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TRANSIENCE AND SOLVABILITY OF A NON-LINEAR
DIFFUSION EQUATION!

By STEPHEN L. PORTNOY
Harvard University and University of Illinois

This paper is concerned with the existence of bounded solutions to an
operator inequality which is a non-linear version of a discrete time diffusion
equation. Here, the solvability of the inequality will be closely related to
the transience of a corresponding random walk. In particular, the ine-
quality will generally be solvable in three or more dimensions, but not in
one or two dimensions if appropriate moment conditions hold.

1. The basic equation and initialization. Let Q be a probability measure
on R?, Y ~ Q, and consider the following operator, T, defined for real-valued
bounded measurable functions, f, by

(1.1) (TF)(x) = Ef(x + Y) = { fix + ») dQ(y) -

This paper considers the existence of bounded nonnegative nonzero measurable
solutions {f,: n = 1,2, - ..} for the operator inequality:

(1.2) furi®) Z (TL)®) + (TLP@)  xeRon=1,2,--..

The existence of such solutions for (1.2) is shown to be closely related to tran-
sience of the symmetrized random walk generated by Q. In particular, Section
2 shows that if Q has a finite second moment and p = 1 or p = 2 then there is
no bounded nonnegative measurable solution for (1.2) with f;(x) > 0 on a set
of positive Lebesgue measure. Conversely, Section 3 shows that if the random
walk generated by the symmetrization of Q is transient (in particular, if p > 3)
then there is an appropriate solution for (1.2). In the remainder of this paper,
all functions will be assumed to be real-valued and Borel measurable.

These results are applicable to a remaining unsolved case concerning existence
of bounded solutions to a non-linear partial differential equation related to (1.2)
studied by Fujita [6] (see [8]). They are also applicable to the consideration of
admissibility in a certain, statistical decision problem, where in fact (1.2) arose.
In particular, in [7] an admissibility problem was reduced to finding real-valued
nonzero solutions {f,: n. =0, +1, +2, ...} to the operator inequality:

(1.3)  fuul0) = o) 2 T(fo + 3£)(x)  xeRpn=0, 1, £2, ...
The following result shows the equivalence of the two problems:

THEOREM 1.1. There is a nonnegative bounded solution {f,:n=1,2, ...} for
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(1.2) with fi(x) > 0 on S C R if and only if there is a solution {f,*: n =0, +1,
+2, ...} for (1.3) with fi*(x) = 0 for x e S.

Proor. (i) Let {f,*} be a solution for (1.3). A straightforward induction
argument shows that if fy(x) < —a (with @ > 0) for some x then f_,(y) <
—(a + (n/2)a*) for some y. Hence, for {f,*} to be bounded, each f,* must be
nonnegative; and, therefore, must be bounded by 2 in order to be real-valued.
It trivially follows that a solutior: for (1.3) is also a solution for (1.2)

(ii) Let {f,} be a solution for (1.2) and define f,*(x) =0 for n = 0, —1,
—2,.... Define {g,: n =1, 2, ...} inductively by g,(x) = f,(x) and

(1.4) Gun(®) = (T)(X) + (Te)(x)  xeRn=1,2,....

Then (inductively) 0 < g,(x) < f.(x); and, hence, |9,(x)| < B for some finite
B > 0. So by (1.4),

(1.5) Iura(¥) = (1 + B)(T9,)(x) .
Now define
(1.6) =1 g  xeRLn=1,2....

T 1By

Then f,*(x) is bounded, f* is a multiple of f;, and (from (1.6), (1.4), and (1.5))
forn=1,2,3,...

Fral) — 35000 = — 1 g(0) — = g2(x)

(1 4+ B)? 2(1 + By
1 1 2
(1.7) = (—1-4——1}—)2— (Tg.)(x) + m (T9,)'(x)
2 (Tf.*)(x) + 3(Tf.*)'(x) - 0

It should be noted that Berger ([1] and [2]) and Brown [4] have considered
the admissibility problem in considerably more generality.

Some additional remarks about initialization of the solution should be made.
The initialization condition is basically to insure that the solution is not identi-
cally zero almost everywhei'e. However, there is a real question of what “almost
everywhere” means. If Q is discrete, we would clearly want to require fy(x) > 0
for some x. For Q a lattice distribution (the case considered in [7]) it makes
no difference whether fi(x) > 0 at one lattice point or on an interval (since
values of f;(x) in a small neighborhood of a lattice point will not affect f,(x) on
the lattice). However, as the referee noted, if Q is discrete but non-lattice, we
may generally reduce to a lattice case in higher dimensions (Blackwell [3] did
this in a particular admissibility example). For example, the problem with Q
concentrated on {+1, 4+e, -} (in one dimension) is isomorphic to a three-
dimensional problem with lattice distribution concentrated on {(=+1, 0, 0),
0, +1,0), (0, 0, +1)}. Thus, there would be bounded solutions for f,(x) > 0
at one point, but there would be no bounded solution for f;(x) > 0 on a set of
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positive Lebesgue measure. Hence, the form of initialization can be extremely
important.

If Q has an absolutely continuous component, the natural meaning of “almost
everywhere” is with respect to Lebesgue measure. Since such initialization also
works for the discrete lattice case, it is the definition taken here.

However, this definition does seem unnatural if Q is singular but non-lattice.
A more natural condition might only require that f; be positive on a set of
positive measure under some translate Q. However, it can be shown that this
latter condition always leads to a solution for (1.2) if some translate of Q has a
singular component with respect to Q « Q (if f; =0 a.s. (Q xQ), f, would be
identically zero). Thus, the question of the solvability of (1.2) would be non-
trivial only for distributions, Q, for which all translates are absolutely continuous
with respect to Q « Q. It is an interesting but unresolved question as to whether
any singular, non-discrete distribution can satisfy this property.

2. Insolvability when p = 1 or p = 2. This section shows that if p = 1 or
p = 2, Q has finite second moment, and f; is positive on a set of positive Lebesgue
measure, then any solution of (1.2) with initialization f; is unbounded. Some
technical results are first required.

PROPOSITION. Let W and T be operators defined by (1.1) using arbitrary distri-
butions Q, and Q, respectively. Let S be the operator defined by (Sf)(x) = (Tf)(x) +
(Tf)¥(x), then
(2.1) (SW)f(x) = (WS)f(x)
for all x € R* and any nonnegative function f.

Proor. By Fubini’s theorem 7' and W commute. So

(SW)f(x) = (WT)f(x) + (W(Tf)(x))*

< WTf)(x) + W(Tf)(x) = (WS)f(x) - 0
We now show first that f, may be replaced by a particular initialization; and,
second, that Q may be assumed to be symmetric (that is, have nonnegative real-
valued characteristic function). This latter result is necessary in order to apply
Lemma A.3 in the appendix. Before continuing, note that if {f,} is a bounded
solution for (1.2), then {S*f,} is also a bounded solution for (1.2) (where S is

defined in the proposition).

LEMMA 2.1. For x real, y = (y,, -+, y,) €R?, and b > 0 (to be determined
later), define

@.1) o) = s (1 —cosbx); () = M)
nbx? .
(Note that c(x) has triangular characteristic function.) If (1.2) has any bounded

nonnegative solution with f, not zero almost everywhere then there isa > 0 and a
bounded solution for (1.2) with the initialization f,(x) = ac,(x).
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Proor. Let W, be the operator defined by (W, f)(x) = § f(x + y)c,(y) dy, and
let W, be a similarly defined operator using a distribution with a continuous,
bounded, strictly positive density. If f, is any nonnegative function which does
not vanish almost everywhere (Lebesgue measure) then (W, f;)(x) > 0 for all x
(and, hence, is bounded below on the unit cube). Therefore for some a > 0
and o’ > 0,

(MW f))(x) = TLiaa § (Wafi)(xs + pi)e(ys) dys
112§ (W fi)(z0)e(z: — x;) dz,
a M7= Loz, — x) dz;
a [121 ¢(x;) = ac,(x)
where the last inequality is a straightforward calculation which is not pre-
sented here. But by the proposition, if $*f, is bounded, so is $*(W, f;) and also,
S Wy(W.f)- [

LEMMA 2.2. If there is a bounded nonnegative solution for (1.2) with T defined
by Q then there is a bounded nonnegative solution for (1.2) with T defined by the
symmetrization of Q.

(\vami\%

Proor. Let W be the operator defined by (Wf)(x) = Ef(x — y). Then apply-
,ing the proposition inductively (and using positivity of the operators involved),
SWHf, < W™(S"f,). Hence, if {S"f;} is bounded, so is (SW)"f;. But

(SW)f(x) = T(W)(x) + (Tf) ) = (TW)f(x) + (TW)[f(x)*

and, hence, {(SW)"f,} satisfies (1.2) for the operator (TW) f(x) = Ef(x + Y, — ;)
which corresponds to the symmetrization of Q.

Now consider the following definitions (which will hold for both p = 1 and
P = 2):

DEerINITION A. Let X be a random variable on R? with density c,(x) (with
respect to Lebesgue measure). Let {Y,, Y;, - - -} be independent and identically
distributed according to Q (a distribution on R?), let S, = X, and let §, =
X—>k,Y fork=2,3,.... Finally, let p,(x) be the density of S,.

First note that (for Y ~ Q)

(2.2) Prena(X) = § pu(x + ) dQ(y) = Epy(x + y) = (Tpe)(x) -

Hence {p,(x): k = 1,2, ...} is uniformly bounded. Now, in the following
proofs, we will take f bounded and continuous, let U, = }n, Y, (with Q,,
denoting the distribution of U,,) and consider

23)  HE+Udpc + Up) _ §f0 A+ PPl +9) dQiaei()
P”(X) P'n(x) '
= E[/(Si)| S, = ] .

Since p,(x) is a bounded, positive, continuous density, this conditional expectation
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is defined for every x; and, if f is bounded and continuous so is the conditional
expectation (by dominated convergence).

Before stating the main theorems, we lastly note that if Q has finite second
moment, we may assume without loss of generality that Q has zero mean and
covariance matrix equal to the identity. For any Q may be transformed by an
appropriate affine transformation, g(x) = 4x + b, to obtain a distribution 0*
with zero mean and identity covariance matrix. If {f,} is a solution of (1.2)
with T defined by Q then {f, o g~*} is a solution of (1.2) with T defined by Q*.

TueoreM 2.1. Ifp = 1 and Q has finite second moment, then (1.2) has no bounded
solution with f, positive on a set of positive Lebesgue measure.

Proor. By the above remark, assume Q has zero mean and variance one;
and by Lemma 2.1, let fy(x) = @’¢(x). Let a < a’ be such that ap,(x) = 1 for
all x and k; and define functions {g,(x): k = 1,2, .-} as follows:

24) @(x) = a, gu(¥) = (1 + apu(X))E[94-1(Sp-1) | Sk = X] -
By a straightforward induction argument, for k = 2,3, .-,
(2.5) qu(x) = @E[I1is (1 + ap(S)) | Se = x].

Note that g,(x) = a for all x and k. Now, if f, satisfies (1.2) with fi(x) = ac(x)
then f,(x) = q.(x)p.(x) for all x. This is proven by induction: if n =1, the
result follows since p,(x) = ¢(x). Assume the inequality holds for (n — 1) and
consider (with Y ~ Q)

fn(x) > (Tfn—l)(x) + (Tfn—-l)z(x)
= Ef,_(x + )1 + Ef,_(x + Y)}
= Ep,_y(x + Y)quua(x + Y){1 4 Epps(x + Y)quoi(x + Y)}
> pu(x) Pt + Vuns + 1) 44 4 app, (x4 V)]

P(%)
= Pu(X)E[§n-s(Ss-1) | Su = x{1 + ap,(x)}
= Pu(X)qu(¥) -
Since ap,(x) < 1, we can apply Lemma A.1 to (2.5) to obtain
2.6) 0.0 2 1 exp { & 1., EpuS0)| S, = 01}

Now py(x) = 1/ktf(x/k?) where f, is the density of S,/k?; and using the central
limit theorem (see Lemma A.2 for details in case p = 2), one can show that
pu(x) = 1/k? for |x/k}| < 1 and k = K. Therefore (for appropriate constant C,),

E[pu(Sk)| S, = 0] = § Pe*(y) dQni(y)

n(O)

3
e

H
=c1”_p{
k

U,

n—k

kt

<1}

'n—k ké
(n— k)| = (n-k)é}
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Again using the central limit theorem (see A.3)

P”@—mJ—@fmJ>’G%%?

vSo for n > 2K,
2ia E[p(S)]S, =01 = G X

Therefore, from (2.6),

for k<n—k.

nt k? 1
Wik — k —*————( k) = G 2/=’x7; zCnt —G.

Pu0)(0) 2 2 S exp {_ (Cont — ,,)} 4o as n—oo.

Hence, {f,(x)} cannot be bounded. []

The main additional complication when p = 2 is the fact that in two dimen-
sions, p,(x) =~ n~* (for |x/nt| < 1 and n large). This leads to a lower bound for
9.(0) of the form ¢(0) = C, exp{C, log n}; so that p,(0)¢,(0) — 0 as n —» co. To
circumvent this, the argument is iterated, defining 4,(x) using p,(x)¢,(x) instead
of a-p,(x). Thisyields the bound 4,(0) = C, exp[C, exp{C; log n}] which grows
more quickly than p,(0).

THEOREM 2.2. If p =2 and Q has finite second moments, then (1.2) has no
bounded solution with f,(x) positive on a set of positive Lebesgue measure.

Proor. By the remark above Theorem 2.1, assume Q has zero mean and
covariance matrix equal to the identity. By Lemma 2.1, let f;(x) = a’c(x) and
recall Definition A given earlier. Let D > 0 be as defined in Lemma A.2 so
that p,(x) < D/nforall xand n = 1,2, .... Leta < min (4d’, 1/D) so that

(2.7 ap,(x) =1 and aDne?-b < 1 for n=1,2,....

Note that it suffices to consider the initialization fi(x) = 2ac,(x). As in (2.4),
define :

(2.8) @) =2a,  qux) = (1 + apu(x))E[§i=s(Sk-1) | S, = x]

= 2aE[T%, (1 + ap(S) [ S, = x] .
Note first that

(2.9) g.(x) = 2a for k=1,2,...
Also, from (2.3), we can take Y ~ Q and

(%) = (1 + ap(x)) Eqyy(x + Y)pio(x + Y) )
Pu(X)

Therefore (since ap,,,(x) < 1) fork =1,2, -

(2.10)  Equ(x + Y)Py(x + Y) = $(1 + apun(x))Equ(x + Y)pu(x + )
= 3Gk+1(X)Pr42(%) -
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Now define {g,'(x): k = 1, 2, - - -} inductively as follows:

@11) ¢/ =2a, /(%) = (1 + 3p)(N))E[Ger(Si-) | S = x] -
Then as before, for k = 2,3, ...,

(2.12) q¢'(x) = 2aE[[Ii (1 + 3pi(S:)4:(S)) | S = x] .

Thus, ¢,/(x) = 2a, and (1 + 3pu(x)q:(x)) = (1 + ap,(x)). So using (2.11) induc-
tively, it follows that

(2.13) ' (%) = qi(x) forall x and k=1,2, ...
It is now shown inductively that if { f,} satisfies (1.2) with f,\x) = 2ac,(x), then

(2.14) fu(x) = pu(x)q,)(X) forall x and n=1,2, .-..

For n =1, (2.14) follows by definition. So assume (2.14) holds for » and

consider

(215 fou(x) = (Tf)x) + (TF)(*) = Efux + Y)(1 + Efu(x + Y))

(where Y ~ Q). By the induction hypothesis and (2.3),

(2.16)  Efy(x + Y) Z Ep(x + Y)4,/(x + ¥) = Pria(X)E[G'(Ss) | Sasa = ¥] -
Also from (2.13) and (2.10),

(2.17) 14+ Ef(x+Y)=14+ Ep(x+ Y)g,(x+7Y)
= 1 + 4p1(X)qnia(x) -
Therefore, combining (2.15), (2.16), and (2.17),

(218)  fara(®) Z Para(E[G4'(S) | Snir = XI(1 + 2Pusa(¥)90a(%))
= Prir(X)gn41(%) »
and (2.14) holds by induction.
We will now want to apply Lemma A.1 to obtain a lower bound for ¢,’(0).

This requires the inequality, 4p,(x)q,(x) < 1. To obtain this, first apply Lemma
A.1 to gq,(x) (see (2.8)), which yields

1
2a

4u(x) = exp{a 2o E[pi(Si) | Sn = ]} -

But by Lemma A.2, p,(x) < D/k for a’ll x; 50 E[pu(S)| S, = x] < D/k and
g.(x) < 2aexp {a Db _i_} < 2aexp {aD S;‘%{} = 2qe"Pogm) |

Therefore, using Lemma A.2 and (2.7), ,

(2.19) $P.(%)q.(x) = —;— D 2gewaosm — gpper-» <1.
' n
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So applying Lemma A.1 to ¢’(x) (see 2.12) and using Lemma A .4,

@20)  1og ) = 4 3p, E3p(SIa(S) 1S, = 6] 2 - 0,(0) —

It remains to apply Lemma A.1 once again to ¢,(0) to obtain a lower bound.
By (2.7) apy(x) < 1; so by Lemma A.1, ‘

(2.21) 0.(0) 2 o —oxp {4 1, E[pu(S) |5, = 01}

By (2.3), Lemma A.2, and Lemma A.3, for k = K and n > 2k,

E[pi(Se) [ Su = 0] - pu(0) = § pi*(y) dQu-u(¥)

= B
= 2 bl 5 k)

- %P{ (n —n—ll;)* } = (n —Ii*k)*}

O
K n—k k(n — k)

Hence (since p,(0) < D/n), for n > 2K,

[\

BB’ n )

222 9 s S)|S, =0]= 2y
(2.22) 2 k=2 E[Pu(Si) | Sa 1= 4 k_K< Dk n—k

>cCxm, % > C,logn — C,

for appropriate C; > 0 and C, > 0. Therefore (from (2.21) and (2.22)),

G} = Cnn

qn( )_

for n > 2K and appropriate C; > 0. Therefore, from (2.20),
9.'(0) = 2a exp{C;n1 — }} for n > 2K.

But p,(0) = B/n; and, hence, p,(0)g,'(0) — + oo asn — co. Theorem 2.2 there-
fore follows from (2.14). [1

3. Solvability and relation to recurrence.

THEOREM 3.1. Let ¢(t) denote the characteristic function of Q (defined on R?),
andlet B={(t;, ---, t,): |t;| £ 1,i=1, ..., p}. Suppose

dt
—< +
1 — 1)l
Then (1.3) has a bounded solution.

@3-1) §5

ProOF. As in Definition A of Section 2, let Y, have density p,(x) = ¢,(x) (with



NON-LINEAR DIFFUSION EQUATIONS 473

b = 1), so that its characteristic function is

$i() = I12 (1 — 1)) teB;
=0 t¢B.
Let {Y, Y, - - -} be independent and identically distributed according to Q, and
let p,(x) be the density of S, =Y, — X7, Y, for n =2,3,.... Then (as in
SeCtion 2)’ pn+1(x) = (Tpn)(x)’
By the Parseval relation, forn = 1,2, .-,
‘ ! .
(3.2) Pa%) = > § d(t)gpmY(t)e~ = dt

1 .
< 5 SaleOPdi =,
T

where the last equality defines ¢,. Now, by monotone convergence, (3.1) im-
plies that Y7, ¢, < +oo. Hence, letting b, = [];-, (1 + ¢;), there is a >0
such that ab, < 1 forn = 1,2, -... Define

(3.3) fo(x) = ab, p,(x) for xeR,n=1,2,3, ...
Then 0 < f,(x) < ab,c, < ¢, — 0 (so {f,} is bounded). Also

(T)(x) + (Tf.)(x) = ab, P, ()1 + ab, p,ii(¥)]
(3.4) é abnpn+1(x)(1 + cn+1)
= b1 Pria(X) = fupa(X) - 0

COROLLARY 3.1. Let Q' denote the symmetrized version of Q. If the random
walk generated by Q' is transient, then (3.1) holds (for Q).

Proor. If the random walk is transient, then (see Feller [3] page 578).
(1 — |(2)*)~" is integrable in a neighborhood of the origin. But (1 — [¢(7)[)" <
2(1 — |¢(2)|*)~! for all ¢; and, hence, (3.1) holds. []

The corollary immediately implies that (1.2) has a bounded solution if p = 3
(since all three-dimensional random walks are transient). It also shows that
solutions will exist for appropriate stable laws if p = 1 orp = 2. In particular,
if p = 1 and Q stable with index @ < 1 (or, in fact, in the domain of attraction
of such a law), then (1.2) has a nonnegative bounded solution. This also holds
if Q is stable with index @ < 2 in two dimensions.

In light of the results here, it is plausible to conjecture that (1.2) hasa bounded
nonnegative solution if and only if the random walk generated by the symme-
trization of Q is transient. Since the resilts of Section 2 require second moments,
it is easy to find classes of distribution in one or two dimensions which are not
covered by the present results. Some of these, however, can be obtained by
more or less direct extensions of the argument in Theorem 2.2. The argument
requires essentially that the characteristic function (4(/a,))* remain bounded
above zero (in a neighborhood of the origin) where a, — +oco as slow as or
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more slowly than » (so that };7_, (1/a;) = clogn). Thus, if p =1 and if Q is
in the domain of attraction of a stable law with index @ > 1, the argument of
Section 2 should imply that (1.2) has no bounded nonnegative solution. The
argument may even be extended to cover some distributions for which @, — 4+ co
more quickly than n. For example, if a, ~ nlog n, the induction argument in
Theorem 2.2 could be iterated yet a third time to show that (1.2) has no bounded
nonnegative solutions. Nonetheless, it seems clear that the argument of Section
2 requires too much regularity to cover the general recurrent situation, and the
general conjecture above would probably require an entirely different argument.

Acknowledgment. The author wishes to thank Dr. Gerald Edgar who pro-
vided the basic outlines of the proof of Theorem 2.2 in the case when Q was a
normal distribution. The author also wishes to thank the referees for their
careful reading of the manuscript, for pointing out several errors in an earlier
version and improving several proofs, and for making a number of helpful
comments.

APPENDIX

LeEMMA A.l1. Let {f;: i =1, ..., n} be nonnegative, measurable functions on R®,
and let E denote expectation with respect to an arbitrary probability measure on R?.
Then

@) E[IIia (1 + fu(X))] = exp{E[Xia fi(X)]}-

(b) If fi(x) < 1 almost surely,

E[II2 (1 + filX)] 2 exp{ZE[ 2 A(X)]} -

Proor. Straightforward.

LEMMA A.2. Consider random variables on R® as follows: let Y, have density
cy(x)—that is, characteristic function ¢*(t) = (1 — |4,|/b)(1 — |t,|/b) for |t,| < b and
|t,| < b (and zero otherwise) for an appropriate constant b > 0 chosen in the proof—
and let Y,, Y,, - - - be independent and identically distributed with mean zero, co-
variance matrix the identity, and characteristic function ¢(t). Let p, be the density
of S, =Y, — 2k, Y,. Then there are absolute constants B > 0, D > 0, and an
integer K > 1 (depending only on the distribution of Y,) such that

(@) pu(x) = Bk for ||x|| £ k and k = K,

(b) pu(x) < Dk forall xand k = 1,2, . ...

ProoF. First p,(x) = k~'f,(x/kt) where f, is the density of (k*)~!S,. Now,
using the Taylor expansion for ¢ about zero (see Feller [3] page 489), we may
choose b < 1 so that |¢(7)] < exp{—3||7|’} for || < band |t,| < b. Letdy(z) =
key(zk?). Then

f(0) = 5 Vd(x — y)eiin dy

= _2.1; { o* <—kt_‘¥) <¢k—1 <,I_:_{) — e—illtllz> e—ito) g
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(by the Parsevel relation). Therefore (letting @ denote the normal density),

e )=

fe(x) — d* @ = —§ dt

1 t
(A.1) = S Sie<net |@F7 (F) — e Hltf gy
< 1 { ¢k—1< ! ) — et gy 4 1 { e Hie gy
= 2g M4 kt T

where F = {(t,, t,): |t;| = A or |t,| = A4}

By the central limit theorem, the first term converges to zero as k — oo. The
second term can be made arbitrarily small by choosing 4 large. Choose B =
nf < @(x) — e. Now, clearly, (d,*@)(x) — ®(x) uniformly in x, so we can
choose K, for which (d,*®@)(x) = B + %c¢ for ||x]| < 1 and k > K,. Now choose
A so that the second integral in (A.1) is less than ¢/3, and choose K > K, so that
if kK > K, the first integral in (A.1) is less than ¢/3. Then f,(x) = B for ||x|]| < 1
and k > K;; from which (a) follows.

Part (b) can be obtained from (A.1) as follows:

ulx) — @ @) < - J et dr = 4.
T
Thus, since (d,*®@)(x) < 1/2x for all x, fi(x) < 1/27 + 4 = D; from which part
(b) follows.

LemMmA A.3. Let Q be an arbitrary symmetric probability distribution in R® with
zero mean and covariance matrix the identity. Let {X,, X,, - - -, X,,} be independent
and identically distributed according to Q, and defineU,, = Y™, X,. Then, there is
a constant B' > 0 (depending only on Q) such that for any value a, 0 < a < 1,

{” nll Sa}>B'a’

Proor. Let G, be the distribution of U,/m! letting b = (2¢)~' ¢ and using
the Parseval relation,

P{l

} = iyisa 4Gn(Y)
= 2b’§§<1 - °°S’1b><1 — cos 1, )¢’"< )dtla’ta

b1} b,

Now, by the central limit theorem, ¢™(¢/m?) — e-#II" uniformly on compact
sets; and, hence, there is ¢ > 0 such that for m large, ¢™(¢/mt) = } for |¢,| < c.
Thus, we may choose ¢’ < 2z so that for all m ¢™(¢/mt) = % for |ti| < ¢'. Also,
for |t,| < ¢, |t,b] < ¢, and there is B > 0 such that (1 — cos bt,/b%;%) = B for
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|t] £ ¢’. Therefore (since b* = 4a® and ¢(¢) is positive by symmetry of Q)
e
alr

where B’ = 1B%*2c').

LeMMA A4, Let{S,: k=1,2,---}and{p,: k = 1,2, - ..} be as in Definition
A of Section 2, and let {q,: k = 1,2, - - .} be defined by (2.8). Then

< a} > a* {7, {7, B’ }dt, d1,

= {B'Q2c'ya* = B'a®

1
2k=2 E[3Pu(S)94(S1) | S, = x] = 27 galx) — 1.
Proor (by induction). For n = 2, the left-hand side is
3Po(%)q5(%) 2 apy(x) = E[1 + apy($,) [ S, = x] — 1
1
= 24 ga(x) — 1.
So assume the inequality holds for (n — 1) and consider the following:
2ii=s E[3Pu(Si)9x(Se) | S = ]
= 2123 E[3pu(S0)9u(Si) | S = x] + $p(x)g.(x)
= 2523 BE[2P(S0)9(Se) [ S Suaa] | Sa = x} 4 £Pu(X)q(%)
= 2k ELE[EPe(S0)9(Se) | Surs Yal|Su = X} + EPu(%)q4(%)
= E{ 2155 E[3Pu(Si)9(Sh) | Sai] | Sn = X} + 3Pu(%)9a(%)
1

= — — = 1
2 Bl qus(Sm) = 118, = x} + 4pu(99.(9)

_ 1 .
= 5 Elgua(Sa-) | Su = x] — 1
+ 2_10 - apu(9)(1 + apu(x)E[qsr(Suor) | S = x]

= —— (1 + ap(x)E[a-s(S0-1) | S0 = x] — 1

L
2a
1

—_— —1

57 (%)

where the third equality uses independénce of S,_; and Y,, the next inequality
uses the induction hypothesis, and the last inequality uses the fact that

14+ ap,(x) = 1.
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