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STRONG MIXING!
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Let {X;:i=1} be a strong-mixing sequence of uniform [0, 1] rv’s and
{Ci} a sequence of constants, and define the generalized empirical process
by Un(t) = (Z{L; €& T, Cillix,=e1 — £), 0 < ¢ < 1. In this paper, the
weak convergence, relative to the Skorohod metric, of (Un/q) to a certain
Gaussian process (Uo/q) is proved under certain conditions on the constants
{C;}, the strong-mixing coefficient and the function ¢ defined on [0, 1]. The
class of functions g considered in this paper include those of the type g(f) =
[#(1 — D]2, » > 0. The earlier results of Fears and Mehra [7] concerning
empirical processes for ¢-mixing sequences are also improved by weakening
the conditions on the ¢-mixing coefficient and the function q.

1. Introduction. Let {Y,: N > 1} be a stationary sequence of real rv’s with
a continuous F as the common distribution function (df) and let F, denote the
sample df of Y;, 1 < i < N. The weak convergence relative to the Skorohod
metric d, as N — oo, of the so-called one-sample empirical process {U,(t) =
NF,F(f) — t]: 0 <t < 1}, an element of D (for definitions see [2] pages
109-111), has been widely studied in literature for sequences of independent as
well as weakly dependent (mixing) rv’s (see [2]). For a given function ¢ on
[0, 1], consider now the space (D,, d,) which is defined as follows: x e D, iff
(x/q) € D and d,(x, y) = d(x/q, y/q). The space (D,, d,) was first considered by
Cibisov ([3] and [4]) who studied the weak convergence of {U,(f): 0 < ¢t < 1}
relative to d,, for a certain class of ¢ functions, in the case of independent rv’s.
In [9] Govindarajulu et al. and in [17], [18], [21] Pyke and Shorack proved
similar results for empirical processes and showed the usefulness of these results
in proving, among others, the asymptotic normality of rank statistics and linear
combinations of order statistics. In[7]Fearsand Mehra and later in [15] Mehra
and Rao (see also Mehra [14]) proved similar results for ¢-mixing sequences,
but for the restricted class of ¢ functions whose behavior near 0 and 1 is of the
type [#(1 — #)]¢~?, for some 6 > 0 and which are bounded away from zero on
[e, 1 — €] for every ¢ > 0.

It is important to note, however, that the condition of ¢-mixing is in fact
quite restrictive: For Gaussian processes, this condition is equivalent to that of
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m-dependence (see Theorem 17.3.2 of [12]). Such a restrictive property of m-
dependence, on the other hand, does not follow in general for strong-mixing
Gaussian sequences. The example of a first order stationary autoregressive
Gaussian process {Y,: N =0, +1,...} where Y, = pY,_, + e, with0 < p < 1
and e,’s as i.i.d. N(0, 1) rv’sillustrates the point. This process is strong-mixing
by Theorem 17.3.3 of [12], but it is not m-dependent since Cov (Y, Y. ) = o'V
Further, as pointed out by Gastwirth and Rubin [8], ¢-mixing imposes a severe
restriction in general also on the important subclass of stationary autoregressive
processes. The main object of the present paper, accordingly, is to extend the
results of [7] to strong mixing sequences. In fact, in this paper we extend the
results of [7] in three directions: Firstly, we consider the “generalized” empirical
processes U, defined by (2.3) (or see (2.9)); secondly, we prove the weak con-
vergence of these processes relative to d, for strong-mixing sequence {Y,}; and
thirdly, we improve the conditions of [7] on the class of functions ¢ and the
mixing coefficient ¢. Our results, besides being of interest per se, are broad
enough to lead to, under quite general conditions on the coefficients, the asymp-
totic normality of the normal-score versions of the linear rank statistics under
strong-mixing. We shall, however, not consider any statistical applications in
this paper.

In Section 2, we introduce the notation and prove some basic mixing in-
equalities. Section 3 deals with the weak convergence of U, relative to d and
contains some remarks on the conditions assumed. Section 4 contains the main
results, namely, the weak convergence of U, relative to d,.

2. Mixing inequalities. Foreachfixed N =1,2,...,let{Y,,:i = 1}bea se-
quence of real rv’s defined on a probability space (Q, .57, P). Let _Z* (= _#},)
and 7.3, (= A#)+.) denote the sub o-algebras generated by {Y,,: 1 < i < k}
and {Y,: i = k + n} respectively. Let a and ¢ be functions of nonnegative
integers satisfying a(n) | 0 and ¢(n) | 0. Then the sequences {Y,,: i = 1}, N =
1,2, ..., are said to be strong mixing (s.m.) if for all 4 e _#* and Be _#;3,,

|P(4 1 B) — P(A)P(B)| < a(n),

where k and n are any positive integers; it is ¢-mixing (¢.m. or uniform mixing)
if the above inequality holds with ¢(n)P(A4) in place of a(n).

The following two basic inequalities (2.1) and (2.2) are needed throughout;
for their proofs we refer the reader to Ibragimov [11] and Davydov [5]: Let &
be _#;*-measurable and 7 be _#;7 ,-measurable, then if {Y,: i > 1} is ¢-mixing

(2.1) |Cov (£, )| < 2[[¢]LalI7Ils[#(m)]"
forall co = a, b = 1 with (1/a) + (1/b) = 1, and if {Y,,: i = 1} is strong-mixing
(2.2) |Cov (&, ) = 12[[€][a][7]]s[a(m)]"*

for all 0o > a, b,c = 1 with (1/a) + (1/b) 4+ (1/c) = 1. Clearly ¢.m. implies
s.m.
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The following notation will be used throughout: {X,,:i= 1}, N=1,2, ...,
will denote a sequence (not necessarily stationary) of uniform [0, 1] rv’s, {Cy,:
1 £ i < N} a triangular array of constants, ), a denumerable sum, =, (=)
weak convergence relative to a metric d (the appropriate Euclidean metric), and
K (with or without subscripts) will denote a generic constant throughout. We
define a generalized empirical process (see also Koul [13]) by

(2.3) Uy(t) = (Y CR)t 20F Codlizysa — 1],

where {Cy,: 1 £ i < N}, N =1,2,...,isa triangular array of arbitrary con-
stants. For notational simplicity, we may suppress whenever convenient the
subscript N from {Y,,: i = 1}, {Xy,: i = 1}, {Cy,}, etc. It may seem, then, that
our results are proved for single infinite sequences only; in fact they cover also
the case of triangular arrays {Y,,: 1 <i< N}, N=1,2,....

We shall now prove, using the inequalities (2.1) and (2.2), a few preliminary
results leading up to the mixing inequalities of Lemma 2.6, and the central limit
Theorem 3.1. The inequalities of Lemmas 2.4 and 2.6 are crucial to the main
weak convergence results of Section 4 (Theorems 4.1 and 4.2). In fact in the
strong-mixing case, the method of proof of Lemma 2.1 of [7] which uses the
bound on the fourth moment of sums given by Lemma 1 ([2], page 195) does
not yield a similar desired inequality. However, the sharper bound provided
by Lemma 2.6(i) does yield this result (see inequality (4.1)). It is also worth
pointing out that the inequality of Lemma 2.6(ii) has enabled us to extend
Theorem 2.1 of [7] to a larger class [Q*(2)] of ¢ functions (see Section.4 for
definitions) and under a weaker condition on the mixing coefficient ¢ (cf. (1.1)
of [7] with Condition I of (2.17) under which Theorem 4.2 is proved).

LemMa 2.1. If fis a nonnegative, nonincreasing function defined on {0, 1,2, - - .},
then (i) Y7 f(m) < oo implies m*)f(m) — 0 as m — oo and Y, mf(m) < oo, (ii)
S m’ [ f(m)]? < oo implies Y, [ f(m)]*? < oo forany 0 < 0 < 1.

Proor. The proof is elementary, part (i) following from the nonincreasing
property of f and part (ii) by using the Schwarz inequality. []

LemMMA 2.2. Let {Y,:i = 1} be strong mixing (¢-mixing). If |Y,| < 1, then
Ly a()) < oo (L7 ¢(J) < oo) implies
(2.4) Var (Ziir G Y) = K(Zwir €)),
where M and m are arbitrary nonnegative integers and the constant K depends only
on a(p).

Proor. The proof follows using the expansion of Var (3] C,Y,), the mixing
inequality (2.2) and the inequality below.
1M 1CCila(j — 1) = 235 a(f) D’ |CiCuyl
(2:5) S Zrata()(Zir? CHNZILR CLy)
= (X3 a(OAZ i G - o
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LeMMA 2.3. Let{Y;:i = 1} bes.m. (¢.m.) with 7., j2a(j)< oo (L7, j26(j) <
o) and |Y,| < 1, then

E[Yir G Y] = K[(Z¥r €)' + (D C)¢*
where ¢* = maxy. . <i<y.m |Ci|, M and m are as in Lemma 2.2 and K is a constant
depending on a(¢) only.

ProoF. The proof of this lemma is similar to that of Lemma 2.6 below.
Since |Y,| < 1 it is even simpler.
Let [Q(r) 1], for a fixed r > 0, denote the class of functions g defined on

[0, 1] satisfying
(2.6) (i) 9(0)=0, and ¢(tf) >0 for r>0
(ii) g(#) is nondecreasing (f) in ¢ and g"(f)1 in ¢.
(Although not stated explicitly, (i) and (ii) imply the continuity of ¢; see Lemma
4.1(iii).)
Now let {X;: i > 1}, N=1,2, ---, be sequences of uniform [0, 1] rv’sand,
for0 < s, t < 1, set

(2.7) 9(X)) = Iiycn — 1,
_ 9dX) _ 94X)) — —
Vi = ——= — /= and §i=¢vi=am,
9 90 '

(at r = 0, 1 define [g,(X,)/q(¢)] = 0) where we set
3+
(2.8) a; = ay; = Cm( 2 G z> and $y = max,g; .y |a];

(note that E(y;) = 0 and Y/, 4 = N). In this notation, the empirical process
{Un(1): 0 < t < 1} given by (2.3) is expressible as

(2.9) Uy(t) = N 2in az[l[x =0 — 1]
and

(UN_(’)_M>=N42§;151. for 0<s, r<1.
9(t)  4(9)

LEMMA 2.4. Let X be a uniform [0, 1] rv and q € [Q(r) 1] for a given r > 1.
Then for0 < s <t < 1

(2.10) E 9(X) _ g(X)|"

<=9 om0
(0 " 40 @+,

= qm()

foralll <m<r.

Proor. By direct computation, we have for s < ¢

@.11) E’M _ 9"
q(t) q(5)

=x+y+z,
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where
x=[§l—s)_(l—t)}"‘s’ y = |:(1—t) 1
q9(5) q(1) q(1) q(5)

t
z= [m m} (I—=19.
Since g € [Q(r) 1] implies sg~Y(s) 1 in s,

(t—y9),

2.12 <[d=0_, _t=9
®12 =5 ) =5
and since ¢(s) 1 in s,

2.13 SL_L"‘S(t—s).
@1 = [qm q(s>] =0

Finally note that, since g(s)/q(r) = (s/f) and s¢g~™(s) 1 in s,

(=T = il =T =027
so that using (2.13),
ym 1 I\
=[Go- )" G5~

(t _ S) _ i (m—1)/m™|m
q™(t) [1 + (1 t > }
m (t - S) ;
qm(1)
(2.10) follows using (2.12) to (2.14) in (2.11). ]

(2.14)

A

IA

Since E(§;) = 0, the following lemma gives bounds on the covariance sum
of &’s.

LEMMA 2.5. Let 0 < 0 < 1 be arbitrary but fixed. Thenfor0 < s <t < 1and
1 <i,j< N, the sum 3, i<y |E(§,€;)| is bounded above by

(i) T2N(t — 5)'°q=() T [aG) if (X is s.m. and q € [Q(2/(1 — 8)) 1],

(i) 16N(t—35)g7*(1) Lo [$(N] i (X} is §.m. and g € [Q((1/d) v (1/(1—d))T],
and

(iii) 8N(t — s) 230, 6(j) if {X,} is ¢.m. and g = 1.
(Note that in (i) the class [Q(+) 1] increases if d |, but the bound becomes less
sharp. In (ii) the class [Q(+) 1] is largest when d = 1; if }} ¢°(j) < oo for some
0 < 4, this does not help to enlarge the class of ¢ functions beyond [Q(2) 1].)

Proor. For part (i), applying (2.2) witha = b = 2/(1 — /) and using Lemma
2.4, we have

i< |ES:€]
(2.15) é 12 Zi<j |aiaj|[E|)7i|2/u—bJ](l—a)/Z[Elnjlw(l—d)]t1—3)/2[0,(]‘ _ i)]ﬁ
72(t — s)t-¢ _
< BT 5 laalat — Y,

g'(1)
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the last inequality following from the fact [2¥?-% 4 2]'-? < 6. The proof of
part (i) follows now by using the inequality (2.5) and >}, a* = N. The proofs
of part (ii) and (iii) are similar. []

Now set
(2'16) Ay(9) = Ei<j<k§N min {¢(k - f)’ ¢(] - l)}
By(9) = Zicickasy min{o(l — k), g(k — j), 6(j — )},

and

(2.17) Condition I: Y5, K*p(k) < oo
_ Condition II: v kal(k) < o fora 0<o<l.
LEMMA 2.6.‘Let0 <0< land 0 < s <t <1 be fixed.

(i) If g €[Q((2 + n)/(1 — d)) 1] for some y = 0, {X.} is s.m. and Condition 11
holds, then

E(ZL €)' < Koo [NY(t — 9)"q7(0) + N(t — 5)'=°q7**(s)q 7" "(1)’] -
(ii) If € [Q(2) 1], {X.} is ¢.m. and Condition 1 holds, then
E(XL 60 < Ky [NY(1 — 5°q74(1) + N(r = 5)g7(s)q7(1)9"] -
(iii) IfCy, =1, q(t) = 1, {X}} is .m. and 3} ¢(j) < oo, then
BN €)' = KANY(t — s + (1 — 9)[N + Ay(8) + Bu(9)]} -

Proor. The proof is based on Lemmas 2.4 and 2.5. For simplicity we prove
part (i) for » = 1; the proof is similar for y # 1. First, note that

(2.18) E(NL 80 S 4 X IEEE6:.8)]
where the sum on the right extends overall 1 < i <j < k <1 < N, and further
(2.19) E€)=0, |&l=2a497%() and FiLe'=N.

Now using (2.19), Lemmas 2.4, 2.5 and the mixing inequality (2.2) with a =
3/(2(1 — 0)), b = 3/(1 — d), it follows easily that the total contribution of the
terms correspondingtoi = j=k =1, i=j+ k =1,i =j =k #+ [ to the sum
in (2.18) is bounded above by
(2.20) KNt — $)¢74(1) + Ngy'(r — $)g7(8)g7()(1 + L ()]
where K is a generic constant. Also, the same technique coupled with the in-
equality

B Dicsar €765 < 2 |E(E:€ )] D EG)

+ X min {|Cov (£ €87, [Cov (£,€5 €7}
and similar inequalities for other two sums 33, ; and 3;,.,.; yields at once
(221)  [Zicie EE£;60)]

S Ko [Nt — 5)'72q74(1) + Ngy'(t — $)'=°q7Y(s)g (0],
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where we have also used Y, a2 = N and the fact that

L@ minfa(j — i), a(k — j)} £ N T o<y min{a()’), a(k’)}

< 2N 3 ja(j) -
Finally, proceeding as for (2.21) and using (2.17 II) one gets the same bound for
the remaining terms (corresponding to i < j < k < /) in the sum on the right
of (2.18). This completes the proof of part (i). The proof for part (ii) is similar
and uses (2.1), Lemma 2.4 and Lemma 2.5(ii). If ¢(/) = 1 and C; = 1, one can
use instead Lemma 2.5 (iii) and (2.1) with g, = 1, so that the proof of part (iii)
is straightforward. ]

3. Weak convergence relative to 4. The object of this section is to establish
the weak convergence of U, to a Gaussian process {U(f): 0 < ¢ < 1} tied down
at0and 1. Our Theorems 2.3 and 3.3 below extend and improve the conditions
of similar theorems proved earlier in the literature (see Remark 3.2). For this,
we shall first prove a central limit theorem (Theorem 3.1) for strong mixing
sequences.

THEOREM 3.1. Suppose {Y,;:j=1}, N=1,2, ..., is s.m. with |Y,;| <1
and that 3, j*a(j) < oo. Assume further that lim inf,_ z,’(3; C%;)™' > 0, where
tyt = Var (¥ Cy, Yy,) and

3.1 N-t), = [max,q;<y [Cu (DY C3)EH] = o(1), as N—oo.

Then YV Cy, Y yi/ty = N(0, 1) as N — oo. (Note that the sequence {Y;:j = 1}
is not assumed to be stationary.)

Proor. The proof is based on Theorem 3 of Philipp [16]. We only sketch
the proof. First, by letting b, = N-%¢,, K, = b,* and noting that 3} a*(j) < oo
(see Lemma 2.1(ii)) it can be seen that the pair (K, by) is “admissible” (see
Lemma 4 of [16]). Also, using the notation of [16], we get by Schwarz in-
equality and Lemma 2.3 (as in the proofs of Theorems 6 and 7 of [16]) that for
every e > 0

Yist Swse V' AFy; < Yis [Pyl = ©)PLEY T

(3.2) < Zis (By DR [23 Chd) + by']
< K (9)byt(1 + by),
where 2% = ;’;’::fi’l C%; and F,; is the df of y; (o;, ', and y; are as defined

in (3.4) of [16]). The last inequality uses (3.7) of [16]. Now the result follows
from (3.1) and (3.2). {J

Now for 0 < s, t < 1 define o(s, ), whenever the limit exists, by
a(s, 1) = limy_, E[Uy(s5)Uy(?)]
(3.3) =GB A —(sVv 1)
+ limy_, (X1 €))7t 2% CCE[9(X)94(X)] 5
where g and U,(r) are given by (2.7) and (2.9).
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THEOREM 3.2. Let {Xy,:i=1}, N=1,2, ..., be s.m. and Condition 11 hold,
then (whenever the limit in (3.3) exists) |a(s, 1)] < oo. If also a(s, t) > 0 for all
0<s,t< 1and

(3.4) N-1g,? = O(N-%), as N— oo,

for a 6, > (9/2), then Uy, =, Uy, where U, = {U\(t): 0 < t < 1} is a Gaussian pro-
cess tied down at 0 and 1 and defined by

(3.5)  EU()=0, E[U(s)U(t)] =o(s,t), O=<s, t=<1.

Moreover P[U, e C] = 1, where C denotes the space of real continuous functions on
[0, 1].

THEOREM 3.3. Ler {X,;: i =1}, N=1,2, ..., be g.m. Suppose Condition 1
holds and the limit in (3.3) exists. Then |a(s, t)] < co. Further if (3.1) holds then
Uy =,U,as N— o and P[U,e C] = 1.

REMARKS 3.1. (i) Theorem 3.2 has been proved in the special case Cy,; = 1
in Mehra and Rao [15], and proved earlier under stronger conditions in Deo [6]
and Yokoyama [21]. This extends Theorem 22.1 of [1]and Theorem 3.1 of [20].

(ii) Theorem 3.3 is valid under the following weaker mixing conditions when
Cyi = 1: N [Ay($) + By($)] = o(1)as N — oo, where 4, and B, are as defined
in (2.16). This condition is satisfied if, for example, }; j(logj)é(j) < . To
see this, we note that the tightness of U, follows from Lemma 4 of [19] and
the finite dimensional convergence from Lemma 2.2 and Theorem 2.1 of [1].
Similar weakening of mixing conditions in Theorem 3.2 is also possible when
Cy; = 1 but we omit it for brevity.

Proors. We shall first give p;oof for Theorem 3.2 and merely indicate mod-
ifications needed for Theorem 3.3: That |o(s, f)] < oo under Condition II fol-
lows from Lemma 2.2. For proving U, =, U,, we follow the line of proof of
Theorem 22.1 of [2]: First we shall establish tightness for which, clearly, we
may assume C; = 0 WLOG. By setting ¢ = 1, we have for 0 < s <t <1 by
Lemma 2.6 (i)

(3-6) E\Uy(1) — Uy(s)|* < Koo [(t o N (e s)%i”r]

where K, ; < co. Also, from (3.10) ¢,’N-* — 0 as N — co. Consequently, for
given ¢ > 0 (and ¢, 5), we can choose N sufficiently large such that

(7)) (0 N)®0) < (1 —s)  where % <o <(AAD.
Noting that 26 < 1 and 6" = 26, — d > 0, we have from (3.6) and (3.7)

(38) E|U(1) — Up(o)pt = 2K (¢ gpear,
3
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Further, let p be a number satisfying

39 o,y o~
G2 (%) <r<amnay

that such a choice of p is possible for large N can easily be verified using
21a; < Nand that 6, > 9. Now by applying Theorem 12.2 of [2] to the
variables Uy(s + ip) — Uy(s + (i — 1)p), i = 1,2, - .., M and by using the in-
equality

(3.10) [Un(f) — Un(s)| < [Ux(s + p) — Un(s)] + 2pN~* Z¥ a,
for s <t < s+ p, we get from (3.8) and (3.9) (as in [2], page 199)

K "
P[SUP,gigaimy [Un() — Un(s)] 2 €] < —éﬁ (Mp)°".

This would prove the tightness of U, as in Theorem 22.1. That the finite
dimensional distributions of U, converge, as N — oo, to the corresponding ones
of U, under the hypothesis of the theorem follows from the multivariate exten-
sion of Theorem 3.1, which is an easy extension of Theorem 3.1 using standard
arguments (for example, see D, of theorem on page 168 of [10]). The proof of
Theorem 3.2 is complete in view of Theorems 15.5 and 15.1 of [2].

For proving Theorem 3.3, we can use part (ii) of Lemma 2.6 with ¢ = 1
which, as above or by Lemma 4 of [19], yields the tightness of U,. The con-
vergence of finite dimensional distributions of U, under Condition I follows
from Theorem 3.1 as noted above. []

4. Main results: weak convergence relative to d,. Let [Q(r) 1], for a fixed
r > 0, be the class of ¢ functions as defined by (2.6) and let [Q(r)] denote the
class of ¢ functions such that g¢(f) = ¢(1 — 1) = q(‘t) for 0 < r < 1 for some
function § € [Q(r) 1] and g(0+) = §(0). Further denote by [Q*(r) 1] and [Q*(r)]
the corresponding classes of ¢ functions which in addition to (2.6) also satisfy:

{59 "(f)dt < co (cf. Lemma 4.1).

Note that [Q*(r) 1] < [Q(r) 1] and [Q*(r)] C [Q(r)]. An important example of
a function g € [Q*(r)] is q(t) = [1(1 — ], 0 =t < 1, foran 0 < 5 < (I/r).

LEMMA 4.1. Every q € [Q(r) 1] satisfies the following properties: (i) tq=(f) 1 in
t for all s < r; (ii) §597°(t)dt < oo for all s < r and r > 2; (iii) q is continuous
on [0, 1].

Proor. First note that tg="(r) 1 and ¢(r) 1 in ¢ clearly imply rg=2(¢) 1 for s < 1.
Also setting 6 = 1 — (s/r) > 0, we have

“‘td-—‘l ! 1-ad<‘81 143-14
a0 di = 55 (o) s ) Srd < oo
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This proves parts (i) and (ii). Part (iii) follows since for £ > 0,

o= a0 1= 0] o1 ()

as h | 0 and similarly for 2 < 0. []

We shall now prove the weak convergence of U, relative to d,, under ap-
propriate conditions on the mixing property and the function g. Theorem 4.2
below generalizes Theorem 2.1 of [7] by way of weakening the condition on the
mixing coefficient ¢ and by way of introducing constants Cy,’s. Theorem 4.1,
which proves the weak convergence of Uy, relative to d, under strong mixing,
is considered by us to be the main new result of this paper.

Let (Uy/q) be defined equal to zero at 0 and 1. In the theorem below note
that, since ¢ is continuous, (Uy/q) € D.

THEOREM 4.1. Suppose {Xy,: i = 1} satisfies the conditions of Theorem 2.3 and
that (3.10) holds for a &, > [0 V ((2 — n)(1 — 0)[(2 + n))] where n = 0. Then
q€[Q(2 + n)/(1 — 9))] implies Uy =, Uy, as N — oo, where U, is as defined in
Theorem 3.2. Furthermore P[(Uy/q) € C] = 1.

THEOREM 4.2. Let {Xy,: i = 1} satisfy the conditions of Theorem 3.3 and q €
[Q*(2)]. Then Uy =, U,, as N — oo and P[(Uy/q) € C] = 1.

REMARK 4.1. In view of Lemma 4.1(ii), the condition {jg¢~*(r)dt < co for
s < r holds for each g € [Q(r)], r > 2, and this condition is adequate for proving
Theorem 4.1. On the other hand, in proving Theorem 4.2 for r = 2, the addi-
tional condition {}¢~*f)dr < oo is needed, which does not hold in general for
members of [Q(2)]. Hence we are able to prove Theorem 4.2 for [Q*(2)] instead
of [Q(2)]-

Proors. For simplicity we shall prove Theorem 4.1 when 7 = 1; the proof
for any » = 0 is exactly the same. Note that if y = 1, ¢€[Q(3/(1 — 9))]. We
shall first prove a result similar to Lemma 2.1 of [7]: Givene >0andage
[Q(3/(1 — 8)) 1], there isa 6 = 0(, 0, &, ¢, @) > 0and an N, = N(e, 9, d¢, ¢, @)
such that

4.1) P[suposté,, U‘Zi;) = e] =e for N=N,.
q

For this assuming d, < 1 WLOG, let ¢’ be such that

(4.2) [0v£1_—3_4§l]<5'<(50_5)<1,

and note that, since (4/(1 + &) < (3/(1 — 9)) and ge[Q(3/(1 — d)) 1], by
Lemma 4.1(ii) forany 0 < s < t < 1

(4.3) =9 (5t [q(0)]0+" du)*+? < 0o, and

[9(0)/q()] < (tfs)=27.
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From Lemma 2.6(i), (4.2) and (4.3) we obtain

E Un(1) _ Uy(s) |*
q(?) q(s)

SZ’NZ — q)—(8+8") ‘_]ﬂ_) (t - s)lH,

(4.4) < K[ 14220 =) (q(s))] o
é Ka,a |:1 + _5{’]%2 (t — s)—(a+a') (_§>(1—a)/3] (Sg q(u)-4/(1+a') du)1+a' .
Similarly,
UN(t) § ¢N2 —(6+4") t —4/(1467) 1446/ .

@s) £SO < Koo 14 200 170000 | (5 gl -voes” duy

Now by letting, as in [7], 0 < 5, < 8, < + -+ < 8y = 0 < 1, where 5 = (I6/M),
1 <1< M, we see from (3.10) and (4.3) that for 5, < 1 < 5;40

(4.6) E’_N_(Q| < 4max,,,., | Da00)| 4 2VOM)
q(1) gs) | q(0M)

Further using (4.2) to (4.6) and the property 7g=*/4+®" 1 in ¢, and proceeding as
in Lemma 2.1 of [7] it can be shown that

Pl:supogts(o/m Un(1) = 'f':l =1—(¢2),

g(r)y 1 2
and
Uy(t
P[Sup(fi/m«so qlzf)) 2—26—:|§—2€-, for N large,

where 6 > 0 is independent of N and M = O(N). In view of these inequalities
the inequality (4.1) follows. Now since g € [Q(3/(1 — d))] is continuous on [0, 1]
by Lemma 4.1 (iii), using the symmetry of the process {Uy/q} about ¢ =} and
(4.1) above, one can prove as in Theorem 2.1 of [7], the tightness of the se-
quence {Uy/q}, N=1,2,.... Since the conditions of Theorem 4.1 imply
those of Theorem 3.2, the convergence of finite dimensional distributions and
P[(U,/q) € C] = 1 follow and the proof of Theorem 4.1 is complete. The proof
of Theorem 4.2 is similar, where we use part (ii) in place of part (i) of Lemma
2.6 and Theorem 3.3 in place of Theorem 3.2. ]

Consider now the process {Uy(f): 0 < t < 1} with C; = 1 fori > 1. For this
usual empirical process, the weak convergencce result relative to d, was proved
in [7] for ¢-mixing sequences and for functions of the type g,(f) = [#(1 — £)]}~*
for every 0 < g < 1. The following corollary shows that this result holds for
the same class of functions for strong mixing sequences as well, but under the
mixing Condition II: Y7, K*a’(k) < oo with 6 = 2p.

CoRroLLARY 4.1. Let {X,: i = 1} satisfy the conditions of Theorem 3.2, and let
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Cyi=1foralli = 1. Then Uy =, U, as N — oo, and P[(Uy/q) € C] = 1 for all
q of the type q(t) = [t(1 — 0)]t=+, 0 < ¢t < 1, with pp = 0/2.

Proor. Since Cy;, =1 for all i > 1, (3.10) holds with J, = 1, so that the
condition d, > [0 V ((2 — p)(1 — 6)/(2 + 7))] is satisfied for 5 = 0. Further
9, €[Q(2/(1 — 0))] and, therefore, the result follows from Theorem 4.1 with
7=0.0
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