
= gnh,} Y% ay + (é—)n*hns 21069 (00)
where 0 < 0,;, < nta,,h, < nto,h, — 0 as n— co. Therefore
(2nhy)~" log $u(hy) = 3(n7'2, B, ) 4 (F)ndz, 7R, T, a5, Q" (O,) -

It follows from this that (z,4,)* log ¢,(h,) — % as n — co because the remainder
term tends to 0 as before. The proof of the theorem is completed by observing
that (z,4,)"' ~ z,"(n"'z,)"* = nz,~.

It is to be noted that the above theorem includes the case of sums of i.i.d.
random variables, upon taklng a,, = n~t for each n and k. The next corollary
deals with a sequence of z,’s of particular interest. For notational case, we

erte
A<ImC,<B

n—oo
to indicate that 4 < liminf,  C, < lim sup,_.. C, < B. We use this notation
throughout the remainder of the paper.

(3.2)  COROLLARY. If A, = Yi_ au, 3 < g < 1,and 2 > 0, then, asn — oo,
P(ZZ=1 anka g 'IA'nq) = exp(-rn 'I' o(rn)) ’

where 1, = $2°A,* = 42’n%, for a bounded sequence of positive numbers y, such
that 0 < (af) < lim 7, < (a6)~* < .

Proor. From Theorem (3.1), we know that r, = (2n)~'z,2 in general. Here
z, = an*4,7 so that r, = $2°4,’. The result follows from the string of in-
equalities afnt < anfo, < A, < no, < (ab)~int.

If we set a,, = n~t in the above corollary, so that « = § = 1, we obtain an
extension of the original Chernoff theorem asserting that, for L < ¢ < 1 and
2>0,

lim, ., n=?log P(S, = An"+07%) = 127,

The next theorem is an improvement of the theorem in [3] that follows from

the main theorem.

(3.3) THEOREM. If ntA4,7'z,—2>0 as n— co, where A, = 3.7_, a,,
A(aB)~* lies in the range of Q, and M, = 6-'Q=Y(A(af)™") lies in the domain of ¢,
then '

—o0 < My(e, — 1) < @z,,-l log P(n) < my(c, — 1) < 0,

where m; = (a0’)*Q=Y(2), ¢, = a(AM,)'log ¢(0m,) and ¢, = 1 — a(AM,)~*L(0m,)
for L(t) = tQ(¢) — log ¢(1).
Proor. We take W,, ¢,, and Q, as in the proof of Theorem (3.1). First we

see that the range of Q, contains z, because Q,(f) = nta6A,Q(n*6s,t) since
ne* = A,, and so n~t4,7'Q, (1) = afQ(n*fs,t), from which the existence of
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» = Q,7%(z,) follows from the conditions on 2. We have then that z, =
0.(h,) = ntanfs,Q(ntbs, h,) so that n—14,"'z, = afQ(n*6s,h,), from which the
vital bound nie,k, < 0-'Q-'(A(ab)"") + o(1) = M, + o(1) follows, where
0(1) > 0asn— co. Furthermore, since 1 < nig, < (@6%~%, we have the
inequalities

(@00 (n44,712,) S b, < 6-1QN(ab) ' 4,71z,)
which imply that
z_lml é E (n_iAn—lzn)_lhn é R—IMA .
Therefore liminf, ., z,Q,7%(z,) = lim,_,m,z, = oo, asz, ~ AntA, = intanfo, =
Aafn, completing the verification of (ii) of Theorem (2.1). The verification of
conditions (iii) and (iv) of the main theorem is straightforward, and so it re-
mains only to study the quantity (z,4,)~* log ¢,(%,). We have

Znhn - log ¢n(hn) = znhn - Zz=l log ¢(niankhn)
< z,h, — anlog ¢(ntbs,h,)
so that

L= (zuh)7 og §u(h) < 1 = a(nz, ) log (0o, h)
and
lim inf,_, (z,4,)"!log ¢,(k,) = a(AM,)~*log ¢(6m;) = ¢, > 0.
On the other hand, setting L(7) = tQ(f) — log ¢(¢), we obtain
Znhn - log ¢n(hn) = hn Qn(hn) - log ¢n(hn) = Z;::l L(nbank hn)
= anL(nt@o,h,) = anL(0h,) ,
because L(¢) is positive and monotonically increasing for + > 0. Therefore
lim sup, ., (z,4,)"*log ¢,(h,) < 1 — lim inf,_, (z,h,)"‘anL(6h,)
<1 — aQAM)'L(m) ' = ¢, < 1.
The conclusion now follows from Theorem (2.1) and the bounds on #,.
If, in Theorem (3.3), we set each a,, = n~%, then the statement reduces to a
slight improvement of the original Chernoff theorem, in view of the facts that

a=1,0=1, A,n = n?‘, mz(cz — 1) = MA(C1 — 1) = —lQ‘l(X) —+ IOg ¢(Q_1(2)) =
log o, and n~tz, ~ An. Finally, we have the theorem of [3] itself:

(3.4) COROLLARY. If A(af)~* lies in the range of Q, and 6-'Q~*(A(af)~") lies
in the domain of ¢, then asn — oo, '
P(ZZ:I a'n.ka g 'ZAn) = exp(_r'n + o(r'n))

where r, = L4*°A,%, for a bounded sequence positive numbers 0, such that 0 <
22 (a0?im,(1 — ¢;)) < lim 8, < 2(2a6)~*M,(1 — ¢,) < oo, in the notation of The-
orem (3.3). n—'

We now extend the theorem on weighted sums to the only remaining case,
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that when n-'z, — co as n — co. We note here that the conditions for this
theorem are much more stringent than those of either of the previous results.
In addition, the “lim sup” assertion is informative only when a%* > 1.

3.5) THEOREM. If ¢(f) < oo for all real t, and
(i) lim,_. Q(k) = oo;
(ii") lim,_, Q'(k) = a, where 0 < a < oo; and
(iii") Q"'(h) is bounded for 0 < h < co, then, for n~'z, — as n — oo,

¥t —2 < lim 2nz,~*log P(n) < 1 —2a%*
n—> aaﬂz

aaf?

Proor. We take W,, ¢,, and Q, as in the proof of Theorem (3.1). Now
Q,(t) = anfQ(0t) so that n='Q,(t) = afQ(0t) = n~'z, for all sufficiently large ¢
by condition (i’), and therefore, for all large n we can find an 4, with Q (%,) = z,.
Furthermore, 4, — oo as n — oo because k, = («6*)}Q~'((«6*)*n'z,), and there-
fore z,h, — co also. Condition (iii) of Theorem (2.1) can be verified using
condition (ii’) of this theorem in view of the fact that we obtain

at’a < Tim n—'Q,/(h,) < (ab?)a
from the application of Condition W. Condition (iv) of the main theorem is
satisfied because of condition (iii’), so it remains only to determine the behavior
of the quantity (z,4,)~* log ¢,(k,). From the bounds

(@0*):Q-Y((ab?in"'z,) < h, < 0-'Q~*((al)'n"'z,)
and an application of L’Hoéspital’s Rule, we find that
(@0%a < Iim (z,4,)/(nh,}) < (a6?)'a.
From the latter inequalities and bounds on log ¢,(%,) = X %, log ¢(nta,, k) ob-
tained from Condition W, further applications of L’Hdspital’s Rule yield that
3(a0?) < fim (z,k,)7 log $y(h,) < $(a?)™?,
for lim, ., A=* log ¢(ch) = }ac?® for all ¢ > 0. The assertion of the theorem then
follows the conclusion of Theorem (2.1).

Note that a?* — 2 < 1 — 2a%0* must hold because of the a?¢* < 1. The fol-
lowing corollary deals with a sequence of z,’s of special interest:

(3.6) COROLLARY. If A, = }\%_,a,, 9 > 1, and A > 0, then, under the con-
ditions of Theorem (3.5), as n — co,

P(ZZ:I anka g Z"‘lnq)z exp(_rn + o(rn)) ’
where r, = 34’A,a"'y, for a bounded sequence of positive numbers y,, such that
(20%0* — 1)/(a6®) < [im 7, < 2 — a?0Y)/(ab?) .

In the above corollary, the upper bound is always finite, while the lower
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bound exceeds 0 onmly if a’* > 4. If we set a,, = n~t in the above corollary,
so that « = @ = 1, we obtain an extension of Chernoff’s theorem to the case
of “very large deviations.” The assertion would be that, for S, the nth partial
sum of i.i.d. random variables satisfying the conditions of Theorem (3.5),

lim,_,, n=?log P(S, = An**97%) = —1p%q1

n—00

for every ¢ > 1.
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