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EXIT SYSTEMS!

By BERNARD MAISONNEUVE
University of British Columbia

We associate with a strong Markov process (X;) and a Borel set B an
‘“‘exit system.”” This system provides the structure of the excursions from
B of the process (X;) and gives a new approach to the recent results of
Getoor and Sharpe on last exit decompositions and last exit distributions.

1. Introduction. Given a strong Markov process and a regular point x,, Itd
in [6] has defined the process of the excursions from x,, using a local time at x,,
and has shown that this process is a Poisson point process characterized by a
certain entrance law for the semi-group killed at the hitting time of x,. But for
the excursions from a general Borel set B we no longer have the independence
properties and do not always have a local time on B. The structure of these
excursions has been deduced in [11] from a recent work of Getoor and Sharpe
[5], and in [13] from the existence of a Lévy system of the incursion process.
Here we give a proof of these results without using the techniques of [5] and
[11] (for example raw balayage, well measurable projection of nonadapted addi-
tive functionals) and without using the theory of Lévy system which was some-
what difficult to apply to the incursion process. The essential tool will be the
“exit system” defined in Section 4. For the results of Getoor and Sharpe [5]
about last exit conditional distributions, we give a strong Markov version. We
also generalize a result of Meyer, Smythe, Walsh [15]: if L* is the beginning of
the first excursion with length > a (a € ]0, oo]), the process (X ;o ,)o<i<, i @ nON-
homogeneous Markov process; the transition function is related to the semi-
group killed at the hitting time of B.

2. General notations and definitions.

2.1 We shall work with the canonical right continuous realization (,
F, F 1 X,, 0, PY) of a semi-group (P,) on E that satisfies the “hypothéses
droites” of Meyer (the excessive functions are nearly Borel and right continuous
on the paths of the process (X,)). The state space E is compact metric. <%, <#*
denote its Borel and universal o-fields.

We assume that d is an absorbing state of Eand that { = inf {t: X, = 0} = oo
Pe-a.s. for each x = §. Actually the point J is only needed for the definition of
the excursions (Section 6).

Let &% = o{X,, s = 0} and let & * be the universal completion of . °: a
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set belongs to & * if and only if it belongs to the P-completion of & °, for all
probability measures P on (Q, & °). One has & °cC & * C &

Let &' = o{X,, 0 < 5 < t}. The usual completion procedure with respect to
the measure P* provides a family (& ,#) that satisfies the “usual” conditions of
[2]. Unless otherwise stated the notions of stopping time, well measurable or
predictable processes are taken with respect to all families (% ,*). For questions
of the general theory of processes the reader is referred to Dellacherie [2].

(2.2) We now give a closed random set M, homogeneous in 10, co[ and well
measurable. By random set we mean a mapping from Q to the set of all subsets
of R,. Therandom set M is said to be closed if M(w) is closed for each w, and
to be homogeneous in ]0, oof if

(M —1)n10,o00[ =(Mo8,)n 10, cof , t=0.

The canonical example of such a set is M = {r: X, € B}, where B is a nearly
Borel set.
We associate with M the following random variables

R=inf{s >0:5e M} (inf¢ = +o0)
R, =R 0,
D,=t+ R, =inf{s >t:5eM}.
Recall that (D,) is a right continuous, increasing process (such that D, = R) and
that D, is a stopping time for all +. The family (&,) = (&) is then right
continuous. As a result of [8], Chapter 2, for each (&,)-stopping time S, Dy
is a stopping time and &5 C & .
In view of [10], one may assume that R is & *-measurable.
3. The set G.

3.1 DerINITION. Let F be the set of the points x such that P*{R = 0} = 1.
We define the random sets

G={t>0:R,_=0,R, >0}
G' = {teG: X,cF)
G ={teG: X,¢F}.

Note that (R,) has left limits, since (D,) is increasing, and that {t > 0: R, =
0} = M\{0}. Therefore G(w) is the set of the left endpoints in ]0, co[ of the
intervals contiguous to M(w) (maximal in the complement of M(w)).

The set F is nearly Borel and {r: X, € F} is well measurable. G, G", G* are
(%)-well measurable by definition, and (& ,)-progressively measurable by ([2]
Chapter VI, Theorem 2).

The following result is due to Meyer [11]. We shall give a new proof using
the family (%) Recall that, for a function 7: Q — [0, oo], [T] denotes the
random set defined by [T](w) = {T(w)} if T(v) < oo, ¢ otherwise. [T] is called
the graph of T.
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3.2) PROPOSITION. (i) G* is well measurable.
(i) G" n [T] = ¢ a.s. for each stopping time T, and so G* is progressively meas-
urable but not well-measurable, unless it is empty.

Proor. (i) It is sufficient to show that G° = M* a.s. where M°¢ is the well-
measurable set {r > 0: R,_ =0, X, ¢ F}. Let S be an (ﬁj)-stopping time such
that [S] c M*'. By the Markov property at Dy, Xge F a.s. on {Dg = S < oo},
therefore Ry > O a.s. and [S] € G a.s. The section theorem applied to the (F)-
well-measurable sets M* and G implies M* C G, or G' = M" a.s.

(ii) Let T be a stopping time. By the strong Markov property, one has
R, =0as.on{X,eF,T< o}and G' n [T]= @ a.s. [I

(3.3) CoROLLARY. For all positive well-measurable processes Z and all positive
F *-measurable functions f
(3.4) E'[YecaiZ,fo0,] = E[N,eqi Z,EX(f)].

Proor. G’ is well-measurable and has countable sections. By a theorem of
Dellacherie, G* = |J [T,], where (T,) is a sequence of stopping times. One may
assume that the graphs [T,] are disjoint. For each nZ, is &, -measurable,
and (3.4) follows from the Markov property at times T,. []

3.5) ReEMARK. Equation (3.4) would not be true with G” instead of G*: for
f = ILiz>q (recall that R is & *-measurable), the left side in general is strictly
positive, but the right side vanishes.

4. The exit system. For a measure , the integral § fdp will be denoted by

#(f)-

4.1 THEOREM. There exist a continuous additive functional K, with 1-potential
< 1, carried by F, and a kernel P from (E, <&*) to (Q, F *) satisfying PR =
0} = 0 and P*(1 — e=%) < 1 for all x such that the following equality

(4'2) E.[ZaeG" Zsfo 03] = E.[Sgo ZaPXa(f) dKa]

holds for all positive well-measurable processes Z and all positive .7 *-measurable
functions f.

(4.3) ReMaRrks. (i) The condition £*(1 — e~%) < 1implies P5{R > 1} < oo
for all ¢ > 0, and, since P* is carried by {R > 0}, it is o-finite. The kernel N
defined by N*(f) = P*((1 — e~%)f) is submarkovian (N*(1) < 1).

(i) It is sufficient to require (4.2) for positive predictable Z. In fact a posi-
tive, bounded, well-measurable Z is different from its predictable projection
only on a countable union of graphs of stopping times (see [2] Chapter V, Theo-
rem 19); such a set is not charged by any continuous additive functional and
has a.s. no common point with G, by Proposition (3.2).

Proor. (i) For each positive, bounded, .& %-measurable f let us define

Atf = ZteG",sgt e_a(l - e_Rs)f° 03 .
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Af is an increasing, non-adapted process, bounded by ||f||. (note that
Siseae (1 — e %) = ¥, e *du < 1). Furthermore 4} 1 A,” a.s. for each
sequence T, T T of stopping times, since 4/ jumps only on G* and G" n [T] = @
a.s. by Proposition (3.2). By the homogeneity of the set G, the function v, =
E*(A,7) therefore is a regular bounded 1-potential. Consequently there exists a
(unique) additive functional K/ such that v, = E*({{’ e—* dK,”). According to a
theorem of Meyer, one has for all positive predictable Z

4.4) E[Yecere™Z(1 — e B)f o0, = E*[\7 e*Z, dK]] .

Equation (4.4) extends to all positive well measurable Z by a previous remark.
(i) K = K* is a continuous additive functional with 1-potential < 1, and
carried by F, since for Z, = I o X, the left side of (4.4) vanishes.
(iii) In order to define P, we first show that K/ « K, that is, for any positive
“P-measurable ¢,

ES5 e'g o X,dK,] = 0 — E'[{f e o X,dK/] = 0.

But this follows from (4.4), with Z, = g o X, and f = 1, then f = f. As a con-
sequence of a theorem of Motoo, extended without hypothesis (L) (see [1] or
[11]), there exists a positive, finite, universally measurable density Nf of K/ with
respect to K. By a “classical” argument using the fact that Q is universally
measurable in a compact metric space (see Appendix), we get a submarkov
kernel N from (E, ££*) to (Q, & *) such that

(4.5). E'[YeereZ((1 — e B)f)o0,] = E°[{5 e*Z,N*s(f) dK,]

for all positive well measurable Z and % °-measurable f. If we let Z = 1 and
f = I = in (4.5), we obtain N*{R = 0} = O for K-a.e. x.> One may choose the
kernel N such that N*{R = 0} = O for all x.

Define P*(f) = N*(f/1 — e~F). Then P is a kernel from (E, &&*) to (Q, & *)
satisfying P*{R = 0} = 0, P*(1 — e~%) < 1 for all x. Replacing Z, by ¢*Z, and
fby f]l — e % in (4.5) we get (4.2) and the proof is complete. []

.
(4.6) ReMARKsS. (i) The couple (K, P) constructed in the proof of Theorem
(4.1) satisfies more precisely

(4.7) E'[§p e dK,) = E'[Soeor (1 — €],
4.8) Pl —e®) =1 for K-a.e. x.

(Write (4.4) and (4.5) with Z =1, f = 1.)
(iiy We give here a useful extension of (4.2): for all positive & ° x &, x F °-
measurable or universally measurable functions F one has
4.9) E'[Yicorw) Z(0)F(k,w, s, 0,0)]
= E'[§7 Z()({ F(k, 0, 5, ') PXe(da)) dK (0)] ,

2 Except on a set of K-potential 0.
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where k, is the killing operator at s (see Section 6). It is enough to prove (4.9)
for F(w, 5, o) = e*H(, 5, @')(1 — e~7"), Inthe case H(w, 5, ') = h(0)g(s)f(@’),
for positive f, g, k, (4.9) follows from (4.2). The general case is obtained by a
monotone class argument. Notice that one cannot apply a monotone class argu-
ment directly to (4.9), since both sides are not bounded functionals with respect
to F.

(4.10) DEFINITION. Let us define the random measures
dl, = 3 ,eqi &(dt)
dB, = dJ, + dK,
and let us change the definition of 2 by setting
Pr=P> if xg¢F.
The couple (dB,, P) will be called the exit system of the set M.

Note that the measure dB, is homogeneous, that A*{R = 0} = 0 and B(1 —
e"*) < 1 for all x, that (4.2) remains true with this new kernel P and that by
adding (3.4) and (4.2) one gets
(4.11) E'[Yieo Zof 0] = E*[§3 Z,P*(f) dB,] .

In the sequel the kernel A will be as in definition (4.10).

5. Markov properties of the measures . We now derive the Markov prop-
erties A= as in [13].

5.1) THEOREM. For K-a.e. x, the measure P~ is carried by {X, = x} and the
process (X,),, is strong Markov with respect to (P,) on (Q, & °, P%), which means:
for each (F\)-stopping time T, everywhere strictly positive, all positive .F,-
measurable a and & *-measurable b, one has

(5.2) Pa.bo0,) = Pa- Pr1(b)).

Proor. (i) In (4.9) let Z = 1, and let F(w, s, ') = 1 if X (0') # X,_(0) (in
particular if X;_(w) does not exist), 0 otherwise. Then the left side of (4.9)
vanishes, since (X,) does not jump on G7; in the right side the integral with
respect to PXsw equals BXew(X, # X,_(k,0)} and may be replaced by
PXyw(X, = X,(0)}, since dK,(w) does not charge the discontinuity set of w.
Therefore P#{X, + x} = O for K-a.e. x.

(iiy For u > 0, for positive Z, a, b, respectively well measurable, .52, - and
& %-mearsurable one has the following equality
(5:3)  ElTierZa-b00,)00] = E[Soear Zia- EX(8)) 0 0,] .

In fact let ¢ € ]0, #[ and let ]G,*, D,’[ be the nth contiguous interval whose length
is >¢: G, 4 ¢ is a stopping time, and so is G, + u. LetY, = Z,a - 6, Lix,er:
Yy, is F g o, ,-measurable and the Markov property at times G,* + u yields

E' (50 Ye,06 0 05,000 = E*[5, Yo, EX"+4(b)] .
Equation (5.3) follows by letting ¢ — 0.
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Apply (4.2) with f = a-bo 8, then f = a. EX«(b); from (5.3) we get (5.2)
with T = u for K-a.e. x. A priori the exceptional set depends on u, a, b. The
reader is referred to Theorem 3 of [13] for the end of proof. []

(5.4)  REeMark. For all positive Borel # on E and s> 0, set Py(x, h) =
Pk o X,). By (5.2) one has, for K-a.e. x, P(x, P,h) = P, (x, k) for s >0,
t = 0. But B(x, 1) is not necessarily finite. As a consequence of P*{X,  x} = 0,
one can show that A%(Q) = + oo for K-a.e. x (see [13]).

6. Structure of the excursions. The killing operators k, are defined as usual:
k,o(s) = X (w) if s<t
=9 if s>z¢.
We denote by k, the mapping » — k,,(») from Q to Q and we set
i, =kgo0,, t=0.
This defines a process (i) on Q that takes its values in Q: for all @ in Q and

t = 0, i,(w) is a right continuous function from R, to E. The reader is referred
to [12] for the properties of the process (i,), called incursion process.

(6.1) DeriniTION. The collection {i,(w), s € G(w)} is called the collection of
the excursions (with respect to M) of the path o.

Notice that this definition of the excursions does not require a local time of
M as in It6 [6] (see Section 9).

(6.2) DerINITION. For all positive & *-measurable [ we set
Q*(f) = P*(f © kz) ,
O(f) = P(f o kx) ,
and for all positive <*-measurable # we set
Qt(x’ g) = Pm(g o X, I(R>t)) s
O,(x, 9) = pz(g o X, Iipsyy) -
Notice that for x ¢ F, 0* = 0%, Q,(x, +) = Q,(x, +) since P* = P2,
Recall that (Q,) is a submarkovian semi-group (called the semi-group killed at
time R) and that for the measure Q® the process (X;,),,, is a strong Markov pro-

cess with respect to the semi-group (Q,).and with the initial measure ¢, if x ¢ F,
g, if xeF.

(6.3) THEOREM. (i) For all positive well measurable Z and & *-measurable f
one has

(6.4) E'[Ziea Zf o i] = E'[§7 Z,0%(f) dB,] .

(i) For K-a.e. x, (Q,(x, +)),5 is an entrance law for the semi-group (Q,) such
that \¢ e=*Q(x, 1)dt = 1 and Q,(x, 1)1 co ast | 0.
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(iii) For K-a.e. x, 0 is a non-bounded measure carried by {{ > 0} and {X, = x}
such that {X,},., is strong Markov with respect to (Q,) and with the entrance law

(0%, *))esor

Proor. By writing (4.11) with f o k, instead of f we get (6.4). By definition
O.x,1) = PR > 1}, so that {reQ,(x,1)dt = P*(1 —eF) and Q,x, 1)1
P*{R > 0} as ¢ | 0. ii) follows from Theorem (5.1) and (4.8). iii) follows from
Theorem (5.1). []

7. Last exit decomposition and conditional distributions.

7.1) DeriniTION. For ¢ = 0 set

G, =sup{s<t:s5eM} (sup @ = 0)
T =Ty,

Recall that, according to Meyer [11], a random variable is said to be 7 -
measurable if it can be written Zat’ where Z is well measurable. This defines
the o-field .%,. One has the following properties: F,C Fy(G)is right con-
tinuous and adapted to (F); (F) is increasing and right continuous.

7.2) DEerINITION. We set
G={t=0:R,_=0,R, >0} (R, =0),
dB," = I 5o 6(dt) + dB, .

Notice that G = G if R = 0, G U {0} if R > 0. From (4.11) and (4.9) respec-
tively one gets
(7.3) E'[Sueo Zof 0 0.] = B[S0 Z, P7o(f) dB]

(74)  EY[Siew Z,F(k,, 5, 0)] = E*[§po,00 ZU(@)PX(F(k, 0, 5, +)) dBX(0)]

(7.5) PROPOSITION. For all positive well measurable Z and for all universally
measurable g on R xE, h on E one has
(7.6) E[Zg,9(t — Gy, Xg)h o X, 1 g,c4)]

= E*[$p0.4 Z,9(t — s, X,)0._(X,, h)dB;] .

Notice that the procgss (g(t — s, X,)),5, is well measurable if g is Borel on
R, xE, but not if g is only universally measurable.

Proor. The left side of (7.6) equals
E.[Zaeao ng(t -5 Xa)h ° Xt I(0<t—a<R‘)] .
Writing (7.4) with
Fw, s, 0) = g(t — 5, X(@)h o X, ()M gcs-scr(@) »
we get (7.6). []
.7 CoROLLARY. (Last exit decomposition). For all t > 0 and x e E
(7.8) P(x, h) = E*[h o X, I(t)] + E*[$10.4 O1-o(X,, B) dB)] .
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Notice that the second term of the right side can also be written Q,(x, &) +
E*[§10,60 Qi-o(X,» ) dB,].

Proor. Taking Z =1, g = 1 in (7.6), we obtain (7.8) by noting that G, = ¢
is equivalent to re M for t > 0. []

From Proposition (7.5) we shall now derive an important result of Getoor
and Sharpe [5]. We shall give a strong Markov version of this result. We first
establish the following lemma.

(7.9) LEMMA. The mapping (a, x) — Q,(x, k) is (jointly) universally measur-
able on 10, co[ x E, for all positive <Z*-measurable h.

Proor. Let N*(f) = P*((1 — e%)f) and recall that N*(1) < 1. One has
Q.(x, h) = N*(H(a, +)), where H(a, ) =ho X,I.,/1 —e® But (a,x)—
N=(H(a, +)) is universally measurable for a function H(a, w) = g(a)f(w) (9 Borel
positive, f.% °-measurable positive); this extends to all positive universally meas-
urable H by monotone class and completion arguments. []

(7.10) THEOREM. Let T be an (S ,)-stopping time. One has
(7.11) Or_o;(Xgps 1) >0  as.on {G, < T < oo},
(7.12) Efh o X;| 7] = 4ro(Xepn ) as.on {T < oo},

where
— Qa(x’ h) [ 0 —
qa(xah)—m if a>0 $=0,
= h(x) if a=0.

By O, _;,(Xg,, 1) we mean the mapping o — Orwr—apw (Xap(®), 1).
ProoF. We shall use the notation A, = ¢ G,.

(i) Take g(a, x) = 1if Qa(x, 1) = 0, 0 otherwise; then for Z= 1,k =1 the
left side of (7.6) vanishes, showing that 0, (Xg,, 1) > 0 a.s. on {G, < t}. Fora
general stopping time 7 consider the sets B, ={G, < T <r < D,}, for r
rational. Since a — Q,(x, 1) is decreasing, one has on B,

QAT(XGTa 1) = QAAT(XG,’ 1) = QAAT(Xars 1).

But B, C {G, < r}, and therefore 0, (X,,, 1) > 0 a.s. on B,. Equation (7.11)
follows by noting that {G, < T < oo} = U, B,.

(ii) On the set {G, = T < oo}, (7.12) is obvious, since &, C 5. Wenow
prove (7.12) on the set B = {G, < T < oo}, first recalling the proof of Getoor-
Sharpe [5] in the particular case T =t. Let Z be a positive well-measurable
process; we have to establish that

(7.13) E{Zy ho X,1g,ca] = EZ5,qu_0(Xap W) g,cnl -
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By (7.6), written with g(a, x) = q,(x, &) and & = 1, the right side of (7.13) is
equal to

E#[S[O,t[ Zs qt—a(Zt’ h)Qt—s(Xa’ 1) dBSO] = E#[S[O,t[ ZaQt—s(Xs’ h) sto] (% = 0)

which equals the left side of (7.13), by (7.6) written with g = 1.

So far we have proved (7.12) for T = t; (7.12) easily extends to countably
valued stopping times T. In order to prove (7.12) on B in the general case, we
define for all n

T,= 40 on {T = oo}, % on {%§T<%}.

T, satisfies (7.12); since T, C 57—,”, one has for all Cin .%,, C C {T < 0}
(7.14) Vsac b o Xy dP* = (506 9ap (Xey,» h) dPF .

Suppose & continuous and bounded. The left side of (15) tends to . & o X, dP~.
On the other hand, X, = X, forlarge n on the set B, and 0 ar,Xay o B) —
0.,(Xg,, h) a.s. on B, since Q.(x, k) is right continuous on ]0, co[; this conver-
gence also holds for # =1, and so q,, (X, , %) — q,4,(Xe,, k) a.s. on B by
(7.11). By the bounded convergence theorem, the right side of (7.14) tends to
800 94,(Xe,» h) dP¥ and the proof is complete. []

(7.15) REMARKS. (i) From Theorem (7.10) we can derive the Markov
property of the process (X)) = (t — G, Xg,), as we did in Chapter IX of [8].
From the strong Markov version of (7.12), we can deduce the strong Markov
property of (X,) and from the quotient form of ¢,(x, +) for a > 0, we can deduce
the semi-group property of the transition function (which was not satisfied in
[8]).

(ii) Set (X,) = (R, Xp,). As a consequence of (7.12) one has for all (&)-
stopping times T

(7.16) Efg(X,)| F 7] = Q(Xp,9)  as.on {T < oo}, where

Q(a, x), 9) = q.(x, E*(9(R, Xg)]). Such a formula remains true for a regenera-
tive system (Q, &, Z, X,, 0,, P#; M) such that the Markov property is satisfied
for all stopping times 7' such that [T] c M (M is closed): see [9]. And this is
enough to ensure the strong Markov property of (X,)-

8. The post L°-process. Let a be a fixéd number in ]0, co] and set
L* = inf{s: R, = a} .

L is the left endpoint of the first interval contiguous to M of length > a. As
a well known result 7* = L* 4 q is a stopping time; therefore (X, a,).s, is a
Markov process, for each P#, with respect to the semi-group (P,). The following
result gives properties of the process (X o )oce<a-

(8.1) THEOREM. The process (X oy )ocs<qa IS, for each P*, a non-homogeneous
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Markov process with respect to the transition kernels (Q,")o<,<,<q defined by

1
— , ho,
5y Lomel ) (

where we set ¢, = Q*{( = a — u} = P'{R = a — u}.?

Q.%(x, h) = =0)

oo

(8.2) REMARK. For a = 400, ¢, = P'{R = +oo} forall u > 0. If we set
L =L~», ¢ = P{R = oo}, (X;¢):>0 is then a homogeneous Markov process with
respect to the semi-group (Q,%): Q,%(x, k) = (1/¢(x))Q.(x, kp). This result was
first established by Meyer, Smythe and Walsh in [15].

Proor. For simpliéity we shall not use the family (& ja,;)o<i<qr DUt the
natural family of the process (X,a, )oci<,- FiXing 0 < # < v < a, we have to
prove that for all positive &, -measurable g and <Z-measurable £

(8.3)  E(g-hoX)oiralpecay] = E'[(9 - Qu(Xis 1)) 0 lrelipoce)] -

The variable R* = D,, is a stopping time, since L® is an (ﬁ:)-stopping time;
therefore Z = Iy po is well measurable, and by noting that fo i e/ 0ce =
Treec0 Zo(fl¢2ay) © i, We have for all positive & °-measurable f

E[foiralipoca)] = E*[§10,9 QX’(fI(cza;) dB/].
This follows from (7.3), for Z = I}, zo; and (f1;5,,) o k instead of f. To prove
(8.3) it is hence sufficient to prove that for all x ¢ F and K-a.e. x one has
(8.4) 0%(9 - Qu*(Xos Wliczw) = 09 - 1o X, Iicz) -
But for all x ¢ F and K-a.e. x, (X,),5, is a Markov process on (2, Q”) with respect
to (Q,) and the left side of (8.4) equals
0%(9 - 0*{L = a — 1)Q,"(X,, 1))
= Qx(g : Qv—u(Xu’ h¢v)) (¢(.y) =0= Qv—u(.y’ h¢v) = 0)
=09 - (h4,) » X,) ,
which equals the right side of (8.4). The proof is complete. []
(8.5) REMARK. The process (i;) is adapted to (.?A',) and right continuous when
its state space Q is provided with the topology of convergence in measure (& °
is then the Borel g-field) (see [8] or [12]). For every A in & ° the variable
H, = inf{t > 0: i, ¢ A} therefore is an (& ,)-stopping time. For 4 = {{ = a},
H, = L°. Theorem (8.1) could probably be extended to more general A.
9. The time changed excursions. This section represents a look at Section 6
from It6’s point of view [6]. We assume that M has a.s. no isolated point and
that the equilibrium 1-potential E*[e~F] is regular. Then there exists a continuous

additive functional L, where 1-potential is E*[e~%], and which is a local time of
the set M (the support of L is indistinguishable from M).

3 We assume here that P3{R = 0} = 1.
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We may carry over to the present situation the definition of the excursions
given by It6 [6].
.1 DEerFINITION. Let us define
o, = inf{s: L, = t}, r, = inf{s: L, > ¢}.
The excursion process (associated with the local time (L,)) is the process
(e)) = (iot)t>0’
Notice that the process (¢,) takes its values in Q. It is easily seen that ¢,, =

[6] V¢ > 0, when Q is provided with the topology of convergence in measure
([6] denotes the constant function ¢ — 4); therefore (¢,) is not right continuous.

9.2) PROPOSITION. There exists a universally measurable family (H?) of o-finite
measures on (Q, F°), that are Markov for the semi-group (Q,), such that
9.3) E'[ Socusio Zonf o €] = E*[S4= Z,, H*(f) du],
for all positive predictable Z and f on Q such that f([6]) = 0.

Proor. (i) For all positive bounded <Z-measurable £ define

U, = E'[Y,cqie(1 — e Bs)h o X,] = E*[ Y, cqie*P¥s(l — e F)ho X,].
The equality
(9-4) E'[e %] = E°[\3 e ds] = u, + v, + E°[{§ e*I,/(s5)ds],
where v, is the regular 1-potential defined in the proof of Theorem (4.1), shows
that u, is also a regular 1-potential. The stopping times (T,) such that G* =
U [7,] therefore are totally inaccessible and u, is a regular 1-potential for all A.
Let H* be the continuous additive functional whose 1-potential is #,. For all
positive (& ,#)-predictable Z one has
E{ Y eqieZ(1 — e ®)ho X, = E*[\¢ e Z,dH}] .

Taking Z to be the (. #)-predictable projection of (g o X;) (g is Borel positive),
one shows that H* ¢ H*. Let nk be the corresponding density. With the densities
nh one constructs a kernel n on (E, <#*). By setting q(x, k) = n(x, h/P*(1 — e~F))
and H = H' one obtains

(9'5) E'[Zse(ﬂ Zsh o Xs] = E.[Sgo qu(Xs’ h) st]

for all positive predictable Z (here one may not extend the equality to well
measurable Z). ’

(ii) Let f be a positive & -measurable function. For & = Q*(f) the left side
of (9.5) equals E*[},cqi Z, f o i,] and (9.5) yields

(9-6) E'Lwca Zof o ] = E°[§7 Z,9(X,, Q*(f)) dH,] .
On the other hand (9.4) implies the following decomposition of the local time
(L,) (recall that v, is the 1-potential of K)

L, =H, + K, + m(Mn[0,1]).
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Therefore H and K have densities £ and k with respect to L. Define H*(f) =
h(x)q(x, Q*(f)) + k(x)Q*(f) if O° is a Markov measure for (Q,), O otherwise.
From (4.2) and (9.6) we obtain

(9.7) B[S Z.f o i) = E'[\¢ Z, H*(f)dL,]
and (9.3) follows by noting that G = {o,: u > 0, ¢, = [d]}. O

(9.8) REMARKs. (i) The principle of the proof of (9.5) was used by
Benveniste and Jacod [1] for proving the existence of a Lévy system under
the “hypothéses droites.” The function P*(1 — e~F) plays the same role as the
function & of [1]. Here the simplicity is due to the fact that the points of G*
are isolated from the right, which is not true for all properties of the process
(X;). A similar argument may also be found in Dynkin [3].

(ii) o, is a stopping time, so that Z = I, ,; is predictable. For this Z and
f =1, (9.3) yields

9.9) E*[Yocusiont La 0 e,] = E°[({="* HX’“(A) du] .

If M={t:X, =x} (x, is a regular point), the right side of (9.9) equals
H*(A)E*[L., A t] and the excursion process (t,),, is then a Poisson point process
with characteristic measure H®, absorbed at the exponential time L., (see Meyer

[14]).

APPENDIX

10. The “‘classical” argument. This appendix refers to the proof of Theorem
4.1).

Recall from [12] that, when provided with the topology of convergence in
measure, Q is the complement of an analytic set in a compact metric space Q
and its Borel field is & °. Actually we shall only use the universal measurability
of Q in Q. Let 57 a total sequence in &(Q) which is a linear space over the
rationals, inf-stable, and which contains the function 1. For each positive # in
Z° we define Hh = Nh,, where hj is the restriction of 4 to Q and Nk, has been
defined in the proof of Theorem (4.1) as a density of K*@ with respect to K (note
that A, is & °-measurable).

Let H be the set of all x such that N1(x) = 1, N(h, + hy)(x) = Nhy(x) + Nhy(x)
for all positive k,, h, in 7. For each x in H the mapping # — Nh(x) extends to
a positive Q-linear functional on £# and by continuity to a positive linear func-
tional on &/(Q), which in turn determines a probability N on the Borel field of
Q or its universal completion % *. H is universally measurable; if we set N* = 0
for x ¢ H, we get a kernel N from (E, £&*) to (Q, Z *) such that N*(1) < 1 for
all x. Furthermore H° is a K-null set and N*(k) is the density of K*@ with re-
spect to K. By limit, monotone class and completion arguments, we get for all
positive bounded . *.measurable

(10.1)  E[D,eqr e Z(1 — e )f 0 0,] = E*[\¢ e~*Z, N*s(f) dK,] .
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Taking Z = 1, f = I, in (10.1) we see that N<(Q\Q) = 0 for K-a.e. x. If fis
& *-measurable, the function f =fon Q, 0 on Q\Q is & *-measurable, and
setting N*(f) = N*(f), we define a submarkov kernel N from (E, £#*) to
(Q, F*) that satisfies (4.5). []

We would not be finished without quoting Kingman who asserts in [7] that
“it is a notorious vice of applied probabilists to present their results hidden
behind one or more Laplace transforms.” We tried to keep it in mind.

ADDENDUM. The argument used at the end of the proof of Theorem (7.10)
to extend (7.12) to stopping times was earlier used by J. Jacod in a paper that
has appeared recently: Semi-groupes et mesures invariantes pour les processus
semi-markoviens & espace d’état quelconque. Ann. Inst. Henri Poincaré 9 n2 1
(1973) pages 77-112.
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