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CONVERGENCE AND CONVOLUTIONS OF PROBABILITY
MEASURES ON A TOPOLOGICAL GROUP

By EBERHARD SIEBERT
University of Tiibingen

A new technique is developed for studying the convergence of nets of
probability measures on a topological group. It is applied to results con-
cerned with the interplay between convergence and convolutions of meas-
ures like properties of the convolution mapping, divisibility of measures
and convolution semigroups. Our method gives a unified and simple ap-
proach to these results.

There is a series of results on probability measures on a topological group
whose common background is the interplay between convergence and convo-
lutions of measures. Let us mention, for example, the continuity of the convo-
lution mapping, the closedness of the set of infinitely divisible probability meas-
ures or the continuity of convolution semigroups. But although most of these
results are well known, their proofs are quite complicated and often depend
heavily on topological properties of the underlying group (like local compactness
or metrizability). Furthermore in some cases one has studied those problems
for uniformly tight nets of measures only. For nonmetrizable groups, however,
this is a very restrictive hypothesis.

It is the purpose of this paper to present a unified approach to the results
mentioned above, and to extend their domain of validity (if possible). Moreover
we are able to give simpler and more direct proofs of the theorems. This is done
via the concepts of tight and quasi-tight nets of measures. The important point
of this idea is that a convergent net is always quasi-tight, and conversely a quasi-
tight net always has a convergent subnet.

In the first two sections of this paper we study properties of quasi-tight and
tight nets of probability measures on a topological group. In the following sec-
tions we give several applications of the techniques developed. At first we prove
in Section 3 the continuity and a closure property of the convolution mapping.
Then we derive two results on the divisibility of probability measures. In Section
4 we show that on a locally compact group the correspondence between proba-
bility measures and convolution operators is bicontinuous. Finally Section 5 is
devoted to the problems of continuity and extension of convolution semigroups
of probability measures. The results in the last two sections seem to be new.

Throughout this paper we have restricted ourselves to probability measures
though many results will also hold for positive tight measures.
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0. Preliminaries. All topological spaces occurring in this paper are assumed
to be Hausdorff spaces.

If T is a topological space we denote by ®(T') the system of compact subsets
in T, by 8(T) the o-algebra of Borel subsets in T, by €(T) the space of bounded
continuous functions on 7 with values in R and by (T the subspace of func-
tions vanishing at infinity.

Let X be a completely regular space. A r-continuous measure on X is a o-
additive set function p of B(X) into the set R, of positive real numbers such
that p((.e; Fi) = inf,.; p(F,) for every family (F);c, of closed subsets in X
filtering downwards. A tight measure on X is a r-continuous measure z on X
such that sup {¢(K): K € R(X)} = p(X). For every xe X we denote by e, the
unit mass in x (Dirac measure). By _#,(X) we denote the set of tight measures
on X and by 27(X) the subset of probability measures in _#Z,(X). A net (Ma)ier
in _#,(X) is said to converge (weakly) to u € Z(X) if lim,e, p£(f) = p(f) for
every fe G(X). The corresponding topology on .Z,(X) is called the weak to-
pology. We consider on _#(X) only the weak topology. A subset Hin .Z,(X)
is called uniformly tight if sup {z(1): € H} < +co and if for every ¢ > 0 there
exists a K € R(X) such that 4(CK) < ¢ forevery pe H. If His uniformly tight H
is relatively compact in _#,(X) by Prohorov’s theorem ([4], page 63, Theorem 1).

By G we always denote a topological group, the composition in G being the
multiplication, and e the identity in G. G being a Hausdorff space, it is well
known that G is completely regular. By €,(G) we denote the space of bounded
real functions on G uniformly continuous with respect to the left uniform struc-
ture on G. For p, ve #,(G) the product measure ¢ ® v is in #Z,(G x G). If
m denotes multiplication in G (that is m(x, y) = xy for all x, y € G) the image of
¢ ® v under m is denoted by y x v and called the convolution of pand v. It is
uxve #,(G).

1. Nets of probability measures on topological spaces. Let X be a completely
regular topological space and let (z;);e; be a net of measures in 27(X). We call
(t4:):e; @ compact net if every subnet of (,);., hasa further subset that converges
(in Z(X)).

We say that (1), is a quasi-tight net if for every ¢ > 0 there exists a compact
set K in X such that lim inf,,, #£,(0) > 1 — ¢ for every open set 0 in X contain-
ing K. '

We say that (), is a tight net if for every ¢ > 0 there exists a compact set
K in X such that lim inf,., p#(K) > 1 — .

LemMA 1.1. (i) Each tight net is a quasi-tight net.

(ii) A net in 97(X) is quasi-tight if and only if it is a compact net whose set of
accumulation points is uniformly tight. '

(iii) Each convergent net in 27(X) is a quasi-tight net.

PROOF. (i) is trivial.
(i) We assume that X is embedded in its Stone-Cech compactification X as
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a topological subspace. Let (y,);., be a quasi-tight net in 27(X). By H we
denote the nonvoid set of accumulation points of (x;),.; in the compact space
27(X) that contains 77(X) by assumption. Givene > 0 there exists a K € R(X)
such that liminf,., #,(0) > 1 — ¢ for every set 0 in [K] = {0: 0 open set in X
and 0 D K}. Since the mapping v — y(F) is upper semicontinuous on 7(X)
for every closed set F in X, the inequality x(0) = 1 — ¢ holds for every p e H
and 0 ¢ [K]. Itis K = (N1 0. Hence the r-continuity of g implies p(K) =
1 — e forevery pe H. Therefore H is contained in 27(X) ([4], page 32, Prop-
osition 8) and is uniformly tight. Thus the quasi-tight net (1,),., has a convergent
subnet. That (y,;) even is a compact net follows from the observation that every
subnet of it is also quasi-tight.

Let now (y;);c; be a compact net in 27(X) and assume that its set H of ac-
cumulation points is uniformly tight. Given ¢ > 0 there exists a K € ®(X) such
that #(K) > 1 — ¢ for every pe H. Let 0 be an open set in X containing K.
Since the mapping v — »(0) is lower semicontinuous on 77(X) the set U =
{re Z(X): #(0) > 1 — ¢} is an open neighbourhood of H in %7(X). We claim
that there exists an i, e I such that p, e U for every i > i,. [Assume this would
be wrong. Then there exists a subnet (g,;,);c, such that p,;, e CU for every
jeJ. However ()., being a compact net there would exist an accumulation
point g of (u,);c; such that e GU. But this is a contradiction to z e H.] There-
fore it is lim inf,., ,(0) = 1 — e. Hence (#,),.; is a quasi-tight net.

Finally (iii) is a simple consequence of (ii). []

REMARKS. 1. The concept of tight nets of measures has been introduced by
Topsge ([10], page 42) who also proved that tight nets are compact.

Quasi-tight nets of measures have been introduced by §tépan ([9], page 133;
he called them ‘“nets satisfying condition (j)”’). He proved in a different manner
that quasi-tight nets are compact.

2. A net (p,);e; in ZZ(X) is tight if and only if supg.gy, liminf,., p(K) =
1. On the other side (p,),., possesses a tight subnet if and only if
SUPg () lim sup,.; #,(K) = 1. Similar relations hold for quasi-tight nets.

3. There exist convergent nets of tight probability measures which are not
tight nets.

[There exists a sequence of tight probability measures which converges but
which is not uniformly tight ([1], page 137). It is immediate that this sequence
cannot be a tight net.]

LemMA 1.2. The following assertions are equivalent:

(1) Each quasi-tight net in 27°(X) is a tight net.
(ii) X is locally compact.

Proor. Since “(ii) = (i)” is trivial, we only have to show “(i) = (ii).” Sup-
pose that there exists a x € X such that the neighbourhood system %(x) of x con-
tains no relatively compact set. Thus for each U e B(x) and for each K¢ R(X)
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there is an element x; , € U\K. Obviously (X, x)yeuc, xeacx) iS @ Net in X con-
verging to x. The corresponding net of Dirac measures converges to ¢,; it is
therefore quasi-tight (Lemma 1) and hence tight by assumption. Thus there exist
Uy, B(x)and C, K, € f(X) such thate, (C) > 4 andso x, e C forall Ue B(X)
Uc U,and for all Ke &(X), K D K,. Butif K, = K, U Citis Xyox, € UKy, @
contradiction to xy € C. [J

LemMA 1.3. For a nonvoid subset H in 27(X) the following assertions are
equivalent:.

(i) H is uniformly tight.
(ii) Every net in H has a tight subnet.

Proor. We only have to show “(ii) = (i).” Suppose that H is not uni-
formly tight. Then there exists an ¢ > 0 such that for every Ce K(X) there
is a p,e H such that p(C) <1 — e (¢o)gesxy IS @ net in H such that
SUPkeqx) liM SUPyepix) to(K) <1 — e. In view of Remark 2 it cannot have a
tight subnet. [J

CoROLLARY (Prohorov). Let X be locally compact. Then each compact subset
H in 27(X) is uniformly tight.

Proor. H being compact each net in H has a convergent subnet which is tight
by Lemma 1.1 and Lemma 1.2. The assertion follows by Lemma 1.3. []

2. Nets of probability measures on topological groups. Let G be a topological
group. Let (¢;);er, (a;)ie; and (B,),c; be three nets in Z7(G) (possessing the
same index set /) such that p, = a, = 8, for every iel. Let us see how some
well-known results on uniformly tight nets of measures can be recast to results
on quasi-tight nets and tight nets.

Lemma 2.1. If (a;) and (B;) are (quasi-) tight nets then (a; @ B;) and () are
(quasi-) tight nets (in 27(G % G) resp. 27(G)).

[For @, e 27(G)and A4, B e B(G) we always have a ® B(A4 x B) = a(A)B(B)
and a « 8(AB) = a(A)B(B). Moreover for K, K’ € R(G) and every open set 0 in
G x G (resp. in G) such that K x K’ 0 (resp. KK’ C 0) there always exist open
sets U, U’ in G such that K c U, K’ c U’ and U x U’ C 0 (resp. UU’ C 0).]

LemMmA 2.2, If (@) and () are (quasi-) tight nets then (B,) is a (quasi-) tight net.

[Let 4, BeB(G) such that liminf,., p;(4) > 1 — ¢, liminf, ., a,(B) > 1 — ¢
for some ¢ > 0. It follows: .
ti(A) = § B(x"A)ay(dx) = (5 Bu(x"'A)a(dx) + gz Bi(x~A)a,(dx)
S B(B7'A) + (1 — ay(B)) '
and therefore lim inf,.; 8,(B*4) = 1 — 2e.

If (a;) and (1,) are tight nets then we can choose for 4 and B compact sets.
B-'A then being compact (8,) is also a tight net.
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If (a;) and (p,) are quasi-tight nets, then we can choose C, K ¢ (G) and for
Aand B arbitrary open sets such that C C 4, K < B. If 0 is an open set contain-
ing K~'C then A and B moreover can be chosen in such a way that B-'4 c 0.
Hence (8;) is a quasi-tight net.]

LemMaA 2.3. (i) If (1;) is a tight net then there exist x,e G (for every iel),
such that (a, x ¢,)) and (¢, -1 * @;) are tight nets.

(i) If in addition there exist a K € R(G), an €€ 10, 1[ and an i,e I such that
a,(K) = ¢ for every i > iy, then (a;) and (B,) themselves are tight net.

Proor. (i) (Compare with [7], page 59, Theorem 2.2.) Let (c,),5; be a se-
quence of positive real numbers such that }7,., ¢, < +oco. Then there exist
K, e R(G) and i(n) eI such that x,(CK,) < e, for every i > i(n). Let I, =
{tel:i>i(n)}, R, = I\, (for every neN) and I, = N, [,. W.lo.g. we
canassume i(n) < i(n + l)and [, = I. ThenitisI,,, c I,and J,,, R, = I\L..

Let (9,).21 be a sequence of positive real numbers descending to zero and
such that 37,.,¢,0,7 < 4. Let 4, = €K, E,, = {xeG: a(d,x*) < d,}, F, =
Nn-1E:n for ie R, and F, = N, E,, for iel,. Itis F,++@ for every iel
([7], page 60).

For each i e I let x, be any element of F,. Then the net (a; * ¢;,) is obviously
tight. Finally (e, -1 * 8;) is a tight net by Lemma 2.2.

(ii) Since (@, * ¢, is a tight net there exist a C € (G) and an i, e / such that
ay(Cx;™) = a;x &, (C) > 1 —eforeveryi > i,. W.l.o.g. we may assume i, > i,
By assumption we have a,(K) = ¢ for every i > i;. Thus Cx,”' n K =+ @ and
therefore x, e K-'C for every i > i;. By Lemma 2.2 (a,) is a tight net and so is
(B9 O

In a special case Lemma 2.3 can be strengthened. Following Boge a topolo-
gical group G is called root compact if for every Ce £(G) and for every ne N
there exists a C, € f(G) such that the following property holds: Every sequence
X v+ vy X, € G, x, = esuch that Cx,Cx; n Cx,y; #+ @ foralli,je{l, ..., n},
[ +j < nis contained in C, ([8], page 231).

LEMMA 2.4. Let G be a root compact group and (,),., a tight net in ZG). If
for every i eI there exists an a, € 97(G) such that a* = p, (for some fixed ne N)
then (@;);c; itself is a tight net.

PROOF. Let ¢ 10, §[. There exist i, ¢ 7 and C e R(G) such that x,(C) > 1 — ¢
for all i >1i,. Since af*a"? =y, for p=1,...,n there exist x,,€G
(ll i >4 and p=1,...,n) such that a?(Cx,,) =1 —e. Then we have
P (CX;p4q) =21 — e > % and a,**9(Cx, ,Cx, ) = a?(Cx;,,)a,(Cx, ) = (1 —
€)' > 1 — 2¢ > § and therefore Cx, ,Cx, , N Cx, ,,, + @ for every i > i, and
forp,qe{l, ..., n}suchthat p + ¢ < n. W.lo.g. x,, = e for everyi > i. By
definition of root compactness there exists a C, € &(G) such that x, ,e C, for
every i > i and forp =1, ..., n. Thusitis a,(CC,) =1 — ¢ for every i > i,.
This completes the proof of the lemma. [
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3. Applications to the convolution mapping and to divisibility. We are now
going to show how the concepts of quasi-tight nets and tight nets do work.

PROPOSITION 3.1. Let G be a topological group. Then the convolution mapping ¢
from 27(G) x Z(G) into 77(G) (defined by ¢(u, v) = p % v) is continuous.

ProoOF. Let (,);; and (v;);c; be nets in %7(G) converging to ¢ e 27(G) and
ve 77(G) resp. By Lemma 1.1 and Lemma 2.1 then (¢; ® v,);, is a quasi-tight
net in 277G x G). Let Ae ZZ(G x G) be an accumulation point of (x; ® v,),.;
and let (¢ ;) ® vy ;)5 ; be a subnet converging to 2 (Lemma 1.1). If for f, g € €(G)
the function f x g is defined by (f x g)(x, y) = f(x)9(»), it follows:

Afx g) =lim;e, gy, vy (f % 9) = lim; ey 55, (f)viiiH(9)
= w9 = @S ) -

Hence by definition of product measure we must have 2 = ¢ ® v. This shows
us lim,.; ¢, ® v; = ¢ @ v. Since the mapping a ® 8 — a x § of ZZ7(G x G) into
2(G) is continuous (by definition of convolution) we finally have lim,., ¢, x v, =
gxv. (]

REeMARKS. 1. This result has already been proved by Csiszar ([5], page 32;
even for r-continuous measures) using a different method.

2. This proposition holds true (with the same proof) if G is a completely
regular topological semigroup.

PROPOSITION 3.2. Let G be a locally compact or a metrizable group. For some
K € &(G) and some ¢ € 10, 1] we define A = {re Z(G): w(K) = ¢}. Then the con-
volution mapping ¢ transforms closed sets in A x A into closed sets in 27(G).

ProOF. Let F be a closed set in 4 x A4 and ((y;, v;));c; @ net in F such that
(#; * v;);; converges to some 1€ 2Z(G). We have to show 1 € ¢(F).

W.l.0.g. we may assume that (g, * v,),., is a tight net.

[If G is locally compact (g, * v,),., itself is a tight net (Lemma 1.1 and Lemma
1.2). If G is metrizable so is Z7(G) ([2], page 238). Hence there exists a se-
quence in {g, xv,: i €I} converging to 2. G being metrizable this sequence is
uniformly tight ([2], page 241). Therefore we can substitute (z, * v,),., by this
sequence. |

By Lemma 2.3 (z,) and (v,) are themselves tight nets. Let p, ve 277(G) be
accumulation points of (z,) resp. (v;). Since 4 x A and therefore F is closed in
7 (G) x 27(G) we have (¢, v) e F, and thus 2 = ¢ x v = ¢(p, v) by Proposition
3.1. [

COROLLARY. Let G be a locally compact or metrizable group and suppose that G

is g-compact. Then the convolution mapping ¢ transforms closed sets in- 77 (G) x
#(G) into F,-sets in 27(G).

Proor. Let (K,),»; be an increasing sequence in §(G) such that G = {5, K.
For each ne N we define 4, = {pe Z(G): n(K,) = 4}. Then 4, is closed
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in 71(G), A, C A,y for all ne N and Z(G) x Z(G) = Upnzs 4, X A4,. If
now Fis a closed set in 27(G) x 7(G) we have ¢(F) = ¢(U,1 (F N (4, X
4,))) = Uzt ¢(F 0 (4, x A,)). But by Proposition 3.2 each ¢(F n (4, x 4,))
is closed in 27(G). []

ReMARK. This corollary has been proved in [6] for metrizable s-compact
groups.

PROPOSITION 3.3. Let G be a topological group and p1, v e 27(G). Then the fol-
lowing assertions are equivalent:

(1) There exists a A€ 27(G) such that v = p * A.
(ii) v(f) = sup,eq pt * &,(f) for every f e G(G).

PROOF. “(i) — (ii)” Ttis v(f)=p % A(f) =} fx)p(d)A(dy)=S§ 1 &, (/)A(dy)
Sup,cq  * ¢,(f) for every fe €(G).

“il)= ()" Let C={p*xa:a= 3", aje,;,a; >0, 3%.,a; = 1, x; €G for
j=1,---,n;ne N} The closure D of C in 277G) is the closed convex hull of
{#xe,: yeG}. According to the bipolar theorem ([3], page 52, Proposition 3)
it follows from (ii) that ve D. Hence there exists a net (¢ x a;);; in C such
that v = lim;.; ¢# « ;. By Lemma 1.1 (¢ % @;),, is a quasi-tight net. Therefore
(@:)ier is @ quasi-tight net (Lemma 2.2). Hence by Lemma 1.1 again there exists
a subnet (,;));., converging to some A€ 27(G). Finally by Proposition 3.1 we
getv = lim;e, prx @y, = p x limy,, Ay = px 4[]

REMARK. This proposition has been proved in [6] for metrizable and for local-
ly compact groups. But the proofs for these two cases are completely different.

PROPOSITION 3.4. Let G be a root compact topological group and let G be locally
compact or metrizable. Then the set W(G) of infinitely divisible measures in Z'(G)
is closed.

ProoF. Let (g,);; be a net in 1I(G) converging to some y ¢ 7(G). W.lo.g.
we may assume that (u,) is a tight net (see the proof of Proposition 3.2). For
every iellet a; & 77(G) be a root of g, of order n (n e N). By Lemma 2.4 («;)
is a tight net and has therefore a subnet (a;)), ., converging to some a € 27(G)
(Lemma 1.1). By Proposition 3.1 we conclude a™= p. Consequently ¢ € I(G). [

REMARK. This proposition has been proved by Hazod and Siebert ([8], Section
3), but the proof given above is considerably more easy and direct.

4. Applications to convolution operators. Let X bea completely regular space,
T a topological space and fe (T x X). For each p¢ Z(X) the function F,,
defined by F,(r) = § f(t, x)u(dx) for all te T, is continuous and bounded I41,
page 66, corollary). The space §(T) equipped with the topology of compact
convergence will be denoted by € (7).

ProOPOSITION 4.1. Let (1;),., be a tight net in P (X) that converges to some
¢ € Z(X). Then the net (F w)ier converges to F, in the topology of G (T).
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ProoF. Obviously it is lim,., F,(f) = F,(?) forevery te T. Lete > 0. There
exist a C € R(X) and an i, € I such that 1,(C) > 1 — ¢ for every i > i,and x(C) >
1 —e. Let Ke &T)and te K. By compactness of C there exists a neighbour-
hood U of ¢ (in K) such that |f(z, x) — f(#, x)| < ¢ for every #' € U and for all
xeC.

Since K is compact there exist ¢, - - -, #,, € K and for each ¢; a neighbourhood
U; (in K) such that K =U, U ... U U, and |f(t, x) — f(¢;, x)| < ¢ for every
teU;andforallxe C(j = 1, ., m). Furthermore there exists an i, € 1, i, > i,
such that |F, (1) — F,(t;)] < eforj=1, ..., mand for every i > i. Letsek
and i > i,. Then thereisaje{l, - ., m} such that ¢ U;, and we obtain:

1Fu(t) — F (O] = |Fu (1) — F (0| + |F,(8) — F(8)] + [F(t;) — F (0] -
But for v = g, or v = ¢ we have:

IF.(2) — F (1)) < § (5, x) — f(t;, X)|v(dx)
= (¢ [f(t; x) — f(t;» X)(@X) + Sx0 1f(E; X) — f(t;5 x)|v(dx)
e+ 2flle.
From these estimations the assertion follows easily. []

We give an application of this result. Let G be a topological group. For
each ¢ e 27(G) we define

T, f(x) = § fo)u(dy)  (all feG(G), all x€G).

Then we have T, f € €(G) ([4], page 66, corollary), and T, is a bounded linear
operator on €(G), ||T,|| = ||¢|]| = 1. T, is called the convolution operator to p.
For all #,ve #(G)itis T,,, = T,T,, and €,(G) as well as €°(G) are invariant
subspaces of €(G) with respect to T,. We have the following result:
PropPOSITION 4.2. Let G be a locally compact group and (1,);.; a net in 27(G).

Then the following assertions are equivalent:

(i) The net (p;);c; converges weakly to a measure € 77(G).
(ii) The net (T,);c, converges in the strong operator topology on €%(G) to an op-
erator T on @%G) such that ||T|| = 1.

PROOF. (i) = (ii)” Let T be the restriction of 7', to €(G). If ¢’ = G U {0}
is the one point compactification of G, we define wx = w for every xe G. Then
the mapping (x, y) — xy from G’ x G into G’ is continuous. We extend each
g € 8%(G) to a continuous function g’ on G’ by g’(w) = 0. Consequently the
mapping (1, x) — f(t, x) = ¢'(tx) from G’ x G into IR is continuous and bounded.

Since (#;);; is a tight net (Lemma 1.1 and Lemma 1.2), by Proposition 4.1
the net (F, )., converges to F, in §(G’) (equipped with the topology of uniform
convergence). From F, () = (T, 9)(t) forallte G and F, (o) = { f(®, x)p,(dx) =
§ 9'(w)p(dx) = O the assertion follows.

“(if) = (i) T is a positive bounded linear operator on €°(G) such that ||T||=1.
Since every convolution operator commutates with the left translation on €°(G)
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the same is true for T by assumption. Hence there is a p € 277(G) such that T
is the restriction of T, to €°(G). It is lim., p(f) = lim;, T, fle) = T, fle) =
u(f) for every fe €(G). Now the assertion follows from [4], page 61, Proposi-
tion 9. []

5. Applications to convolution semigroups. In [8], Section 1, we have an-
nounced two results on convolution semigroups which can now be derived from
our results above. For this purpose let D be a dense subsemigroup of the addi-
tive semigroup R, * (= positive real numbers) with the property “r, se D and
r< s=s—reD.” By D, we denote the extended semigroup D U {0}.

Let G be a topological group and f a homomorphism from D into 27(G). Let
t, = f(r) for all re D. Then S = (g,),.p is called a convolution semigroup in
#(G). S issaid to be 0-continuous if the limit ¢y = lim, |, ., ¢, in 277(G) exists.
In this case g, will be an idempotent. S is said to be continuous if the mapping
f is continuous (here D is equipped with the relative topology with respect to R).

At first we examine the connection between these two concepts of continuity.

PROPOSITION 5.1. Let 8" ='(¢,),ep, be a O-contindous convolution semigroup and
suppose that p is the identity in S (that means g, * pt, x pty = p, for all r € D). Then
the semigroup S is continuous.

Proor. For each r € D, we denote by S, the restriction of the convolution op-
erator T, to €,(G). Inview of p,(f) = S, f(e) it suffices to show lim,_, |IS, f —
S,,fIl = 0 for all f€ €,(G) and r, r, € D, ([10], page 40, Theorem 8.1). Accord-
ing to ||S,|| = ||¢.|| = 1 and S, S, = S,S, = S, (all r € D;) we have for all r € D,,
he D and fe @, (G):

Srsnf = Se flIl = 15280 f = S So fIl < [1S8f — So f
and

1S, f — S, fll = [|Sr-pSof — Se1Sifll = ISof — Su fll -
Hence it suffices to show lim, 4 ||S,f — S, f|| = 0.

#, being an idempotent in 27(G) there exists a compact subgroup H in G
such that g, is the normed Haar measure on H ([11], page 228, corollary). Ob-
viously S, is a projector on €,(G).

In the first part let be given fe €, (G) such that S;f = f and ¢ > 0. There
exists a neighbourhood U of the identity in G such that |f(x) — f(xy)| < ¢ for
all xe G and forall y e U. Inview of f(xz) = f(x) forall z e H, w.l.o.g. we may
assume U = UH. Then there exists a r,e D such that . (0U) < ¢ for all re D,
r < r, (Sis O-continuous). For all xe G and r e D, r < r, the following estima-
tion holds:

1f(x) = S, f0)] < §1x) — f(xp)]en(dy)
= §u [f(x) = fOn)leendy) + Segu 1/(x) — f(xp)|ee(dy)
< e (U) + 2| flle(CU) < e(1 + 2|I 1) -
This shows lim, , ||/ — S, f|| = 0.
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Now let f'e €,(G) be arbitrary. Then it is S,S,f = S,f and S, S,f = S, f, and
so we have in this case lim, |, ||S,f — S, f]| = 0. []

ProrosITION 5.2. Let G be a topological group and S = (¢,),.p @ convolution
semigroup in 77°(G). Then S is O-continuous if and only if S is continuous, and in
this case py = lim, | .., ¢, is the identity in S.

Proor. 1. Let S be O-continuous and p, = lim, |, e, #,. If (7;);; is a netin
D such that lim,., r, = 0 we have lim,., r, = to- Therefore (p, );c; is a quasi-
tight net (Lemma 1.1). Let re D and (w.l.o.g.) r, < rforalliel. Fromy, =
e, * tt,p, for all i€ I it follows that (g,_, );., is @ quasi-tight net (Lemma 2.2).
Hence there exists a subnet (#r-+,);es converging to some pe 27(G) (Lemma
1.1). From p, = Br; % oy, and limy; e, = fo We conclude p, = py* p =
¢ * g This shows that g, « p, x g = p, (all r € D). Therefore g, is the identity
in §. By Proposition 1 the semigroup S is continuous.

2. Now we assume that S is continuous. If (r,);., is a net in D such that
lim,.,r; = Oand if r € D we have g,,, = p, * g, and lim;¢; pt,,, = p,. There-
fore (u,,):c; is a quasi-tight net and possesses a subnet converging to some y e
7 (G) (Lemma 2.2 and Lemma 1.1). W.l.o.g. we may assume lim,,, Yoy = f.
If (5;); is another net in D converging to 0 such that lim,, te; = ' € Z(G)
exists we obtain by the continuity of convolution and the continuity of S:

po=lim;e, p, = lim,.; (lim;, /’l'ri+3j)
= limie, (/,lri * limjeJ ‘usj) = limie, ﬂ"i * /1' = pux* /1' .
Similarly it follows that g’ = p«p' and therefore p’ = p. Hence p, =
lim, ,,..p ¢, exists. Consequently S is 0-continuous. []

Finally we prove a result on the extension of continuous convolution semi-
groups.

PROPOSITION 5.3. Let G be a topological group and S = (p,),cp, @ continuous
convolution semigroup in 27°(G). In each of the following situations there exists a
(unique) continuous convolution semigroup (v),c, in 27(G) such that v, = p, for
every r € D,.

(i) There exists a rye D such that {¢,: re D n 10, r,]} is relatively compact in
7 (G).
(ii) There existar,e D, an c€ 0, 1] and a K € R(G) such that p(K) = ¢ for
every re D n [0, r,].
(iii) G is locally compact.

Proor. (i) W.l.o.g. r,=1. Let I=[0,1]. We choose tel. Let (r,)c4
and (s,),c4 be two nets in B = D, n I converging to ¢, such that g = lim g,
and v = lim g, existin 27(G). Such nets exist-by assumption. W.l.o.g. r, < s,
for every a € 4. Since S is a continuous convolution semigroup with identity
#, (Proposition 5.2) and since lim (s, — r,) = 0 it follows that v = lim g, =
lim p, _, *p,, = p. Thereforey, = lim,_, . 5 ¢, exists. Obviously v, v, = v,,,
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for s, te I'such that s + te 1. Thus {v,: t eI} can be extended to a convolution
semigroup (v,);cg, in 27(G) such that v, =y, for every r € D,. But the semigroup
(¥¢)¢er, Is also continuous. [Given fe €(G) and ¢ > O there exists a r, € D such
that |u(f) — #.(f)| < ¢ for every re D, n [0, r,] (since S is continuous). Now
by definition of v, we immediately get |v,(f) — v,(f)| < ¢ for every t¢ [0, r,].]
The uniqueness of (v;),g, is clear.

(i) W.l.o.g. r,= 1. Since p, x g,_, = p, for every re [0, 1] n D, we deduce
from the proof of Lemma 2.3 that {z,: i€[0, 1] n D} is uniformly tight and
therefore relatively compact (according to Prohorov’s theorem). Now apply (i).

(iii) Given ¢ € ]0, 1] there exists a fe €(G), 0 < f < 1, having a compact
support K such that p(f) > e. Since the semigroup S is continuous it is
lim, o, cp . (f) = po(f). Therefore there exists a r,e D such that p.(K) =
#.(f) > ¢ for every re D, n [0, r,]. Now apply (ii). [J
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