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A LIMIT THEOREM FOR PARTIALLY OBSERVED
MARKOV CHAINS

By THoMAS KAIJSER
Linkdping University
Let {Xu,n=1,2, .-} be a Markov chain with finite state space S =
{1,2, -, d}, transition probability matrix P and initial distribution p. Let
¢ be a function with S as domain and define Y, = g(X»). Define
Zy =Pr[Xo=1i|Y1,Ys -+, Yul,
Zy = (Zu}, Zo?, -+, Zn?),
and let yu, denote the probability distribution of the vector Z,. In this
paper we prove that if {X,,n = 1,2, -} is ergodic and if P and g satisfy a

certain condition then g, converges to a limit and this limit is independent
of the initial distribution p.

1. Introduction. Let {X,,n = 1,2, ...} be a Markov chain with finite state
space S = {1. 2, ..., d}, (stationary) transition probability matrix (tr pm) P =
(pi,;)> and initial distribution p = (p,, p,, - - -, p;) Where

P2:Pr[Xl=i]7 i__—_l’z,...’d.
Let g be a function with domain S and define
Yn:g(Xn), h = 1,2,

A process {Y,} constructed in this way is usually called a partially observed
Markov chain. Put

Zni:Pr[Xn:i[Yl, Yz,---,Y], i:1,2,---,d,n:1,2,---

n

and
Z,=ZMNZ2, ---,Z,%.

The purpose of this paper is to prove that if {X,}° is ergodic and if P and ¢
satisfy a certain condition A—specified below—then

(i) the probability measure of Z, converges weakly to a limit measure, and
(ii) the limit measure is independent of the initial distribution p.

We shall also give an example (see Section 10) showing that the second of these
results does not hold if we merely assume ergodicity, thus contradicting a con-
jecture made by D. Blackwell (see [2] pages 17-18).

In order to give a precise statement of our result we first need some notations.
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Let
K= {(xp Xy -+, X)) €R"1x; 2 0, 3 x; = 1}

& = the collection of Borel sets of K
C[K] = the collection of real-valued, continuous functions on K
v (E) =Pr[Z,eE], Ee&
where the subscript p indicates that the distribution of X, is taken to be p.
Further let

A ={9(i):ie S}
S(a) = {i: 9(i) = a}, acA
and define a matrix M(a) = (m;, ;(a)), for a e A4, by
m; {(@) = pi; if 9(j)=a
=0 otherwise.

We also need a notion for matrices which we shall call subrectangularity.

DEerFINITION 1.1. Let M = (m, ;) denote a d x d matrix. If m; ; + 0 and
m, ;. # 0 implies that also m; . % Oand m,; 0 then we call M a subrectangular
matrix.

We now state the theorem to be proved in this paper.

THEOREM A. Suppose the Markov chain {X,); is ergodic. Suppose further that
P and g are such that the following condition holds:

CoNDITION A. There exists a finite sequence a,, a,, - - -, a,, of elements belonging
to A such that the matrix product M(a,)M(a,) - - - M(a,,) is a nonzero subrectangular
matrix.

Then there exists a unique probability measure v on (K, &) such that {v, }v_,
converges weakly to v for all p; i.e., if ue C[K] then

Hm,, oo § u(p)v,p(dy) = $x u(y(dy) -

REMARK. In many special cases it is easy to verify Condition A. For example,
if the tr p m P itself is subrectangular or if there exists an a € 4 corresponding to
exactly one element of S then Condition A holds trivially.

The basic idea in the proof is to use the fact that Z, can be represented as a
normalized product of random matrices, an observation due to M. Rudemo (see
[8] page 587). Then by using an estimate for products of nonnegative sub-
rectangular matrices, essentially due to' H. Furstenberg and H. Kesten (see [4]
Lemma 3) and using the fact that {Z,};° is a Markov chain we prove the theorem
with methods similar to those used in [6].

REMARK. It is worth observing that the ‘“‘set-up” given above also includes
the seemingly more general situation, when the Y, are random functions of the
X, in the sense that

1.1 PriY,=a|X,=iX,, Y, 1=mIn]=Pr[Y, =al|lX, =i]l=¢q,,

n
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where a belongs to a finite set 4 and };,¢,, = 1 forieS. (If we only allow
9., to take the values 1 or O we have the deterministic case.) For, defining

= (Xa Ya)
we note from (1.1) that {X, '} is also a Markov chain and then by defining
IX,)) =Y,
we have reduced this “random” case to a “deterministic” case.

2. Some representation formulas. We denote the 7, jth element of a matrix
M by (M), ; and similarly we denote (when convenient) the ith component of
a vector x by (x);» Now for each a € A4 we define a matrix I(a) by

(I(a))m. =1 if i:j and g(z) =a

=0 otherwise.
We also define
[[x]| = X3¢ x|, xe R

Clearly
Pr[Y, = a]l = Xipm=c P = || pL(a)]

and

Pr[X,=i|Y, = a] = (PI@):

llpI@)||
Hence
_ PI(Y)
[[PI(Yy)|

Generalizing we have
LeEMMA 2.1. (See Astrom [1] pages 182-183 and Rudemo [8] page 586.)

@)
PI’[Y1 = a,, Y2 =gy + e, Y,n = an]
®) = [|pl(a)M(a)M(as) - - - M(a,)|] n=12,...
7, = PIOOMYM(Y) - M(Y) 5
I PY)M(Y)M(Yy) - - - M(Y,)|
REMARK. Observe that the denumerator in (b) is equal to zero with probability
zero because of (a).
Proor. Both formulas are simple consequences of Bayes rule and the follow-

ing obvious fact:

LEMMA 2.2. Let M, and M, be two d x d matrices and let y € R* be such that
||lyM,|| # O and ||yM,M,|| # 0. Then

yM,
IlyM N

2

_ MM,
[[7M, M

lian =
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Next let % denote the subsets of 4 and define Q: K x %" — [0, 1] by
(2.1) Q(x, B) = Y ,c5 ||xM(a)|| , xekK,Be .

Clearly Q: K x .9 — [0, 1] defines a transition probability function (tr pf).
Further let
D, = {(x,a)e K x A4: ||xM(a)|| > 0},

define #: D, — K by

M@
2.2 hx, a) = M@
*2) 9 = TMa)]

and let
A(h~Y(x,E)) = {ae A: h(x,a) e E} .
LeEMMA 2.3. (See Astrom [1] page 187 or Blackwell [2] pages 14, 15). The
process {Z,) is a Markov chain with state space (K, &) initial distribution v, , and
trpf R: K x & — [0, 1] defined by

(2.3) R(x, E) = Q(x, A(h™X(x, E))) .

Proor. The lemma follows easily from (b) of Lemma 2.1, Lemma 2.2 and
the definitions of Q(x, B), A(x, a) and A(k~(x, E)).

Next let x be an arbitrary element of K, let {Z,(x)};_, denote the Markov
chain which starts at x (Z,(x) = x) and has tr pf R(., +), and let 4, , denote the
probability distribution of the vector Z,(x). The following corollary is an
the definitions immediate consequence of Lemma 2.3.

CoroLLARY 2.1. If for all x € K, {u,, ,}i_, converges weakly to a limit which is
independent of x then also {v, ,}=_, converges weakly to the same limit for all initial
distributions p.

3. A random system with complete connection. From Corollary 2.1 of the
previous section we note that in order to prove Theorem A, if suffices to study
the Markov chains {Z,(x)};_,, x € K with trpf R(., «) defined by (2.3).

We now show how the Markov chain {Z,(x)};y is obtained. We start at
Z,(x) = x. Then we pick an element Y (x) € 4 according to Q(x, «) (defined by
(2.1)) and take Z,(x) = h(x, Yy(x)) where A(x, a) is defined by (2.2). Next we
pick an element Y,(x) € 4 according to Q(Z,(x), ) and take Z,(x) = h(Z,(x),
Y,(x)) etc. The mathematical objects involved in this procedure—namely the
two measurable sets (K, &) and (4, %), the trpf Q: K x % — [0, 1] and the
function #: D, — K—constitute a set {(K, &), (4, %), Q, h} called a random
system with complete connection. (See Iosifescu-Theoderescu [5] Chapter 2,
especially Section 2.3.3.1.). At least essentially. There is namely one point at
which the set {(K, &), (4, %), Q, h} does not quite satisfy the definition of a
random system with complete connection and that point concerns the function
h: D, — K which only is defined on a subset D, of K x 4 and not on all of K x
A. Therefore we shall need some extra concepts and notations which are usually
not needed when studying random systems with complete connection.
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We shall next justify the construction of {Z,(x)}; given above. Let A" denote
the n-product set of 4 and let 4~ denote the infinite product set of 4. Let .7
denote the subsets of 4" and let .7~ denote the g-algebra on 4> generated by
the cylinder-sets. Let g: K x 4 — [0, 1] be defined by

q(x, a) = [|xM(a)||

(q(x, a) can be regarded as the density function of Q(x, B).). Further let a” =
(ay, ay, - -+, a,) denote an element of 4™ and let

D, = {(x,a*) e K x A*:||xM(a,)M(a,) - - - M(a,)|| > 0}.
Define g,: K x A»—[0,1]and 4,: D, - K,n=1,2, ... by

gu(x, a") = ||xM(a,)M(a;) - - - M(a,)||
and
hy(x, av) = M@M@) --- M(a,)
[lxM(a)M(ay) - - - M(a,)||

By applying Lemma 2.2 we observe

Lemma 3.1. If (x,a"*™)e D, , n, m = 1, then

(3.1) G @) = (3, @)y, @¥), ")
and
3.2) Ry m(x, @™ = h,(h,(x, a"), "a™*™),
where

"M = (@15 Qupgs * 00 Augm) -

Next for each x e K and n = 1 we define Q*(x, «): %" — [0, 1] by
Qn(x’ B) = Z:a,”EB ‘]n(X, an) .
From the definition of ¢,(x, a®) we observe that
Q(x, A) = L4 |IxM(ay) - - - M(a,)|| = ||xP|| = 1

for all n = 1. Thus {Q"(x, -)}; constitutes a sequence of probability measures.

Moreover
0"*(x, B x Ay = Q*(x, B), Be o7

and from Lemma 3.1 we also have ‘
Qn+m(x’ B, x B2m) = Zu"‘eBl‘" qn('x’ an) Zu"‘e Bym qm(hn<x’ a“)’ am)
if a®*™ e A,»*™, where
(3.3) Am = {a~e A" ||xM(a,) - - - M(a,)|| > 0}
(= the support of Q*(x, «)).
Hence, applying a theorem due to Ionescu Tulcea (see [7] Section V.1) we have

EXISTENCE THEOREM. To every x € K there exists a probability space (A=, &7,



682 THOMAS KAIJSER

Q,>) and a sequence of random variables {Y, (x)}y on (A°, =) and with values in
A such that

Q.,7(Yy(x) € B) = Q(x, B) , Be s/
and
0.°(Y,u(x)eB|Y,(x),m=1,2, --.,n)
= Q(h,(x, Y™(x)), B), Q,° — a.s., Be v,
where
Yo(x) = (Yy(x), Yy(x), -+ -, Yy (x)) .

From this existence theorem and Lemma 3.1 it is easy to see that we also have

LEMMA 3.2. Forn =1

PrYy(x) = a,, Yy(x) = @y, - -+, Yo(x) = a,] = {{xM(a,) M(a;) - - - M(a,)||
and
Pr[Z(x) e E,, Zy(x) e E,y, - -+, Z,(x) € E,]
= Pr [Ay(x, YX(x)) € Ey, hy(x, YA(X)) € By, - - -, ho(x, Y™(x)) € E,]
where E,e &, i =1,2, ..., n. (Compare also Lemma 2.1.)

4. The transition operator. We have already observed that in order to prove
Theorem A is suffices to prove that {s, ,}> converges weakly to a limit which
is independent of x, where p, . denotes the probability measure corresponding
to Z,(x). Now let B[K] = collection of real-valued, bounded, Borel functions
on K and define the transition operator T: B[K] — B[K] by
4.1) Tu(x) = (g u(y)R(x, dy) , ueB[K].
From the definition of R(., +) (see (2.3)) we note that

xM(a)

[lxM(a)|
Next let R"(., .) denote the n-step trpf of R(.,.). By the Chapman-
Kolmogorov equality we have

Tru(x) = {x u(y)R*(x, dy)
and introducing the notation

Tu(0) = Dagenonso 4 ) M@l = B, uhix, @)g(x. 0).

u,(x) = T™u(x), u e B[K]
we also have .
4.2) Uy ym(X) = Tru,(x) .
Furthermore it is not hard to see that
(4.3) Un(X) = Eu Ulba(x, @))q,(x, @) .

Now from (4.1) and (4.2) it follows that

(44) Supx €K un(x) ; SupzeK un+1(x)
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and
4.5) inf, ., u,(x) < inf, ., u4,.,(x) .
Therefore defining
o(u) = sup,.x u(x) — inf, ., u(x), ue B[K],
we have

¢(un+1) é gD(u‘n) *
LeMMA 4.1. If for each u e C[K]

(4.6) lim, ... p(u,) = 0

then there exists a unique probability measure y on (K, &) such that {, ,}5° converges
weakly to p for all x e K.

Proor. The lemma is a simple consequence of (4.4), (4.5) and Riesz represen-
tation theorem. (Compare [3] Chapter 8, page 243 and page 266.)

Next we define
||4]| = sup,ex [u(x)] ue B[K].
LeEmMMA 4.2. The set {u € B[K]: lim, _,, ¢(u,) = O} is closed under the supremum
norm topology.
Proor. Standard. (See [6] Chapter 1, for details).

From Lemma 4.1, Lemma 4.2 and Corollary 2.1 we see that Theorem A will
be proved if we can prove (4.6) for a set of functions which is dense in C[K],
for example the set of Lipschitz functions. That is the set

Lip[K] = {u e C[K]: sup, u(x) — u(y)| < ool .
' { =yl }
The following property of Lip [K] will be used later.

LeMMA 4.3.
ueLip[K]= TuecLip[K].

PROOF. Let x = (X, X5 + -+, Xg) and y = (¥, Jp» « - > ya) be two fixed but
arbitrary vectors of K and let {e;:i = 1,2, - .-, d} denote the set of base-vectors
of R¢. Define

S,={ieS:x;>0 and y, > 0}
S,={ieS:x,>0 and y, =0}
S;={ieS:x,=0 and y;, > 0}
and
A, = {acA: e, M@ > 0}.
Now using the fact that

q(x, a) = X, x;9(¢e; a)
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it is not very difficult to convince oneself that for any u € B[K]

|Tu(x) — Tu(y)|
= | X5, % 224, u(h(x, @))q(e;, a) + 2isy Xi 254, U(h(x, @))q(e;, a)

— 25, Ve 234, WH(Y, a))q(es, @) — X5, Vi 204, ¥(R(Y, @))q(e;s a)|
4.7) = [ 2s, (0 — po) 24, u(h(x, a))q(e;; a)

+ 2, (X0 — yo) 24, u(h(x, @))q(e;, a)

+ sy (x50 — yi) Za, u(h(y, a))q(e; a)|

+ |25, Vi 2a, w(h(x, @) — u(h(y, a)))q(e;; a)| = I, + I, say.
Now clearly
(4-8) I < Xs % — pal||4]] 2i4;9(e @) = ||x — y||||«]|
since

24 9(esa)=1.

Furthermore if i € S, and a € 4, then both ||xM(a)|| and ||yM(a)|| are larger than
zero, and by simple calculations we obtain

| M@ | o 2@ — yMea)],
IxM(@)[|  [lyM(a)l| I} — |l yM(a)]]
Therefore if # € Lip [K] and we define
|u|, = inf {7: SUP,., Iu(ﬁ%’}f}?l}ﬂ < r} , ueLip[K]

we obtain

I < s, ys Zia, Ul l|h(x, @) — A(y, a)||q(e;, a)
2[|xM(a) — yM(a)l|9(e:> 9)
= |ul Xs, Vi 24, 7M@)

< 2lu), s, B, 2190 D |1M(a) — yM(@))| < 20ul, 3, |¥M(@) — yM(a)|

|lyM(a)||
< 2uly D4 Di X — yol 25 (M(a));,; = 2|ul, 24 |x; — il 2.5 (P)s,;
= 2uly ||x =yl -
Thus
(4.9) 1, < 20l ||x — )|

and by combining (4.7), (4.8) and (4.9) we obtain, for u e Lip [K],
[Tu(x) — Tu(y)| < (|lu]] + 2J|)llx — yIl -
The lemma is proved.

5. A coupling device. From Lemma 4.1, Lemma 4.2, Corollary 2.1 and (4.3)
we see that what we want to prove is that

1imn-w Supz,u€K |Za"‘€Az” u(h'n(x’ an))qn(x’ an) - Za”eAy" u(hn(y’ a”)qn(}” an)l =0
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for all u € Lip [K]. One difficulty that arises when trying to estimate the quantity

| Zancagn u(hu(x, a")4,(%, @") — e a,n U(ha(ys @)qa(y> @)

is caused by the fact that in general 4, += A,*. The purpose of this section is
to show how this difficulty can be overcome.
We start with some notations. For x € K, we define

S(x) ={ieS: (x), > 0}.
Further if S’ denotes a subset of S we define

K(S") ={xeK:S5x) =5}
and if 0 < a < 1, we define

K@) ={xeK:(x), = a if ieS(x)}

and

K(a, S') = K(a) n K(S") .

LeEMMA 5.1. There exist constants a, and f,, 0 < a,, B, < 1, an integer n, and

a set S, C S such that for all x e K

(5.1 Pr[Z, (x) € K(ay, Sp)] = B, -

Since the proof is rather long, we postpone it until Section 9.
REMARK. The lemma is false without Condition A.
Next we introduce an equivalence relation ~ by

X~y if S(x) = S(y), x,yek,
and define
K(@) = {(x,y) e K(a) x K(a): x ~ y}.

LEMMA 5.2. If x ~ y then A," = A", foralln = 1.
Proor. Follows from the definition of 4,* (see (3.3)).

Now let x and y be two arbitrary elements of K. Let {(Z,/(x), Z,"(y))}, be
a sequence of two d-dimensional random variables such that {Z,'(x)}¢ and
{Z.”(y)} are two independent Markov chains both generated by R(-, +) and
such that Z/(x) = x and Z;(y) = y. Define

N,, = min{n:(Z,(x), Z,"(y)) € K(a,)}
where a, is the constant of Lemma 5.1.

LeMMA 5.3. There exist constants G, and p,, 0 < p, < 1 such that for all

x,yekK
Pr[Nz,u>n]§Copon’ n=0,1,2,...

Proor. Follows easily from Lemma 5.1.
LeEMMA 5.4. Let n > m. Then for any u e B[K] we have

(52) supx,yeK |un(x) - un(y)[
= MAXogigm SUP G,y ¢ ftag) [Wn-k(X) — U i(Y)] + @(@)Coo,™ -
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Proor. Let u e B[K]. We have
|ua(x) — un(y)| = |Eu(Z,(x)) — Eu(Z,(y))|
= |E[u(Z,/(x)) — w(Z,"(y)]]
= 2o [E[M(Z,/(x) — w(Z,"(y)): N, = K]
+ |[E[w(Z,/(x)) — w(Z,"(x)): N,,, > m]|,

where E[ : B] denotes integration over the set B.

(5.3)

From Lemma 5.3 follows that
(5-4) E[u(Z,/(x)) — u(Z,"(y)): N,y > m] < o@)C, o™ .
Moreover, from the Markov property follows that
(3:3)  [E[M(Z/(x)) — u(Z,"(y)): N, = k]|
= A SUPG,y ¢ iy [E[M(Z01(%)) — #(Z2_e)]

=1 SUP (2,41 ¢ &(ap) |toi(x) — Uy ()| >
where

(5.6) 4 =Pr[N,, =k].

The inequality (5.2) now follows from (5.3), (5.4), (5.5) and (5.6).
We also have
LEMMA 5.5. Let 0 < a < 1, and (x, y) € K(a). Then

(7)) () — w()] = (1 — a)p(u)

+ [#l Zagn |Ba(xs @) — ho(y, a")]|9.(y a®)
forall ueLip[K].

Proor. For any x, y € K we have
Lianqu(%,8") = Lungu(y, @) =1

Zoan |9a(x, @") — gu(ys @) = |Ix — | -
Moreover if (x, y) € K(a) then ||x — y|| < 2 - (1 — a)and 4," = 4,*. Therefore
if (x, y) € K(a) and u € Lip [K] we have
[a(x) — U] = | Za,n #(ha(x, @))(Gn(X, @%) — Gu(y5 @)
+ [ Zayn (U(ho(x, ") — u(h,(y, a*))q.(y, a")|
= ()1 — @) + [ule T |lu(x, @) — ko(y, a")]|g.(y, a")
which was to be proved.

and

6. Two lemmas on products of matrices. On the right-hand side of (5.7) the
quantity

|lAa(x, @) — h,(y, a")]]

(2 H xM(a,) --- M(a,) _ yM(a,) - - - M(a,) H)
IxM(ay) - - - M(a,)||  |lyM(a) - - - M(a,)]]
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occurs. The purpose of this section is to prove two inequalities for products
of nonnegative, nonzero subrectangular matrices. (See Definition 1.1 for the
definition of a subrectangular matrix.)
We first need some notations. Let M denote a nonnegative d x d matrix.

We define

S(M) ={i: (M), ; >0, some j}

Sy(M) = {j: (M), ; >0, some i}

M), = 215 (M),

[[M|| = max,; (M), .

and

The following lemma is a slight generalization of Lemma 3 in [4].

LeEmMA 6.1. Let M, M,,---,M,,n = 1, be nonnegative, nonzero, subrectangular
matrices such that

(6.1) max; ;.s(M,),; =1, m=1,2,...,n.
Let U=M,M, ... M, and assume that

(6-2) vl > 0.

Let

(6.3) 0, = min, ; {(M,), ;: (M,); ; > 0}, m=1,2,...,n.
Then if i) and i, € S)(U) we have

(6.4) s _ Oai | < 121 — 5,0,

(U)s, U),,
forall jeS.

ProoF. The proof is essentially based on the same ideas as used by H.
Furstenberg and H. Kesten in their proof of Lemma 3 in [4].

First we observe that since i, and i, € S,(U) we have (U);, > 0 and U), >0
and hence the left-hand side of (6.4) is well defined. Next we state

PROPOSITION 6.1. Let M and N denote two nonnegative d x d matrices. If M is
subrectangular so are MN and NM.

Proor. Trivial.
From this proposition follows that U is subrectangular.

ProposITION 6.2. If j,, j, € Sy(U) and. iy, i, e Sy(U) then

(6.5) 6,8, < Wi < 551
1]
PRrooF. Sincejy, j, € Sy(U) and i, i, € S,(U) we obtain from the subrectangulari-
ty of U (U),, ;, > 0 and (U),, ;, > 0. Next letn > 3 and denote ¥ = M, M, - - -
M, Then

n—1*

(U)il,jl = Zr,k (Ml)il,r(V)r,k(Mn)k,j.



688 THOMAS KAIJSER

and
(D)igiy, = Zirie M)y, r (V) (M) 5, -
Using the subrectangularity of M;, ¥ and M, we obtain from (6.1), (6,2) and
(6.3) ‘
0 < 5157» Zr,k (V)r,k é (U)z‘,j § Zr,k (V)r,k ’ if i= il? 127] :jl’jz

from which (6.5) follows.
That (6.5) also holds when n = 1 or 2 is evident.
From Proposition 6.2 clearly follows that

(6.6) 0,0,(U);, = (U);, = (0:0,)7'(U)y, » iy, iy € Sy(U)

and by combining (6.6) and (6.5) we see that (6.4) holds if n = 1. Next let
n = 2 and denote W = M, M, ... M,. Then if i e S;(U) we have

Wi _ 5 M)W | Wy

(U): (U): (")
Thus if we denote
azw, k=1,2,.--,d
(U),,
and
ﬁk:M_)f, k=1,2,...,d
),
we have
(Ui (U)ys W,
6.7 Ll — 2! = s;om) (X — Py b
©D @) (@), D @ P

Now let k € S,(M,). Then applying (6.3) and (6.6) we obtain

(M)W - 515 (M)W
(U, (U)y,
Hence if k € S,(M,)
(6.8) By = 0%,
and since M, is subrectangular the inequality holds trivially if k ¢ S,(M,).
Furthermore using the fact that

Zs1<W> M) (W) = (U),
we have

(6.9) Disyom O = D A = =3B = ZSI(W) B -
Therefore, defining S* = {k: @, = $,} we obtain from (6.7), (6.8) and (6.9)

(Dii (U Mksi _ mi W)k, i a, —
)., ), = (max81<w> %) ming ) ), )Zs+( x — Br)
M esi _ mi W), s — 5.2
= <maxSI(W) %) Mg, ) ), ) (1 —o,%,) .

(6.4) then follows by induction.
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LEMMA 6.2. Let M, M,, - . ., M, and U be as in Lemma 6.1. Let x and y € K,
and suppose that ||xU|| > 0 and [lyU|| > 0. Then

o T ™ ool = 4 010 = 825

Proor. From the definition of the norm we have

” il i(U)i,j Zzyl(U)”

EUN U]l

“nxvn ||yU||

But
x(U)yy _ x(U)yy _ (U),.; x(U),
2 I%U]] = Zsw E () [IxU]|

and similarly

Zzyz(U)z J — Z (U)i,:i . yi(U)i

[lyU]| S T
Therefore
)i (0. _
|l T ”yU”H 2| Lo {4 @ = )
where we have defined
a, = x,(U), and = yt(U)z i=1,2,...,d.
[lxU]] vl

But 3 x,(U), = ||xU|| and hence Y a, = 1. Similarly we obtain 3 8, = 1.
Therefore

W) (g, —
}2 O = 8

< (maxiesl(m ((UU);" — miniesl(m ((((]]);"> . % 2 ,ai - ﬁz, .

Then applying Lemma 6.1 we obtain

H [IxU]| I|yU||H = d(IIn=: (1 = 6,%,)) ,

since § 3] |a; — B;| < 1. The lemma is proved.

7. The subrectangular case. In this section we prove the assertion of Theorem
A under the extra assumption that the trpm P is subrectangular. First we
observe that

P subrectangular — M(a) subrectangular forall ac A.

Next let (x, y) ¢ K(a,) and let a" € 4,*. Then [lxM(a™)|| > 0 and ||yM(a™)|| > 0.
Therefore, if we denote

0 = miniy,' {(P)i,j: (P)i,:f > 0}
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we obtain from Lemma 6.2
(7-1) (x> @) — Ro(y, @) = d(1 — &) .
Hence applying Lemma 5.5, for u € Lip [K], we obtain
(7.2) SUPG., e tap [4n(¥) — wa(Y)] = (1 — @))e(u) + [u], dpy”
where p, = (1 — &°).
Then combining (7.2) with Lemma 5.4 we obtain, for n,m > 1,
(7.3) P(Unin) = (1 — ag)p(u) + [u]y dp* + p(u)Coo™ -
Thus if we choose n and m sufficiently large, say n = n, and m = m,, then
¢(un1+m1) = (1 - al)?’(.”)

where a;, = a,/2.
But because of Lemma 4.3 we have that

uelip[K]=u,eLip[K], n=1,2,.
Therefore we can apply (7.3) to the function #, ,, . We then obtain
So(un1+m1+n+m) = (by (42)) = ¢((”n1+ml)n+m)

é (1 - ao)go(un]+m1) + Iun1+m1|L dpln + So(unﬁml) : Copom

= (1 — a)(1 — a))p(u) + [ty ym| 2 do" + @(Uy 4m)Copo™ -
Again choosing n and m sufficiently large (probably much larger this time since
[#,,+m |, might be very large), say n = n, and m = m,, we obtain

P snyrmpemy) = (1 — ar)%(u) .

Repeating this procedure and using the fact that {¢(x,)} is a nonincreasing
sequence we see that if u € Lip [K] then lim,_, ¢(u,) = 0, which together with
Lemma 4.2, Lemma 4.1, and Corollary 2.1 proves that the assertion of Theorem
A is true if we assume that P is a subrectangular matrix.

8. The final step. In order to complete the proof of Theorem A all that
remains to do (besides proving Lemma 5.1) is to prove the following lemma.

LemMA 8.1. Assume Condition A holds. Then, if a > 0,
(8.1) lim,, ., SUPz(y 2 an [[Aa(X5 @) — hu(y, a®)||ga(x, @) = 0.

For, having proved this lemma, we by the same arguments as used in the
previous section can prove

ue Llp [K] = limn_,o,, q:(u”) =0
form which Theorem A follows.

Proor oF LEMMA 8.1. Since we assume that Condition A holds, there exists
an integer m, and a sequence {b,, b;, b,, - - -, b,, } such that the matrix product
M(b))M(b,) - - - M(b,,) is a nonzero subrectagular matrix.
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Now let {Y,(x)},*, x € K be the stochastic process introduced in the existence
theorem of Section 3. Denote
(¥a(x), Yy(x), - -+, Yo(x)) = Y(x)
and
(Yasr(%)s YVara(x), -+, YVoyu(%) = "Y™(x).

From Lemma 3.2 it is clear that if x ~ y then

(82) Liagn |ka(xs ™) — ho(y, a)||g.(x, a®)

= E[||hu(x, Y™(x)) — &, (y, Y™(x))][] -
Define
n, = min {n: min, ; (P*), ; > 0} .

Such an n, exists since {X,}; is assumed to be ergodic. Denote
M(Y\(x)) M(Yy(x)) - - - M(Y,(x)) = M*(x)
and
MY, 14(x)) M(Y,15(%)) -« - M(Y,p40(x)) = M,™(x) .
LeMMA 8.2. There exists a constant y, such that for all x e K
8.3) Pr [M™*™(x) is subrectangular] = 7, .
Proor. Because of Proposition 6.1
Pr [M™+*™(x) is subrectangular]
= Pr[M7o(x) is subrectangular]
g Pr[Yn1+k(x) = bk’ k = 1, 2, ey, mO] .
Now since the product M(b,)) M(b,) - - - M(b,,) is nonzero we have ||e; M(b,) - - -
M(by)|| = 1. > 0 for some vector e, where {e;},%, as before, denotes the set of
base-vectors of R?. Moreover, using the ergodicity of the matrix P it is not very
difficult to prove that there exists 7, > 0 such that for all xe K

Pr{(Z,(x), 2 1l 2 &

where .
0, = min, ; {(P™), ;} .

From (3.1) then follows that
PriY, () =b,k=1,2,--.,m] = d,7,7,

and hence by taking 7, = d,7,7, we obtain (8.3), and hence Lemma 8.2 is
proved.

Next for each x e K define a sequence of positive, integer-valued stochastic
variables {N,(x)}, by

Ny(x) = min {n: M(Y,(x)) M(Y,)) - - - M(Y,(x)) is subrectangular}
Nia(x) = min {n: M(Y,.(x)) M(Yr (%)) - - - M(Y,,,(x)) is subrectangular}
k=1,2...

where k’ denotes N,(x) + 1.
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From Lemma 8.2, Lemma 3.1 and Lemma 3.2 it is not difficult to convince
oneself that the following result holds:

LEMMA 8.3. There exist constants C, and p,, 0 < p, < 1 such that for all x e K
and for all choices of m, ki, ky, k,,, 1y, gy ++ -, 11y,
Pr[N,(x) = n, Niy(x) = 1y, - -+, N, (x) = n,] = Cy0y"1 Cyp5m - -+ Cypptm .

We omit the proof.
To simplify notations we from now on write N, instead of N,(x). Next define

L= L(n)=max{k:N,+ N, 4 --- + N, < n}, if Ny=n,

=0 : otherwise.
We have

E[|lAa(x, Y*(x)) — hu(y, Y*(2))[]
(8.4) < E[[Jhu(x, Y™(x)) — Ao(ys Y*(0))I|: L(n) = 2]

+ 2Pr[L(n) £ 1] = I(n) + I(n) say.
From Lemma 8.3 follows

(8-5) lim, ., I(n) = 0.
Next denote
#k:NI+N2+"‘+Nk9 k=1923"”
and
G, = [[" M(Y,(x))
Grnn = TI4E M(Yo(x)) , k=1,2, ...

On {L(n) = 2} define
GL’ = Hz:,ul,_1+1 M(Ym(x» ¢
By definition G,, k = 1,2, ... are subrectangular and

min, ; {(Gy);,;: (Gi)i,; > 0} = 0%k,
where as before

(8.6) 0 = min {(P), ;: (P),; > 0}.
Also, by Proposition 6.1, we note that G’ is subrectaﬁgular and that
min, ; {(G,); ;1 (G1)i,; > 0} = o™
where N' = n — p,_,. Therefore, by Lemma 6.2, we have
8.7 I(n) < E[(TT52 (1 — 6™mt))(1 — 8%): L(n) 2 2] .
Now, by using Lemma 8.3, it is elementary but somewhat tedious to prove that
(8.8) lim, ., E[(T]F7* (1 — 0*¥m+¥'))(1 — %) : L(n) 2 2] = 0.

(8.1) then follows by combining (8.2), (8.5), (8.7) and (8.8), and hence Lemma
8.1 is proved.

9. Proof of Lemma 5.1. In this section we prove Lemma 5.1. First, since
we assume that Condition A holds, we know that there exists a sequence
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a, a, --.,a, such that
M = M(a,) M(a,) - - - M(a,,)

is a nonzero subrectangular matrix. In agreement with the notation in Section
6 we let S (M) and S,(M) denote respectively the nonzero rows and nonzero
columns of M. Now let i, € S,(M). Since {X,};* is ergodic there exists an integer
n, and sequences {ky(i), ky(i), - - -, k, (i)}, i€S, such that k(i) = i, k(i) = i
and

21=1p(kn—l(i)’ k'n(l)) > 0 ’

where p(i, j) denotes the i, jth element of the matrix P. Define

() = 9(k,(0) lsnsn
a,(i) = b,(i) , l<sn<mn
=0y m+lsn<n-+m,

put
M; = M(by(i)) M(by(D)) - - - M(b,,,(0))

n,=n+m
ar(i) = {a,(i), a,(i), - - -, a, (D)} 5
and let e;, i € S, denote the ith base-vector of R?. It is easy to see that
S(M, M) = S5,(M)

and therefore, for all i € S, we have

(R (> @a™(i))); > 0 if jeSy(M)
and
(B (es» a™(i))); = O if jgS,(M).
Defining
a/ = min {(k, (e;, a™(i)));, j € Sy(M)},
a’ = min{a/,ie S},
0 = min {(P), ;: (P);; > 0}, and
B =om,
we obtain

Pr [Z,(e) € K(@, S,(M))] = Pr[Z,(e) = h, (e, a"(i))]
> g, (e am(i)) = om = §,

and hence (5.1) holds for x = e,, i ¢ S, if we take n, = n,, @y = a’, 8, = ' and
Sy = Sy(M). Now let x be an arbitrary element of K. Since we can write x =
>, x;e; and since 3 x, = 1, at least one of the terms xpi=1,2,...,d,islarger
than d~'. We may of course assume that x, > d-'. Then if j ¢ S,(M), we have
— (xM, M), > x (e M M); > d-'a'p

(h,,,z(X,aW(l)))f HXMlM”: ||XM1M” =

and
Gny(Xs @"(1)) = x,9,,(e;, a™(1)) = d'f" .
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But if j ¢ S,(M) we have
(ha(x, @™(1))); = O

for all i e S, since Sy(M,; M) = S,(M).
Hence if we take n, = n,, ay = d~'a’p’, 8, = d='p’ and S, = S,(M) we can
conclude that (5.1) holds for all x € K. The lemma is proved.

REMARK. I want to thank the referee for helping me to find a correct proof
of this lemma.

10. A counter example. As we mentioned in the introduction the conclusion
of Theorem A does not hold if we merely assume that the process {X,}° is
ergodic. We shall show this by an example.

Let the state space consist of four elements S = {1,2, 3,4} and let the
function ¢ be such that

(10.1) 91) =9(2) =a,93) =94 = b, a#b.

Let the transition probability matrix P be given by

1040
0 4 0 }
(10.2) P=11 0 0}
04+ 40

It is easy to prove that P is ergodic.

Now let p = (py, ps» ps» po) be the initial distribution for the Markov chain
{X,}° generated by P and let us for simplicity assume that p, = p, = 0.

Denote

a, = (Pl’ Pa» 0, O) ’ Ay = (pz’ P 0, O)
ag = (0, 0, P Pz) ) a, = (0, 0, Pas Pl) .

We shall show below that
(10.3) lim, ,Pr[{Z, = a;] =%, i=1,2,3,4.

From (10.3) then follows that if P and g are given by (10.2) and (10.1), the
distribution function of Z, converges to a limit, but this limit does depend on
the initial distribution p. To prove (10.3) let us first observe that

q(x, a) = [[xM(a)|| = § = ||q(x, b)|| = [|xM(b)|| , xe K
and that
h(x,a):(xl-{—xg,xz—l—x,, 0, 0), xekK
h(x, ) = (0, 0, x;, + x,, X3 + X3) ,  xeKk.
Therefore

(10.4) (@, a) = qa,, b) = %, i=1,2,3,4
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and
h(ay, a) = a,, h(ay, a) = a,
(10.5) hay, a) = a,, h(a,, a) = a,
h(ay, b) = ay, h(a,, b) = a,
h(ay, b) = a,, ha,, b) = ay .
From (10.5) we observe that in this very special case the state space of the
Markov chain {Z,};° only consists of the four points «,, a,, a; and «,. Now let

B = (b,;) be the trpm associated to the process. By definition b, ; =
Pr{Z,,, = «;| Z, = a;] and from (10.4) and (10.5) we obtain

Pr{Z,,=a,|Z, =] =%, i=1,3
PriZ,,.=a|Z,=a]=4%, i=2,4
PriZ,,=a;|Z, =] =%, i=2,4
PriZ,,=a;|Z,=a]=14%, i=1,3.

Hence the tr pm B is also given by (10.2) and since this matrix is ergodic and
double-stochastic, (10.3) follows.

REMARK 1. The above example is the same as the one used by Blackwell in
[2] to show that the entropy of the {X,}-process need not to be larger than the
entropy of the {Y,}-process.

REMARK 2. Suppose that we in (10.2) take p;;, = 4 — ¢,0 < ¢ < % instead of }
and take p;;, = ¢ instead of 0. Then the product M(a)M(a)M(b)M(a)M(a)M(b)M(b)
is a nonzero subrectangular matrix; hence Condition A is satisfied and Theorem
A applies.

REMARK 3. Suppose that we in (10.2) again take p; =1 —¢ (0 < e < ),
but now take p,, = 4 + ¢ instead of }. It is then not very hard to convince
oneself that Condition A does not hold and hence Theorem A cannot be applied.
However it is my belief that the conclusion of Theorem A still holds.
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