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RADON-NIKODYM DERIVATIVES WITH RESPECT TO
MEASURES INDUCED BY DISCONTINUOUS
INDEPENDENT-INCREMENT PROCESSES!

By ADRIAN SEGALL AND THoMAS KAILATH
Stanford University

We obtain representation formulas for the Radon-Nikodym deriva-
tives of measures absolutely continuous with respect to measures induced
by processes with stationary independent increments. The proofs of these
formulas, which have applications in signal detection and estimation prob-
lems, call heavily upon recent results in martingale theory, especially a
general formula of Doléans-Dade for the logarithm of a strictly positive
martingale in terms of a function measuring its jumps.

1. Introduction. Following earlier partial results of Cameron and Martin and
of Maruyama, Cameron and Graves [3] presented a by now, well-known formula
for the Radon-Nikodym derivative (RND) of a translated Wiener measure w.r.t.
the Wiener measure. More specifically, if P, is the measure induced by the
Wiener process x(f) = w(f) and P, is induced by the process

(1.1) x(t) = w(t) + 16 f(u) du

where f(u) is a real-valued L,-function, then they have shown in Corollary 1,
([3] page 169) that the RND is given by
(1.2) O = exp{(i fdx — § i ).

dp,
The RND plays the role of the likelihgod-ratio statistic in the theory of hy-
pothesis testing for stochastic processes. In this context the above formula has
been rediscovered several times and has been widely used in statistical communi-
cation engineering as the proper statistic for choosing between the hypotheses
(described in the form used by engineers):

H;: y=m+4w
(1.3) = signal plus white noise
H,: y=w
= white noise

where the dots denote formal differentiation with respect to time.
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Now, in many applications, the signal m(.) is itself random and is often—as
in feedback communications and feedback control—a function of past j(.).
Some specific formulae have been obtained for various classes of random signals
m(+)—most notably for Gaussian m(.). However recently Kailath [13], [14] has
obtained a general representation formula for such Radon-Nikodym derivatives
which has been quite useful in applications [17] and [26] for reasons described
presently. The representation formula is the following: consider the problem
of testing between the hypotheses:

(1.4) H,: X, = w, is a Wiener process
H;: X, =S\tz. dv + w,

where z, is a “random signal” and such that w, is a martingale over some fields
F, D F, = a{X,, s < t}. The usual assumptions, when z, is completely inde-
pendent or past dependent of the noise, can be shown to be special cases of the
above. If the probability measures P,, P, respectively induced by {X,} on the
space of continuous functions with the natural Borel os-algebra, are mutually
absolutely continuous, then the Radon-Nikodym derivative L, between their
restrictions up to time ¢ is given by:

(1.5) L, = exp{{;Z,dX, — 4 \s 22 ds} where
2, = E{z,| &} and F, =X, st}

The point of this formula is that it specifies a uniform structure for a large
class of signal processes in which the only unknown is the function 2(.) of (1.5).
While explicit formulas for Z(+) are hard to find, its interpretation as a least-
squares estimate permits various approximations to be made to the actual 2(.).
This empirical procedure has been found to be useful in various applications
(see e.g., [17], [26]).

Kailath discussed some generalizations of (1.5) in [15], relaxing the assump-
tion of mutual absolute continuity and replacing w(.) by a continuous semi-
martingale of w(.). In this paper we shall discuss a different class of problems
in which the processes involved are discontinuous. More specifically, we shall
prove the following result:

Let X, be a purely discontinuous stochastic process that is right continuous
and possesses left-hand limits and let

(1.6a) I' = a Borel subset, bounded away from zero, of the state space.
We shall define the so-called underlying counting process as
pt, TYA X .c, Ly, —x, er
(1.6b) = the number of jumps of X, up to the time ¢
of algebraic magnitude in I'. '
We also define
(1.7) IT) A Ep(1,T) .
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Now consider the following hypotheses:

H,: X, is a process with stationary independent increments, or equivalently a

process such that

(1.8) qt, TYAp(t,T) — II(T') - ¢ is a martingale on &, = o{X,, s < 1},
forall T' asin (l.6a)

H,: There exists an increasing family of ¢-algebras {<Z} such that <&, O &,
for all ¢, and a right-continuous random function II(T', ¢, ®) that is

(a) a measure on the state space (with its Borel field) for each ¢ and almost
every ;
(b) right continuous with left-hand limits for each I' and almost every ;
(c) <-measurable for all ¢ and T';
and such that
(1.9) p(t, T) — (t1y(r, s, w) ds

is a martingale on &7, for all T as in (1.6a). (See also Remark 6.5.) Then, if
the measures induced by X, on the space of purely discontinuous functions are
mutually absolutely continuous, the Radon-Nikodym derivative L, between
their restrictions up to time ¢ can be written

(1.10a) L, = exp{\§ $i51<1 fq(ds, dy) + §§ 15121 fp(ds, dy)
— $eSins (¢F — f— DI(dy) ds — §§ §, 521 (¢F — 1)II(dy) ds}

where

fy(dy, t, 0)
1.10b = f(y, t, ) = log =1\%)> [, @)
( ) =1yt o) =log Ti(d)
and
(1.10¢) (T, t, 0) = E{I(T, 1, 0)| 73} .

When the measure II,(+) (under hypothesis H,) is not random, then II, = II,
and we have the standard formula, probably first given by Skorokhod ([23]
pages 230-234) for the RND of measures induced by two mutually absolutely
continuous independent-increment processes (without Gaussian parts). Thus
(1.10) is the natural generalization of (1.5) to the discontinuous process case.

Previous results. For counting processes (unity-jumps), such problems were
first treated by D. Snyder [24] and then by I. Rubin [21]. P. Frost [9] was the
first to consider the general class of independent increment processes and he
worked out several interesting examples. However the results of Snyder and
Frost suffer from a major limitation—the ‘“signal” must be completely inde-
pendent of the “noise.” ‘

This limitation is inherent in their method of proof which is based on a
generalized Bayes Rule for stochastic processes—they first write the RND for
the random measure II,(¢, y, ®) when o is fixed and therefore II, deterministic
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and then average over all possible values of . However this procedure has no
meaning if II, can depend upon the past values of X;.

The Bayes-rule technique has been used in the Wiener case as well by T.
Duncan [8] who formalized and extended the procedure used in some pioneering
papers by Stratonovich and Sosulin (see, e.g., [25]). But even in the Gaussian
case the method is limited to signal processes which are completely independent
of the noise. To avoid this restriction, a heavier use of martingale theory is
necessary and a four-step proof—using a series of martingale results—was pre-
sented by Kailath in the Wiener case [13], [14]. Recently, Bremaud [2] has
used this 4-step proof to treat past-dependent signals for point-process noise
(M. H. A. Davis [4] has pointed out that Bremaud’s proof is marred by a tech-
nical error that we shall discuss at a later point.) In this paper we use the 4-step
proof for general SII processes and for convenience we outline it here.

A. Representation for general martingales. Using the Doléns-Dade exponential
formula for local martingales, we show that any martingale on the probability
space induced by X, under H, and in particular the Radon-Nikodym derivative,
has the form (1.10a) for some function f(y, ¢, w) that is &, adapted for any y.

The remaining steps are concerned with identifying the function f.

B. A Girsanov-type theorem. The function f is shown to be such that
p(t, T) — §¢§ e/Il(dy) ds is a local martingale on (H,, 7).

C. Innovations. From (1.8) we obtain an innovations-type result, namely that
p(t, T) — §§1I(T, s, w) ds is a local martingale on (H,, &).

D. Uniqueness. Since any continuous local martingale must be of unbounded
variation, B and C above give
(1.11) I, 5, @) — §¢ 5 e/Ti(dy) ds = 0
from which (1.10b), (1.10c) are obtained.

We turn now to the detailed proof. Some further general remarks will be
made in the concluding Section 6.

2. General notations. Let Q be the space of functions o(+) from R* —» R
such that @(0) = 0 and w(+) is right-continuous with left-hand limits. We denote
by X,(»), ® € Q, the coordinate function on Q, defined by

@.1) X (@) = o(f) .
Define
(2.2) F,=aX(0),s<t} and F = Vieq+ - F-

Let II be a measure on R with II({0}) = 0 and such that

(2.3) i 12 s ) < oo
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Then (see, for example, Hida [12]), there exists a probability space on which
X, is a process with stationary independent increments (SII), no Wiener com-
ponent, and canonical measure II. We write P for the measure induced by
X,(w) on (Q, &).

Let U, = {y; |y| > ¢}. For I'a Borel set in U,, we define p(z, I") as the number
of jumps in I of {X,, s < ¢}, namely

(2'4) P(t’ F) = Zagt I(Axser) s some I'e U,
where I, is the indicator function of the set 4 and

(2.5) X, =lim_,, X, AX,= X, — X,_.

rts “r

Then p(z, T') is Poisson with rate II(I") under (Q, &, P). Also
(2.6) q(t, Ty =p(t, T) — IIT") - ¢

is a square integrable (g, P) martingale.

We also recall some more difinitions. Following [27], a process X, is said to
be purely discontinuous if X, = lim, [ Y] ,s¢ AX, I sz, 5] Observe that since X,
is assumed to be SII with no Wiener component, it is purely discontinuous with
possibly an additional deterministic term linear in 7 ([10] Chapter 6). A process
that jumps only at the discontinuity points of X, is called quasi-left-continuous.

A martingale of the form Y, — 4, where Y, is purely discontinuous and 4,
is continuous and of bounded variation is called a compensated sum of jumps
martingale. It has been shown by Meyer ([20] page 101) that every martingale
can be decomposed into a continuous martingale plus a compensated sum of
jumps martingale. Under the above assumptions, ., can support only martin-
gales that are compensated sums of jumps.

Finally we shall need to define certain classes of functions Ff, and Ff,.. We
follow here closely Kunita and Watanabe [2].

® = {Borel [0, o) x # measurable processes ¢, such that
ér(w) e F,, V stopping time T};
(2.7)  ®,, = {bounded right continuous processes with left-hand limits} ;
L=®n®, where ®, Iisthecompletionof @, with
respect to the seminorm
[l = B(36 . ds)?

Let F© be the class of Borel [0, co) x Borel (— oo, co) x % measurable functions
such that

(2.8) h(t,y, w)e L for any fixed y
and

(2.9) e = E(§§ § PTI(dy) d5) < oo all .
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Also let F?+ be the class of positive Borel [0, o) x Borel (—oo, o0) x &~
measurable functions g(s, y, o) such that g € @ for all y and

(2.10) E i SR 9(s, y, o)I(dy)ds < oo .
We define
(2.11) FP —= FP+ — FP+ |

The class F2, is defined as F° with (2.9) replaced by
(2.12) E(§i7n (g P*II(dy) ds)t < oo all ¢+ and all n

for some increasing sequence of stopping times T, 1 co a.s. The class Ff, is
defined similarly.
We also define in the appendix the following stochastic integrals

(2.13) 0u(1) = §§ (& A(s, y, ®)q(ds, dy) for he Fg,
(2.14) Py(t) = §§ {r 9(s, y, 0)p(ds, dy) . for ge Ff, .
3. Representation of martingales of discontinuous SII processes.

THEOREM 1. Let L, be a compensated sum of jumps martingale on (Q, &, P)
with L, > 0, L,_ > Oand L, = 1. Then there exists a Borel [0, co) x Borel (— oo,
o) x F measurable function f(t, y, ®) such that, for all fixed y, f(T,y, ») is F
measurable for all stopping times T and with

(3.1 9= flyszn s h= flis<n

we have

(3.2) he FS,

(3-3) ’ geFf,

(3.4) §6 (r (€7 — DIl(dy) ds < oo all t

and L, is given by
(3:5) L, = exp{P,(f) + Qu(1) — §§ §x (¢! — D)II(dy) ds
— i §r (¢ — 1 — h)I(dy)ds} .

Proor. We shall specialize a general result of Doléans-Dade ([6] Theorem 2)
to the case of discontinuous SII processes. We may define

(3.6) f,) = log (1 + i’“) , where AL, =L, — L,_

8 —

because L, > 0 and L,_ > 0 imply AL,/L,_ > —1. Let
(3.7) k' = fi'lis<n s
(3.8) 9 = fi'lys iz -
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Now we shall use the notations [6]

N

g=e—1, p=e—1—9¢,
S¢ = Yt Pe if {s|¢, # 0} is countable,
Al = {¢]S8.¢" is locally integrable},
Afoc = {¢ | ¢2 € A:llOC} *
If ¢ € Al,, let S be the unique, predictable, locally integrable process which
is a difference of two increasing processes and such that
(3.9) S¢ — 8¢ =0y

is a local martingale. If ¢ is only in A, such an $¢ may not exist, but
Doléans-Dade ([6] page 190) has shown that we can still find a unique L, local
martingale, again denoted Q,#, such that

(3.10) AQY = ¢, as. Vi.
Then Doléans-Dade has shown that
(3.11a) gel,., §ell,, HeA,, FeAl,
and
(3.11b) L, = exp{(S# — 8) + (@} — s7)}

(see also Remark 6.4). Now we shall identify these quantities for our case.
First note that S,*" has jumps only at discontinuity points of the martingale L,
of an SIT process, so that the jump points of S, will be jump points of the
sample paths ([1] page 66, [18] page 16 and [5] Theorem VI. 42). Therefore,
S,%" is a quasi-left-continuous functional and moreover, it is purely discontinu-
ous. Then it is shown in the Appendix (cf. (A.12)) that there exists a function
g(t, y, o) € Ff,, such that

(3.12) S0 = me,»o,::st 9(s—, AX,, 0) = §§ § 9(s, y, ®)p(ds, dy) .
We also have by definition of S,7" that

(3.13a) 9(s—, AX,, 0) = g,/() where 9/(w) # 0, and
(3.13b) lg(s, y, w)] = 1.

Also

(3.14) S = Tz (€% — 1) = §§ §5 (e — 1)p(ds, dy)

is locally integrable because §’ ¢ A},,. Hence .

(3.15) 5 S (v — Dp(ds, dy) — §¢ 1 (v — D)I(ds) dy

is a local martingale and we can identify

(3.16) 87 = (i g (er — DII(ds)dy .
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Now, since #’ ¢ A}, and is bounded by (e + 2),

(3.17) TP (e +2) DI,
so that A’ belongs to A2, as well. Hence
(3.18) W=k —kecAl,

and we can write
(3.19) Qti' _ Si' = QM + Qt;?r _ Siu = QM — S’vﬁ, )

Moreover, Q* is an L*-local martingale, so there exists (cf. (A.6) of the Appen-
dix), a function A(t, y, @) in Fg, such that

(3.20) Q. = (& g (s, y, w)q(ds, dy) .

Also, as Q" has jumps of absolute value less than 1, |4 < 1,

(3.21) h(t_, AX,, ) = h/(w) where #/(w) 0
and
(3.22) L8 = (g (e — (s, y, @) — D)IL(dy)ds.

Substituting (3.12), (3.16), (3.20), (3.22) into (3.11) gives the stated formula
(3.5). To complete the proof we observe that P, and Q, have no common jumps;
therefore g - h = 0 and we can define f{(s, y, ) = g(s, y, ) when A(s, y, ) = 0
and f(s, y, ) = h(s, y, ®) when g(s, y, o) = 0. Then f has the required proper-
ties and

(3.23) f(s_, AX,, ©) = f(®) where f/(w) # 0.
Finally,
(3.24) 16 §r (¢ — DII(dy) ds < oo

follows from [16] Lemma 6.1.

4. Mutually absolutely continuous probability measures on (Q, ). We
have defined P to be the probability measure for which {X,, &} is a process with
stationary independent increments on (Q, .&").

If P, is another probability measure on (2, &) such that P,  Pand P  P,,
then, if £+ denotes the conditional expectation w.r.t. the field 5, under the
measure P, '

-+ dP,
4.1 L, =FE"t" L
@1 ! " ap

is an (&, P) martingale. Moreover EL, = 1 and L, < oo and L, > 0 a.s. By
a theorem of Meyer ([19] page 99), L,_ > 0 a.s. all # and therefore Theorem 1
may be applied to L,. In other words L, can be written as in {3.5).

THEOREM 2 (Girsanov Type). Let f(t, y, w) be the function of Theorem 1 with
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L, = E“«dP,/dP). Then for any I € U,, the process
(4.2) 9u(t, T) = p(t, I') — G §p e/ »'1I(dy) ds
is a (P, &) local martingale.
Proor. Recall that ¢(z, I') is a square integrable (P, .&,) martingale. Then
(4.3) 9:(t, I) = q(t, I') — §i §r (¢/ — DII(dy) ds .

Now, ¢(¢, T') is a (P,, &) local martingale if and only if ¢,(¢, I')L, is a (P, &)
local martingale, because for s < ¢t and 4 € &, we have

dP, dP
(4.4) E 1,49, T)=El, d—Pl‘ 9:(t, I') = EIL q,(t, F)Evg“z,Fl
= El, q(t, I')L,

and in particular

(4.5) E,1,qys,T) = EI, qys, )L,
so that

(4.6a) E "sqy(t,T) = ¢y(s5, T)

if and only if

(4.6b) E=sq(t, T)L, = ¢,(s, T)L, .

But the change of variables formula ([7] Theorem 8) with F(x, y) = xy gives

(4'7) Lt ql(t’ F) = S‘g Ls— ql(ds’ F) + S‘g ql(s_a F) dLs + ngt AL: * Aql(S, F)
and from (3.6), AT, = (/s — 1)L,_, hence
(4.8) Zust L, - Agy(s, T) = Doz Le(¢/s — DAgy(s, T)

= DN<e L_(e7" — DAp(s, T')
since {{ e/II(dy) ds is a continuous function. But, since I" € U,, the last expres-
sion is just
4.9) §6 Sr Li(e” — 1)p(ds, dy) = Tzt sxys0 Lo(e/C72 %0 — 1)
so, using (4.3), expression (4.7) becomes
(410)  Logy(t, T) = §i L, q(ds, T') — §i L, §r (¢! — DIL(dy) ds

+ i qu(s—, T) dL, + §§ Sr Ly(e! — 1)p(ds, dy) -

The first and the third term are (P, 5,) local martingales; another local
martingale is obtained by combining the second and the fourth term. This
completes the proof.

5. “Signals” in discontinuous-type “noise”. Our objective now is to identify
the function f(, y, ») obtained in Theorem 1 for the following case:
Let <, be an increasing family of o-fields such that <%, o &, for all t.
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Assume moreover that there exists a function II(T, ¢, o) with the following
properties:

(a) IO(-, s, ) is a.e. a measure on R with II,({0}, s, ®) = 0.
(b) II(T, t, ) is <&, measurable for any I' ¢ U, and all ¢.

(c) II(T, ., ) is right continuous for each I ¢ U,.

d) E, ¢$II(T, s, w)ds < oo for all T' ¢ U, and all 1

and such that
(5.1) p(t, T) — SEI(T, s, w) ds
is a (P,, &%) martingale (see also Remark 6.¢). We say then that X, has a ran-
dom nonanticipative canonical measure II(T', 1, w) under (P,, £7)).
THEOREM 3 (Innovations). Set
(5.2) I, 1, 0) = EZII(T, 1, 0) .
Under the above assumptions,
(5.3) §(t, Ty = p(t, T) — S$ 1T, 5, 0) ds
is a (P, &) martingale, for any Borel set T ¢ U,.
Proor. Clearly 4(z, I') is & ,-measurable for all . Also, for t > s
E7¢p(1, T) — p(s, )]
= E7E % [p(1, T) — p(s, T)]
(5.4) = E s (LIL(T, 7, w)dr = (L [E,7II(T, 7, w)] de
= VH{E"S[E,7II(T, , 0)]} dt
= V[E7SI(T, 7, )] dv = E;7s L 1I(T', 7, w) dr .

We have applied here (5.1), (5.2) and Fubini’s Theorem.

The following lemma provides the last step toward the identification of
ftt,y, @).

LeEMMA 4 (Uniqueness). Let L, = E<+(dP,/dP) and P,, P be mutually absolutely
continuous. Let II(T', t, ) be as in Theorem 3. Then foranye > 0, 11,(+, t, 0) €
() on U, a.s. all t and the function f{(t, y, ») found in Theorem 1 is given by

— I(dy, t, )
(5.5) ft, y, ) = log Td}')_ .

Proor. We have
p(t, ) = q,(t, T) + §§ §p e/ voIl(dy) de
=4t T) + LI, 7, w) de
so that .
(5.6) Vi [§r e/ voll(dy) — TI(T, 7, @) dr = gy(1, T) — 4(t, T)

and the latter is a local martingale. Clearly it is continuous, and, since
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{ e/Il(dy) and (T, ¢, 0) are positive, it is a difference of two increasing pro-
cesses. Moreover ¢, — §, = 0, so that by Corollary to Theorem 1.3 [16],
q,(t,T) — 4@, T')= 0, or

(5.7 {E[§ e/ eroll{dy) de — (T, ¢, 0)]dz = 0.
We have therefore
(5.8) jre/troll(dy) = (T, 1, 0) forall TeU, andall ¢

which implies the absolute continuity and (5.5).

Putting these results together, we have the following result stated in Section 1.

Let the probability measures P and P, be mutually absolutely continuous and
let the coordinate process X, be such that

under P: X, has stationary independent increments
under P;: X, is such that for the underlying counting
processess p(t, I') defined in Section 2, the process
(5.9) q,(t, T) = p@t, T') — ($10(t, T, w) dr
isa <%, martingale; <&, areany increasing fields includ-
ing the fields &, =o{X,s<t} and I, T,0) isa
function with the properties (a) and (d) above.
Then II(T"), the canonical measure of X, under P, is absolutely continuous w.r.t.
M, T, ) on U, for any ¢ > 0 and the RND L, = E“«(dP,/dP) is given by (3.5),
with
(1, dy, o)
(5.10) flt,y, ) =log —22 " 7

I(dy)

6. Remarks.

REMARK 6.1. Our treatment assumes mutually absolute continuity between
P and P,. We are not aware presently of the most general conditions under
which this holds. Grigelionis [11] has shown that if
(¢, dy, »)

T(dy)
is bounded by a constant, then the two measures P, P, are indeed mutually
absolutely continuous. In this case the RND can be written in the form:

(62 Lo=E79% = exp(0 () — 1§ §a (! — 1 = NI (d)ds}.

(6.1) flt,y, w) = log

REMARK 6.2. The special case when X, is a unity-jump process (a Poisson
process under P) was treated in Bremaud [2] using Kunita and Watanabe’s [16]
theory of L*-local martingales. However, this treatment is not difectly applica-
ble to discontinuous processes. Explicitly, for Ty = inf {¢|L,| = N}, the process
L,,,, is not uniformly bounded in general, since we have no information about
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the value of L,,,, for t > T,. Therefore, we do not have L*-local martingales.
To avoid this difficulty, we consider here separately “big” and “small” jumps.
Observe that Q,*" as defined in (3.10) has jumps of absolute value not greater
than 1 because of (3.7) and therefore Q},,  is uniformly bounded by (N 4 1)
for suitable T, and Q,*" is an L’local martingale.

REMARK 6.3. To avoid confusion, we clarify here some of Doléans-Dade’s
results [6]: Lemma 2 is incorrect as it stands, because the last inequality on
page 192 does not hold under the assumption of the lemma. However, it is
easily corrected by changing the assumption to

_1_§1+é_°1£§'v for some 1< v < .
v a,_

(6.3)
Now, Lemma 1 will continue to hold if we assume

Ba, o O<1-|__A_C_”1

a,_ a,_

(6.4) <14 <1
u

and Theorem 2 will then be correct if we take
(6.5) 9 = sz
h = f1(|f|<1) .
(Observe the absolute values in the indicator functions.)

REMARK 6.4. If the process X, is under H, a general SII process (i.e., having
both a continuous and a discontinuous part) then (1.4) changes to (see [6]
Theorem 2)

(6.6) L, = exp{(87 — ¥ B + (S — 8) + (@} — sM)
where g, is a continuous local martingale. The hypotheses change to:
H,: X, hasSII, ie., X,=X?-+w, where w, is Wiener
H;: X, = X + X° where
pt, Ty — §¢ (s, T', w) ds isan (&, P) martingale
X — §iz(s, w)ds  isan (&, P) Wiener process .
Then Kailath [14] has shown that

(6'7) IBtc = 83 21(5') d”s
where ‘
(6.8) v, = X;° — (4 2,(s, w)ds

is a Wiener process so that L, will be given by (3.5) multiplied by
(6.9) exp{§s 2,(s) dv, — % §¢ 2%(s) ds} .

REMARK 6.5. Observe that as shown in [22], for an arbitrary jump process X,
with E, p(t, I') < oo and arbitrary family {7} of ¢-fields with <&, 5 &, all ¢,
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there exists by Meyer’s decomposition a <Z-predictable increasing process
A+, T') s.t. ‘
(6.10) p(t, T) — A, T)
is a (P, &,)-martingale. Conditions under which A(z, I') is absolutely continu-
ous are not known to us. This is not restrictive though, since under mutual
absolute continuity, even if A(z, I') is not absolutely continuous, its F ~-predict-
able dual projection 4¥(t, T') ([5] page 110) must be so by (5.7). The & ,-pre-
dictable dual projection is just the & -predictable increasing process that makes
p(t, ') — A, T') as (P, & ,)-martingale, and clearly if

A, T) = ({115, T) ds then

A, T) = (1 1(s, T) ds .

APPENDIX

Stochastic integrals. We follow here 6losely Kunita and Watanabe [16]. In
Section 2 we have defined the processes

(A.1) Pt T) = Yo Liyyx,_er Fel,
(A2) 9(t, T) = p(t, T) — I(T) - 1

and the class of functions F?, F¢, Ff, , F%,. For he F? of the form

(A.3) h(t, y, ®) = @(t, @)1, ; eU; ¢elL,
we shall define a stochastic integral

(A.4) Qi = (i Sr A(s, y, @)q(ds, dy) = {§ §(s, w)q(ds, T) .

We recall that the last integral is a stochastic integral as defined by Kunita and
Watanabe ([16] Theorem 2.1) and is further clarified in a remark of Meyer ([20]
page 80). Namely one defines the last integral as a Stieltjes integral with the
integrand ¢ replaced by a predictable version of ¢. In our case, this amounts
to working with the Stieltjes integral

(A.5) {5 $(s, @)q(ds, T) .

Now an arbitrary process € F? can be approximated by linear combinations
k™ of processes of the form (A.3), s.t. || — A™||; > 0. Then Q, is a Cauchy
sequence and we define Q, = lim Q,w, and Q, is a square integrable compen-
sated sum of jumps martingale. Conversely any square integrable compensated
sum of jumps martingale on an SII process can be written as

(A.6) §6 Vr (s, y, @)q(ds, dy)

for some ke F¢. This follows directly from [16] Proposition 5.2, since we can
easily verify that for a process with SII, the pair (II(dy — x), 7) forms a Levy
system and that the basic process ¢,(, ) of Kunita and Watanabe can be writ-
ten as

(A.7) 9t E) = N6 Syyi>e Liye-x,-1 9(d5, dy) -
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The above definitions can also be easily extended to locally square integrable
martingales with F2  as defined in Section 2.

loc

For g € Ff,, we define
(A.8) P(t) = (§ (R 9(s, y, 0)p(dy, ds) = ZIAX3|>0,s§t 9(s—, AX,, 0) .

Then P,(¢) is a purely discontinuous quasi-left-continuous process with

(A.9) EP(tANT)=E §irTn §2 9(S, ps w)H(dy) ds
and hence ‘
(A.10) EIP(t AT,)| < E {5 §g |9]T(dy) ds < oo .

Conversely, any purely discontinuous quasi-left-continuous process ¢, with the
property

(A.11) Elpinr,| < 00

can be written as

(A.12) ¢ = Py(1)

for some g ¢ Ff,,. To see this, observe that we can write
(A.13) Pe = 2iapy>o Ap, + 2 ap,<0 Ag,

and show (A.12) for each component separately, so that we may assume that ¢,
has only positive jumps.
Now define

(A.14) PN m = Zs§t,|AX,|>1/m (Ap, AN).

Then ¢,7'™ purely discontinuous and ¢,”'™ 1 ¢, as N, m 1 oo, so that we can show
(A.12) only for ¢,"™. Next observe that Ep;7 < co and hence o7, is a
positive submartingale of class (DL) (see [9] page 101) that is also quasi-left-
continuous, so that there exists a continuous increasing process 4,”™, such that

(A.IS) th,m — 90tN'm — AtN,m

is a local martingale, and since ¢,”>™ has bounded jumps and 4,"'™ is continuous,
w,V»™ is also locally square integrable. Therefore w,Y™ can be written as

(A.16) w ™ = §§ §r A(s, y, @)q(ds, dy)
for some L e F2, and now it is clear that
(A.17) o™ = Y h(s—, AX,, w) .

Note 1. Observe that we have changed somewhat the definitions of Kunita
and Watanabe [16] to deal with the size of the jumps rather than the position
after the jump; this is more natural in the SII case.

Note 2. For ¢, as in (A.11) that is also an additive functional, Watanabe
[27] has shown that

(A.18) Pr = Py(1)
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where
(A.19) 9(s—, AX,, o) = g(X,_, X,) = 9(X,_, AX,)

namely the functional g is only a function of the value X,_ of the sample path
immediately before the jump (and of the value of the jump). In general g is
dependent on all the past {X (v), v < s}.
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