The Annals of Probability
1976, Vol. 4, No. 3, 505-508

ADMISSIBLE TRANSLATES FOR PROBABILITY
DISTRIBUTIONS

By WiLLiaM N. HupsoN

Bowling Green State University and
University of California, Irvine

A real number ¢ is an admissible translate of a probability ¢ if ¢(4) = 0
implies that pi(4) = (4 — t) = 0. Conditions are given on its set of ad-
missible translates which ensure that ¢ has a density. The theorems also
describe the set where the density is positive and contain as a corollary the
result that if ¢ is not absolutely continuous, then the set of admissible
translates has an empty interior.

1. Introduction. Let ¢ be a probability distribution on (R!, <) where <7 is
the Borel o-field. A real number ¢ is an admissible translate of ¢ if whenever a
Borel set 4 has p-measure zero, then ¢,(4) = ¢(4 — 1) = 0. Let %(¢p) and S(¢)
denote respectively the set of admissible translates and the support of ¢. Also
let & be Lebesgue measure. In this note are two improvements to the follow-
ing theorem of Skorokhod (see [3], pages 562-563).

THEOREM (Skorokhod). Let ¢ be a probability distribution on (R, %) and sup-
pose that (0, o) C (¢). Then

1) ¢k &,
(2) S(p) = [a, o0), —c0 < a < oo,
and

(3) do/d<Z > 0 L-a.e. on S(p).

The first theorem to be proved here has weaker hypotheses but yields the same
conclusion.

THEOREM 1. If ¢ is a probability distribution on (R, Z), if there is a Borel set
E c () n [0, o) of positive Lebesgue measure, and if there exist admissible
translates x,, | 0, then

1) ¢ <&,
(2) S(¢) = [a, ), —00 £ a < oo,
(3) -#(¢) = R or [0, o),
and
4) do/d > 0 ZL-a.e. on S(p).

In the second theorem a hypothesis is removed but now the conclusion is
weakened.

Received July 25, 1975.

AMS 1970 subject classifications. Primary 28A10, 60E05.

Key words and phrases. Admissible translates, probability measure, absolute continuity, posi-
tive density, support of a probability distribution.

505

o] [
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to &’%JI%

The Annals of Probability. RIKOIN

WWWw.jstor.org



506 WILLIAM N. HUDSON

THEOREM 2. If ¢ is a probability distribution on (R}, £Z) and if there is a Borel
set E C () N [0, o) of positive Lebesgue measure, then

(1) ¢ <&
(2) ) is closed and contains an infinite interval [€, co).

Furthermore, either
(3) dpl/d¥ > 0F-a.e. on R*
or there is a real number s such that
(4) dpldZ = 0 Fea.e. on (—oo, 5] and dp|dF > 0 Fea.e. on [s + &, co).

Questions involving admissible translates have been studied recently in con-
nection with infinitely divisible laws. (See, for example, [2].) It has been shown
that if ¢ is absolutely continuous and infinitely divisible, then .%{¢) is one of
three possibilities: [0, oo], (— o0, 0], or R'. As a corollary to the results here,
we see that if ¢ is not absolutely continuous, then the interior of .%{¢) is empty.

To see that the second theorem does indeed represent a refinement of
Skorokhod’s result, consider the following example. Let {r,} denote the rationals
in (0, 1) and set p,(4) = Z[4n (r, — ¢,, I, + ¢,)]/2¢, where ¢, is chosen so
that for all n, 0 <r, —¢, <7, +¢,<1 and ¥ 7e, <3 (say). Define p =
Zin=1 27", + ' Where (dp' [dZ)(x) = e~*=2[2 for x = 2 and (dy'|dF)(x) =0
for x < 2. Clearly ¢ € & and it is easy to see that %(x) = {0} U [2, oo).
But p is not equivalent to & on [0, 1] and so dp/d<# is not positive Fa.e.
on [0, 1].

In order to prove these results some modifications were made in Skorokhod’s
techniques but the basic method is his. The proof of Lemma 1 uses an argu-
ment similar to one which shows that £ — E contains an interval whenever
AE) > 0 (e.g., see [1], page 68).

2. Proofs.

LemMA 1. Suppose that there is a Borel set E C .7(p) N [0, o) of positive
Lebesgue measure. Then .57(¢) contains an infinite interval [§, o).

Proor. First we will show that /() contains a nonempty interval. Indeed,
since <£{E) > 0 there is an open interval I = (x — ¢, x 4 ¢) such that ZAEn 1) >
§AU). Letye (2x — ¢, 2x + ¢); we will show that y e (). Ify — E n I and
E n I were disjoint, then the Lebesgue measure of y — (E n I) U (E n I) would
be strictly greater than 3e. But the union above is contained in (y —I) U I, a
set of Lebesgue measure less than 3e. It follows that £ n 7and y — E n I con-
tain a common point z. But then forsome re E,z =y —tory =z -+ tcE+ E.
Now it is easy to see that .9(y) is a semigroup under addition and hence
y e (p).

The rest is easy; if [a, b] C () N [0, oo), then again by the semigroup
property [ka, kb] C ¥(p) N [0, o] for k =.1,2, 3, .... Eventually these in-
tervals will overlap. []
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LeMMA 2. If the condition of Lemma 1 holds, then ¢ & & and .57(¢) is closed.

PROOF. Write ¢ = o + 8 where & € & and § | <. In the first part of
the proof we show that if se . 9(p), then se . %7(g); that is if f(4) = 0, then
B(A) = B(A — s) = 0 for s € (p). Suppose f(4) = 0and that N € &Z is such
that Z(N) =0 and B(N°) = 0. Since § | &, such a set N exists. Then
B(N°+s) = 0and (4 n (N+s)) = 0. Alsosincea € &, a(4 n (N +s)) = 0.
But se.9(¢) 50 ¢, K ¢ = a + fand (4 N (N + 5)) = 0. Trivially, 8, < ¢,
and therefore ,(4) = (4 n (N + s)) = 0 which shows that 8, € 8 and
s 7(p).

Now define ¢(4) = {; e~"!8,(4) ds; since the function s — (4 — 5) = § I,(s +
1)B(dr) is the integral of a product measurable function, it is measurable. Now

P(A) = § e(§ 5 (s + HB(dt)) ds
= {5 (§ eI (s + 1) ds)p(dr)
< A4 — DBl < LA — 1) = A4).

The above inequality shows that ¢ € . But since 8, € 8 for se E C (¢),
¢ £ B. Since & | B, ¢ =0. Thus

0 = p(RY) = §, e~"p(RY ds,

and hence B(R') = 0 which forces § = 0 and ¢ = a and s0 ¢ € &,

In order to see that .o7{¢) is closed, note that since ¢ « .&, the function
x — ¢(A4 — x) is continuous. Let x, € %(¢) and suppose that x, — x. If p(4) = 0,
then ¢(4 — x) = lim, p(4 — x,) = 0, and so x € ¥(p). []

PrOOF OF THEOREM 1. From Lemma 2 it follows that ¢ « < and by hy-
pothesis, there are admissible translates x, | 0. An application of Theorem 1 of
[2] shows that S(¢) = [a, o) and dp/dZ > 0 F-a.e. on S(p). Since %) is
closed, .%7(¢p) D [0, co). Now if there is a negative admissible translate, then
the semigroup property forces .%(¢) = R []

Proor oF THEOREM 2. From Lemmas 1 and 2, conclusions (1) and (2) follow
immediately. It remains to establish that if f(r) = (dp/d.Z)(f) and if [€, ) C
4(¢), then there is an s (possibly equal to —oo) such that f = 0 ~.a.e. on
(—oo,s]and f > 0 Fa.e. on [s 4 &, c0). Define

P(A4) = (¥ p(A)e~* ds
and

o) =2 ().

Then ¢ < ¢ since [§, o] C (p). Since o([f = 0]) =0, ¢([f = 0]) = 0 and
sog=0a.e.on[f=0]. Thatis, [f=0] c[g =0]a.e. From the definition
of g it follows that

9(H) = (g f(t — s)e~*ds a.e.
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Let ty = sup{t: {¢ f(t — s)e*ds = 0}. Then if t, = co, there exist ¢, /' 4 co
for which (¢ f(z, — s)e=*ds = 0. But this implies that f = 0 a.e. on (—oo,
t, —§) /' R* which contradicts the fact that f is a probability density. If
t, = —oo, then g > 0 a.e. on R' and since [f = 0] C [g = O] a.e., f > O a.e.
on R'. Suppose —co < t, < co. Then f = 0 a.e. on (—oo, t, — §), and since
g > O a.e. on [f,, ), f > 0 a.e. on [f,, o). []

We can identify the point #,in the above proof of Theorem 2. Let a = inf S(¢);
then for t > a + &, (¢ f(t — u)e=* du > 0 while for t < a + &, {7 f(t — u)e " du = 0.
Hence t, = a + &.

COROLLARY 1. If .97(¢) contains a Borel set of positive measure and both posi-
tive and negative numbers, then ¢ is equivalent to & over R'.

Proor. By Lemma 1, .%(¢) contains an infinite interval. From the semi-
group property and the hypothesis that .%{¢) contains both positive and negative
numbers, it follows that %(p) = R'. The corollary is now an easy consequence
of Theorem 1. []

CoROLLARY 2. If ¢ is not absolutely continuous with respect to Lebesgue measure,
then the interior of () is empty.

Proor. The interior is an open set and hence has Lebesgue measure zero iff
it is empty. []
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