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SUPERCRITICAL AGE DEPENDENT BRANCHING
PROCESSES WITH GENERATION DEPENDENCE!

By DeaN H. FEARN
California State University, Hayward

This paper examines the size, Z{(t), of a population as a function of
time. Z{(#) is just like the ordinary Bellman-Harris age dependent branch-
ing process except that the number of daughters born to an individual in
the nth generation isallowed to depend on n. The renewal theory of William
Feller and Laplace transform theory are used to obtain the behavior of EZ{(#)
as ¢ approaches infinity, and the convergence of Z(¢)/E(Z(t)) in quadratic
mean.

1. Introduction. In this paper the following branching process is treated:
The process starts with one cell in the nth generation. This cell lives for a
random length of time T, , with distribution function G, and then splits into a
random number, {,,, of baby cells in the n 4 Ist generation. It is assumed
throughout that G is nonlattice, and G(0) = 0. Each of these cells respectively
live random lengths of time T,,,, ---, T, 1.0, and split respectively into
Lot =+ 05 G 1000 cells in the n 4 2nd generation. This process continues;
Z,(t) is the number of cells alive at time ¢ having started with one cell in the
nth generation. It is assumed throughout that the random variables T, ;, {, 4
where m and n run through the nonnegative integers and j and k run through
the positive integers, are mutually independent; that the random variables T, ,
for n = 0 and k = 1 have the same distribution; and that for each fixed n, the
random variables {, ,, k = 1, 2, . .. have a probability distribution on the non-
negative integers depending only on n. Let G, be the distribution function which
puts mass one on t = 0. Also the notation

(1.1) (A x B)(t) = §{ A(t — u)dB(u) = lim__,, {t** A(t — u) dB(u)
will be adopted whenever the right side of (1.1) exists. All integrals in this
paper are Lebesgue-Stieltjes integrals. Also for any sequence a,
(1.2) lg, =0 and IIé,a, =1, for all integers k.
The Laplace transform of a function 4 is
LA = {& e M dA()
whenever this exists. If 7, ..., T, are k independent random variables with
distribution function G, let
(1.3) Gyt) = P[L5-T; < 1] = (Gooy % G)(1)
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28 DEAN H. FEARN

Now suppose throughout for some finite number B that

(1.4) m,=EC{,.)<B, n=0,1,..;k=1,2,....
Let Z,(7) be the total number of cells ever alive by time 7, having started with
one cell in the nth generation.

It is shown in Theorem 3.1 that, when G has a finite first moment y, m, = 1,
and ([]2=2 m,)/(n*L(n)) — 1 as n — oo with L slowly varying and p > 0, one has
E(Zy(1)/[(t/p)L(t/)] — 1 as t — oco. Roughly speaking, the conclusion of this
theorem means that E(Z,(r)) behaves like n°L(n) where n is the number of aver-
age lifespans in the time interval (O, f), provided x = one unit of time. But
n°L(n) behaves like []2Z) m;, so E(Z(t)) recapitulates []7Z; m;, the mean of an
imbedded Galton-Watson process, Z,, which is the number of cells in the nth
generation. Using the renewal theory contained in Lemmas 2.3, 2.4, 2.5 and
3.2 of this paper, this result is extended (see Theorem 3.2) to the case where
m, = m > 1 for all n, and (]2} (m;/m))/n°L(n) — 1, as n — co, with p = 0
and with L slowly varying and nondecreasing. Finally in Section 4, Theorems
4.2 and 4.3 give sufficient conditions for Zy(t)/E(Z(t)) to converge in quadratic
mean to a nondegenerate random variable W as t — oo, thus giving information
about the sample path behavior of Z(t) for large .

2. Basic renewal theory.

LeMMA 2.1. For any finite interval I, there is a finite number B such that
(2.1) E(Z(1) = Zi-a I152 m; Geon(t) = By
forn=20,1,2...,and forall tel.

Proor. InHarris (1963, page 139), “24; Plviy.;_, = i;]” becomes m;_,. The

equation in (2.1) follows. The boundedness in (2.1) follows upon evaluating
the Laplace transform of E(Z,(7)) for a suitably large value of .

This yields the following basic lemma concerning Z,(¢):

LemMMA 2.2. For any finite interval I, there is a finite number B, such that
(2.2) M) = E(Z,() £ B,
forn=0,1, ..., andall tel. Hence, Z,(t) is almost surely finite.

Proor. This is an immediate consequence of the fact that Z, (1) < Z,(?).

Some important lemmas will now be stated whose proofs are obtained by
suitably modifying arguments used in Feller (1966), pages 181-183 and pages
346-353. '

LEMMA 2.3. Let Y, be a sequence of functions uniformly bounded on finite in-
tervals, such that (Y, = G)(t) exists for all t and all n. Suppose X, is a sequence of
functions, uniformly bounded on finite intervals, and for all t satisfying the renewal
equations

(2.3) X,(t) = Yo(t) + my(Xopy % G)(1) n=0,1,2, ...
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Then, for all ¢
(2.4) Xo(t) = Za (I35 m)(Ye + Gol)(?),  n=0,1,2, ...

Proor. (This proof uses, with some notational changes, the argument in
Feller (1966, pages 181-183).) Call the right hand side of (2.4) X,(¢). Using
(1.4)

(1) £ Diea B [maxog,g, | Yi()|1Gi-u(1) -

The argument showing the uniform boundedness of E(Z,(¢)) on finite intervals
shows that X, has this property since Y, is uniformly bounded on finite intervals.
A direct calculation shows X, satisfies (2.3).

Now let V,(f) = X,(r) — X,(r). Then V,, is a sequence of functions, uniformly
bounded on finite intervals. Using (2.3) recursively one finds that

V(1) = (H?::‘» M) (Vusiesr * Grpn)(2) -
The uniform boundedness of V,(u) for n = 0, 1,2, ... and « in [0, ¢], and the

fact that, as has been seen, Y 5, (T[%1k m;)G,y(f) < oo show that V,(r) = O for
all 7 and all n. So X,(f) = X,(¢) and (2.4) is true for all ¢ and all .

LemMA 2.4. Let h be any positive continuous, nondecreasing function such that for
every number a, h(t + a)[h(t) approaches 1 as t increases to co. Let H be a right
continuous function, nondecreasing on [0, co). Assume that h(t) = h(0) if t < 0 and
H(t) = 0if t £ 0. Then for every ¢ > 0,

H(t) — H(t — ¢)

(2.5) 70 — Ce as t— oo,
if and only if X is directly Riemann integrable implies
(2.6) X H)O) ¢ 5o X(u) du as 1 — oo .

h(t)

Proor. (This proof uses, with notational changes, the methods found in Feller
(1966, pages 348-350).) To see that (2.6) implies (2.5),let X(1) = 1if0 < r < e
and X(¢) = 0 otherwise. (2.5) follows from (2.6) by a direct calculation. It is
now shown that (2.5) implies (2.6).

Let e > 0 be given. Let X, () = 1 if (n — 1)e £ t < ne and X,(¢) = 0 other-
wise. Let X,*(¢) = (§° X,(t — u) dH(u). Then X, *(t) = H(t — (n — 1)e) — H(t —
ne). By (2.5) one has '

H(t — (n—1)e) — Hit — (n = D)e —¢) _
h(t — (n — 1)e)

as t— oo,

and also A(t — (n — 1)e)/h(t) approaches one from below as 7— co; hence
X, ¥(t)/M(t) — ce as t — oo for fixed n. Thus X,*(¢)/A(¢) is bounded in ¢ due to the
positive, continuous, and nondecreasing nature of k. Also because of these
properties of k, X, *(#)/h(t) < X,*(t — (n — 1)e)/h(t — (n — 1)¢), hence X, *(¢)/h(?)
is bounded for all n and ¢ by (say) M, < co.
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Suppose a, = 0 and Y 5., a, < oo. Define X(f) = Y5, a, X,(¢) and X*(r) =
(X« H)(f). Then plainly,
,, XX () - X*() a, X, *(1) w
2.7 _ e ) < <y B )y Mmooy a,.
(2.7) 2k WO = ki) o 2k 0 + M, Y @
Let t+ — oo in (2.7), and then in the resulting series of inequalities let 7 — co.

Using the Lebesgue dominated convergence theorem to pass limits under sum-
mation and integral signs and the fact that 3}, @, < co one obtains

(2.8) X*()/h(t) = (X = H)(t)[h(t) — ¢ \§ X(u) du as t—oco.

The arbitrary nature of ¢ and a, allow (2.8) to hold whenever X is directly
Riemann integrable, so (2.5) implies (2.6) and Lemma 2.4 is true.

The next lemma is a slight generalization of the key renewal theorem. The
proof is obtained by letting H,* and f in the lemma below correspond to U
and Z respectively in the proof on page 350 of Feller (1966) and considering
(f * H,*)(x)/h(x) in the same way as (Z x U)(x) is considered in Feller’s proof.

LEMMA 2.5. If m; is a sequence of positive numbers approaching 1 as j approaches
oo; iIf
H () = Siown (I m)Gecn(t) s n=0,1,20043
if h(t) is a continuous positive nondecreasing function such that for every number q,
M — 1 as t— oo,
h(t)
then, whenever f is any right continuous, nonnegative, directly Riemann integrable
function, with f(tf) = f(0) > 0 for t < 0 and with f satisfying, for some number
c>0,

(2.9) X0 — ([+HOD) . as t— oo
OG) ’

one has
H*(t) — Hy*(t — ¢) - ce
h(t) 35 f(u) du
Proor. The limit statement in (2.9) of the hypothesis of this lemma, the fact
that f is directly Riemann integrable, and the positive nondecreasing nature of
h together imply that X.(r)/h(f) is bounded in ¢ by (say) M, < co. Also, the
right continuity of f allows the choice of a number 4 > 0 sufficiently small so
that f(u) > f(0)/2 = 6 > 0, whenever 0 < u < 4. Hence for 0 < v < 4, and
all t = 0,

(2.10)

as t— oo .

(2’11) & > Xf(t) > :—vf(t - ”) dHo*(”) > Ho*(t) - Ho*(t - v) .

0 — o) — oh(t) - h(t)

Now define for any function E, and any finite interval / = [a, b], E(t + I) =
E(t + b) — E(t + a). The inequalities in (2.11), the nondecreasing nature of
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h, and the fact that any finite interval I can be broken up into subintervals of
length less than or equal to 4, allow H,*(¢t 4 I)/A(¢) to be bounded in ¢ for all
finite intervals I.

The same argument was used in Feller (1966, page 350), to show that his
U(t + I) was bounded in ¢ for finite intervals /, except that there was no
function # in the denominator. Following the proof in Feller (1966, page 350),
the selection theorem ([3], page 263) gives a measure V,, and a sequence #, —
oo, such that for each closed interval 7

(2.12) Hy¥(t, + I)[h(1,) — V() as k—oo.
The limit statement (2.12) and the fact that by hypothesis m, — 1 as n — oo
allow the conclusion that

(2.13) myH*(t, + 1)[h(t,) — Vi(I) as k —oo.

A detailed argument to this effect is in [1].
Now suppose a is a positive number and that A4 is a continuous function
vanishing outside of [0, @]. Then one has for all ¢ and all ¢,,

=, A(t — u)dHy*(u + t,)
(2.14) = my {=. A(t — u) dG(u + t,)
+ 3 (M V=0 A(t — u — v) dH (v + 1,)) dG(u) .

Then dividing both sides of this equation by A(t,) and letting k — co yields the
all important functional equation

(2.15) (1) = §¢ &(t — u)dG(u) where
Ut = (2 A(t — u) dVy(u) .

Equation (2.14), when divided by A4(z,), corresponds to (1.14) in Feller (1966,
page 350). Equation (2.15) is equation (1.15) in Feller (1966, page 350), with
“G” instead of “F”. The rest of the proof of this lemma can now be obtained
by plugging (H,*(t,) — H,*(t — h))/h(t,) and V, (respectively) in for Feller’s
U(t,) — U(t, — h) and V (respectively) on page 351 of Feller (1966), and using
the argument found there. The details of this can be found in [1].

3. Limiting behavior of M,(r) as t — co. Lemmas 2.3, 2.4, and 2.5 constitute
a body of renewal theory which will be sufficient to determine the asymptotic
behavior of M,(t) as t — oo, under certain assumptions on the m,’s. To this
end the following lemma is proven.

LemMA 3.1. Forn=0,1,2, ...
(3.1) M,(1) = 1 — G(t) + my(M,, % G)(0) -

PROOF. M, (t) is the expected number of cells alive at time ¢, starting with
one nth generation cell. But this is the expected number of nth generation cells
alive at time ¢ (i.e., 1 — G(7)), plus the expected number, m,(M,,, « G)(t), of



32 DEAN H. FEARN

cells descending from an average of m, cells in the n 4 1st generation produced
by the nth generation cell dying at or before time .

LemMa 3.2. Forn=20,1,2, ...

(3.2) M (1) = §¢1 — G(t — u) dH,(u) where
(3.3) H(1) = 2. (I1520 m;)Gr-a(?) -

Proor. 1 — G(r) is bounded, {¢{1 — G(t — u) dG(u) exists, so by Lemma 2.3
and Fubini’s theorem, (3.2) is true forn =0, 1,2, .... (Here 1 — G(¢) plays

the same role as Y, (7) does in Lemma 2.3.)
From now on (3.3) will remain in force, as a definition of H,.
THEOREM 3.1. If m, = 1 for all n;
(3.4) 138 mf(ne L(m) — 1 as n— oo,

where L(n) is slowly varying (i.e., L(an)/L(n) — 1 as n— oo for any a > 0) and
0 =0; and p = {7 tdG(f) < oo; then

3.5) My _, 1 as t— oo .
L) p
Proor. First take the Laplace transform of each side of (3.2). Next divide
the resulting equation by

1

(1 — LG(R)L <IT-?5(1—)

)T+ 1).

Letting 2 decrease to zero one obtains

L My(2) R
L(p + 1)a=ep=eL(1/2)

using Theorem 5, page 423 of Feller (1966). This is true, since £°G(4) increases
to one as 1 decreases to zero, (1 — £°G(2))/2 — p as 2 decreases to zero, and L
is slowly varying. Now if it were true that My(r) is a monotone function of ¢,
Theorem 2, page 421 of Feller (1966) could be applied to obtain the desired
result. This monotonicity can be established by forcing each nth generation
cell to split into at least one n 4 Ist generation cell, while splitting into m,
cells on the average. The resulting branching process has the same expected
value, and is nondecreasing in ¢. So (3.5) is true, since the nondecreasing and
right continuous nature of My(f) allows M(¢) to define a measure.

b

THEOREM 3.2. If m > 1, as n— oo, m, = m for all n;
(IT325 m;*)[ne L(n) — 1

as n— oco; m,* = m,/m for all n; p >0 and L(n) is as in the hypotheses of
Theorem 3.1, with L nondecreasing; and o is the (positive) number satisfying
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m\g e« dG(t) = 1, then

(3.6) Myt) . §& (1 — G(u))e==*du
et (1) 2o i (1 — G(u)) du

where 1 = m o te=** dG(f) and G(t) = m {} e~ ** dG(u).

Proor. By Lemma 3.2, M(t) = {1 — G(t — u) dHy(u). Multiply both sides
of this equation by e=**. Then

My(1) = Myt)e=t = §i (1 — G(t — u))e==~* dHy(u) ,

where H(1) = Yo, (1223 m;*)G,(1), and G,(1) = m" {; e~** dG,(u), for n = 0,
1,2, .... To determine the behavior of M(f) we determine the behavior of
B(t) = §i1 — G(t — u) dHyu). Now m,* satisfies the hypotheses of Theorem
3.1, hence B(t)/(#°L(t)) — 1/@* as t — co. Since 1/(*L(t)) — 0 as t — oo, it is
true by Theorem 3.1 that (1 — G(1)) » H,*(¢)/(t°L(t)) approaches 1/4° as t —
oo, where H*(r) = Hy(t) — 1. Now let f(f) = 1 — G(), h(t) = t°L(1), X,(1) =
V01 — G(t — u)dH,*(u), c = 1/g°, and Hy*(t) = H*(t). Then f, h, ¢, H*, X,
satisfy the hypotheses of Lemma 2.5. So, by (2.10)

Ax(t) — A*(t —¢) ¢
rL(1) e §5 (1 — G(u)) du

for each ¢ > 0, as t— co. Now, since (1 — G(¢))e~** is directly Riemann
integrable, it follows from Lemma 2.4 that

(1 — G()e=) « H¥(1) _ 7 (1 — G(u))e~** du
1 L(r) 2§ (1 — G(u)) du

as t —» co. Now (1 — G(t))e~*/(t°L(f)) — 0 as t — 0, so (3.6) follows.

4. The convergence of W(r) = Z,(1)/M,(t) in quadratic mean. In this section
it is assumed that m, and ¢, = E((% ;) — m, are both bounded by a positive
finite number B independent of n. Moreover it is supposed that m = 1; m, = m
for all n; and (([]%2i)(m;/m))/(n°L(n)) — 1 as n — oo, where p > 0 and Lisa
positive nondecreasing function satisfying L(cn)/L(n) — 1 as n — co, whenever
¢ > 0. Suppose a is the number defined in Theorem 3.2 (with a = 0 when
m —= 1).

The behavior of W(f) in quadratic’' mean will be determined by considering
the asymptotic behavior of C,(t, ) = E(Z,(f)Z,(t + t)) as t — oco. First we
give the renewal equation for C,(¢, 7).

LeMMA 4.1. The following renewal equation holds for n =0, 1,2, ... and for
t, 7 =0: ‘

(4.1) Cu(t, 7) = Fy(t, ) + m,, §¢ Cop(t — u, 7) dG(1) where
(42)  F(t,7) = 0, §§ M, ,o(t — WM, (t — u + ) dG(u)
4 my §5 My(f 4 7 — w)G() + 1 — Gt + 7).
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Proor. This lemma is easily established by, as in the proof of Lemma 3.1,
conditioning on what happens when the first cell in the branching process dies.
The following lemma is a consequence of (4.1) and Lemma 2.3.

LemMMA 4.2. Foralln, t, t = 0,
(4.3) Cu(t, 1) = Fo(t, v) + D (IT520 my) §6 Fi(t — u, 7) dGy_,(u)
Proor. Equation (4.3) follows from Lemma 4.1 once it is seen that F,(¢, 7)
(for fixed ) is uniformly bounded in » on finite intervals. Due to the bounded-
ness of ¢, and m, and the fact that G is a probability distribution, it follows
that F,(t, r) is bounded uniformly in n on finite intervals if M,(f) has this

property. But this is true by Lemma 3.2. The asymptotic behavior of Cy(?, )
is given by the following theorem.

THEOREM 4.1. If p > 1 or m > 1, then
Co, [T4zhm,

4.4 Cy(t, T)[A(t, T) = Xivo (YL () =0 as t— oo,
uniformly in t, where

(4.5) h(t, t) = e**oge(t 4 )P L(f)L(t + 7),

(4.6) C = lim,_,, M(?)/(t*L(t)e**) , and
“4.7) m* = ({¢ e dG(r))™" .

Proor. By Lemma 4.2, we may define D(t, 7) by

48 S0 _ p,
(4-8) Ht, ) (. 7)
e, oy [1525 m; §6 Miya(t — )My yi(t — 4 + 7) dGya(H) .
N h(t, )

It follows from Theorem 3.2 that D(¢, ) — 0 uniformly in ¢ as t — co. Now,
consider the series in (4.8).

First suppose m > 1. Using Lemma 3.2, the series in (4.8) is dominated
termwise, for a sufficiently large k, chosen independently of ¢ and z, by the
series

o o t O(t _ u)MO(t —u + T) *\kpo—2a% k
Liro(k + 1o, § SRS, ey do, ()

By Theorem 3.2 and the definition of m*, the convolution in the above series
is bounded in all variables. Moreover recall that m = ({§° e~ dG())~!, m* =
(Ve e~ dG(1))~* so m/m* < 1 and the above series is dominated termwise by a
convergent geometric series independent of ¢+ and r. Hence in case m > 1,
(4.4) follows by applying the Lebesgue dominated convergence theorem to (4.8)
and using Theorem 3.2.

Next suppose p > land m = 1. Now by our assumptions concernlng iz m;,
there are constants B, > 0 and B, < oo such that B,n?L(n) < [[35;m; < B nPL(n)
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forn=1,2,.... From (3.2) and (3.3),
M,(0) = 2, TT520 mi(Gio(t) — Gi_pia(9))
= mp, L= A (G) = Gun)

3—0
l+n-1 m

+ Dan e m_OH” g o =0 mi(G(1)) — Gu(1)
=0

Hence, forn =1,2,3, ...
B, w (14 0\ LU + n) 1
4.9 M,@n< B, (Zz:o( - ) o )(G,(t) — G, (1) + i,

% (G Ztewn () HED) 2 m(Gi) = G

Since L is slowly varying and nondecreasing, there is a finite number B, such
that (t 4 s/s)°L(t + s)/L(s) < B; for 0 < t < s and s > 1. This entails, after
putting the appropriate additional nonnegative term into the second summation
in (4.9),

B,B.

M) < & 3(1 — Gon()) + I’[_"*‘ 5 Lito 52 my(Gi(1) — Gra(1)) -
1

But this means that, for all n > 1 and all t = 0,

(4.10) M,(1) < B, + M),

”L( )

where B, = B,By/B, and B; = B,/B,. This follows using n = 0in (3.2) and (3.3).
Let E(t, 7) denote the series in (4.8). Define E(1, 7), E\(t, t), and E(1, 7) by

E(t, 7) = [Ey(t, t) + E(t, t) + Ey(t, 7)]/A(2, 7)
E(t, ) = B, 2iv-0 04 1525 mj(My 4y % Giyy)(2)
+ B, Z¥oo 0 I1525 m; §6 Miyo(t 4 = — u) G (u)
Ey(t, ) = Lo 0u [1520m; §6 (Mysa(t — ) — B) (M, o(t — 4 + 7) — B,) dGy (1) -

Then, plainly using Theorem 5, page 423 and Theorem 2, page 421 of Feller
(1966), one has E(t, 7)/h(t, ) — 0 uniformly in r as # — co. Upon plugging the
right hand side of (4.10) into the definition of E,(t, 7), realizing that the resulting
quantity defines a measure, one may check that this resulting quantity when
divided by A(t, r) approaches zero uniformly in r as r — co, using the same
theorems from Feller (1966), and Theorem 3.1. Now, by plugging the right
hand side of (4.10) into the definition of E,(t, 7)/A(t, 7), we obtain a series whose
terms are, by Theorem 3.1, dominated by terms of the form B,/k¢L(k) where
B, is a positive finite number independent of t and z. Since p > 1, the Lebesgue
dominated convergence theorem allows the evaluation of lim,_., Ey(¢, 7)/A(t, 7)
termwise, giving (4.4) with m* = m = 1,
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THEOREM 4.2. Under the hypotheses of Theorem 4.1, the quantity W(f) =
Z(t)|M(t) converges in quadratic mean to a random variable W as t approaches

infinity.

Proor. First we notice that

E(W(t + 7) — W) = Cot+ 17,00  2C(t,7) Cy(t, 0)2
Myt + 7)) MMt +7)  (My(1))
and the right hand side of this equality approaches zero uniformly in 7 as ¢
approaches infinity, using Theorem 4.1. Theorem 4.2 now follows by com-
pleteness of L,.

THEOREM 4.3. Under the hypotheses of Theorem 4.1, if W is the random variable
in Theorem 4.2, and if m* is as in Theorem 4.1 then EW =1, Var W =
2ii=o 0u([1525 my) [[m**+Y([T%-, (m;/m))*] — 1, and Var W > 0 if Var{,, > 0 for
some n.

PrOOF. EW(t) — EW = E(W(t) — W). The right hand side of this inequality
approaches zero as ¢ approaches infinity, by Theorem 4.2, since L, con-
vergence implies L, convergence. This means that 1 = EW(f) = EW. Also,
by Minkowski’s inequality,

(Var W(n)} — (EOW(1) — W) < (Var W)} < (Var W)t + (E(W(1) — W)
and so, letting ¢ approach infinity,

Co(t,0) 1
(My(0))*

The latter limit is the desired result for Var W, by Theorem 4.1. Now assume
Var{,, > 0.

EW?) = X0 (90 11520 my)[[m* ([T 5o (m/m))*]
=0 + s [(VII52ms) — (111520 my)]/(m* [m?)e+:

whereo = ¥r,[Var ({y,)) [152h m;]/[m**+ []%, (m,;/m)*]. Note that o is positive
since Var ({y,) > 0. By Jensen’s inequality (or Holder’s inequality), m*/m? =
(17 e~ dG(1))*/{s e~ dG(t) < 1. Thus,

1+ VarW=EW* >0+ X, (Y[IkZim;) — (Tkeomy) =0 + 1,

proving that Var W is positive.

Notice that if m = m* = 1 in the expression for E(W?), then Var (W) is
2ii=o Var (& ,)/(m? [1%=5 m;). This recapitulates the corresponding result in
Theorem 1 of [2] (provided (48) of [2] is corrected to read “Var W =
2= 0 /(m? T1525 m;)” as in the left hand side of (49) in [2]). This expression
after notational changes was also obtained in Theorem 4 of [6]. It is anticipated
that by relating the branching process Z(f) to Z,, the size of the nth generation
of cells in the branching process Z(f), one may show that if 0 < p < 1 and

Var W = lim,_,, Var W(¢) = lim,__,
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m = 1, P[Z(t) # 0] Var W(f) — y > 0 as t — co. (This is the so-called critical
case result.) This approach was successful in Goldstein (1971) and is feasible
since it has been shown in [2] that under certain conditions with generation
dependence, P[Z, + 0] Var (Z,/EZ,) — 2 as n approaches infinity. Weiner’s
(1972) article contains a survey of results and methods for obtaining critical
case results.

Finally, the following corollary to Theorems 4.1 and 4.3 establishes that the
convergence in quadratic mean of W(f) to a random variable W is not vacuous
under the hypotheses of Theorem 4.1.

CoRrOLLARY 4.1. Under the hypotheses of Theorem 4.1, P[Zy(t) — oo as t —
oo] > 0.

Proor. Clearly, since M(f) — oo as t — oo under the hypotheses of Theorem
4.1, P[Zy(t) — oo as t — oo] = P[W > 0]. From Theorem 4.3, EW = 1, in-
suring that P[W > 0] > 0.
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