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UNIFORM TAUBERIAN THEOREMS AND THEIR
APPLICATIONS TO RENEWAL THEORY
AND FIRST PASSAGE PROBLEMS!

By Tze LEUNG LAl

Columbia University

In this paper, we prove an analogue of the classical renewal theorem for
the case where there is no drift. Our proof depends on a uniform version
of Spitzer’s well-known theorem on ladder epochs and ladder variables,
and we cbtain this uniform result by using uniform Tauberian theorems.
Some further applications of these uniform Tauberian theorems to other
problems in renewal theory and first passage times are also given.

1. Introduction and summary. Let X, X,, -.- be i.i.d. random variables,

S,=X,+ .-+ 4+ X,. Fora> 0, define
(1.1) T(a) = inf{n = 1: S, > a}.

The renewal theorem asserts that if EX; = ¢ > 0, then

1.2) ET(a) ~ a/p as a— oo.

As to the case 2 = 0, it follows from a result of Spitzer [10] thatif 0 < EX? < oo,

then

(1.3) ET7(a) < o if r<
= oo if r=

b

D= D=

In this case, letting EX,* = ¢?, it is well known (cf. [11]) that as @ — oo,
(1.4 0'T(a)/a* -, = inf {t: W(t) > 1},

where W(t), t = 0, is the standard Wiener process and “—_” denotes conver-
gence in distribution. As an analogue of the classical renewal theorem (1.2) for
the case > 0, it is natural to ask if the following statement holds in the present
case of zero mean:

1.5 lim,_., E(o*T(a)/a®)" = Ec for 0 <7< 4.
) (a) p

The answer to this question turns out to be affirmative as will be shown in Sec-
tion 4 below, where our method of proof in fact gives a stronger version of (1.5).
In this connection, we shall also obtain a slight refinement of (1.4).

Let us now consider the case © = 0 and ¢ = 1. Define the ladder epoch

(1.6) N=inf{n=1:S, > 0}.

Received July 3, 1975.

1 Research supported by ONR Grant N00014-67-0108-0018.

AMS 1970 subiect classifications. Primary 60F99, 60KO05.

Key words and phrases. Renewal theory, first passage problems, ladder epoch, ladder variable,
uniform Tauberian theorems, uniform strong law of large numbers, Paley-type inequalities.

628

[ (€
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q% /2

i

)

The Annals of Probability. RIKOIN

WWWw.jstor.org



UNIFORM TAUBERIAN THEOREMS 629

Spitzer [10] has proved that as n — oo,
1.7) P[N > n] ~ ¢(nm)~}

where ¢ = exp{X7 k~(P[S, < 0] — })}. He has also shown that the series de-
fining ¢ is indeed convergent, s0 0 < ¢ < oo. Our proof of (1.5) depends on the
following uniform version of Spitzer’s result:

THEOREM 1. Let F be a family of distribution functions with mean 0, variance
1 and satisfying the following uniform square integrability condition:

(1.8) : SUPre o $jai5e X dF(x) — 0 as a— oo.

Let X, X,, - -+ be i.i.d. with a common distribution function Fe &, S, =
X, + -+ + X,, and let N be the ladder epoch as defined by (1.6). Let ¢z =
exp{¢ k' (Ps[S, < 0] — %)}, where P, denotes the probability measure under
which X, has distribution function F. Then inf,. . ¢y > 0, supz. . ¢, < oo and

(1.9) SUPge .- |(nT)EPL[N > n] — ¢yl — 0 as n— oo,
Furthermore, the following uniform integrability condition is satisfied:
(1.10) SUPpe o Sisy>a1 Sy dPr — 0 as a— oo .

We shall prove Theorem 1 in Section 3 below. Our proof illustrates an ap-
plication of certain uniform versions of Tauberian theorems which will be listed
in Section 2 for reference. We shall also give a number of other applications
of uniform Tauberian theorems to renewal theory, one of which is the following
uniform version of (1.2):

THEOREM 2. Let F be a family of distribution functions such that the following
two conditions are satisfied:

(1.11a) infp. - §*, xdF(x) > 0;
(1.11b) SUpPpe - Vo XxdF(x) — 0 as a->oo.
Let X, X, X,, -+ be i.i.d. random variables with a common distribution function

Fe & andlet pp = E, X, where E, denotes the expectation corresponding to the
probability distribution under which X has distribution function F. Set S, =
X, + -+ + X, and define T(a) by (1.1). Then as a — oo,

(1.12) E(T(a)la) — pp~! uniformly for Fe & .

Furthermore, defining the ladder epoch N by (1.6), we have supy. , ExN < oo, and
the uniform integrability condition (1.10) is satisfied by the ladder variable S,.

The proof of Theorem 2 will be given in Section 6 where we shall also give
other uniform versions of the elementary renewal theorem. Since there is a
close connection between the strong law of large numbers and (1.2), it is inter-
esting to compare Theorem 2 with Chung’s uniform version of the strong law
of large numbers (cf. [2]) which states that if s a family of distribution
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functions satisfying

(1.13) SUPye 5 $pisa [X] dF(x) = O as a— oo,
then given any ¢ > 0,

(1.14) SUPpe s PrlSUPsan [/S; — pel Z €] >0 as m— oo,

We note that while Chung’s result requires the uniform integrability condition
(1.13), our result only requires the uniform integrability of X* plus the obvious
condition infy. . ¢, > 0. In [6], Lorden has proved that if x, > 0, then for
alla =0,

(1.15) Ep(Spw — @) < Ep(X*) /1y -
Therefore if we replace (1.11b) by the stronger assumption
(1.11v%) SUPpe .~ $¢ X*dF(x) < oo,

then (1.12) follows easily from (1.15) and Wald’s lemma. Uniform Tauberian
theorems, however, enable us to obtain the uniform convergence in (1.12) with-
out resort to second moment conditions.

A motivation for studying uniform renewal theorems of the type like Theorem
2 and Theorem 8 below lies in the investigation of robust properties of certain
sequential procedures in statistics. In evaluating a sequential statistical proce-
dure, we would like to investigate its expected sample size not only for the dis-
tribution assumed by the theoretical model, but also for small deviations from
the idealized theoretical model. Unfortunately the exact expression of the ex-
pected sample size is in most cases unwieldy and we often have to resort to
asymptotic approximations. To judge the performance of the procedure from
the asymptotic estimates, it is comforting to know that these asymptotic esti-
mates at least converge at a uniform rate over the family of all distribution
functions that deviate slightly from the idealized model. Of course, for practical
applications, it is desirable to have also an estimate of this uniform rate and we
should substantiate our asymptotic results with actual Monte Carlo studies. Our
investigations in robust sequential procedures will be reported in another paper,
and it is some of these investigations that first led us to the uniform renewal
theorems discussed in this paper.

2. Uniform Tauberian theorems. Throughout this section, we shall let
I(# @) denote an index set. It will be convenient to describe a measure ¢ on
[0, o) by its (possibly improper) distribution function which we shall also de-
note by x. In the subsequent sections, we shall make use of some of the follow-
ing uniform Tauberian theorems.

THEOREM 3. Let {y,, i € I} be a family of measures on [0, co) such that
@1 fis) = §5 e duy(t) |
is finite for all s > 0 and i€ I. If there exists a = O such that as s || 0,
(2.2) s2fi(s) — A, uniformly for iel,
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and sup; A; < oo, then as t — oo,
(2.3) t=u(f) = A,JT(a + 1) uniformly for iel.

THEOREM 4. Let {g;, i € I} be a family of real-valued functions on (0, co) such
that for each icl, g, has a second derivative on (0, co). Suppose for some real
number a and some positive number M, E

(i) x~2g,(x) — A; uniformly for i € I as x — oo and sup, |4, < co;
(ii) for each i€ I, either sup,.,; x*=*g,"(x) < M or
inf,., x*=%g,/"(x) > — M.
Then as x — oo,
2.4) xt=eg/(x) — a A, uniformly for iel.
THEOREM 5. Let a = 0 and let {h,, i € I} be a family of continuously differenti-
able functions on (9, co) satisfying the following conditions:
(i) x=* ¢ hy(t) dt — A, uniformly for ie I as x — oo and sup, |4;| < co;
(ii) A, is monotone for each i e I.
Then as x — oo,
2.5) x=eh(x) > ad, uniformly for iel.

The same conclusion (2.5) still holds if we replace condition (ii) by:
(ii)’ For each ic I, either (xh(x)) = 0 for all x > 6 or (xh(x)) =< 0 for all
x < 0. ,

THEOREM 6. For eachicl, let (q9,%),, be a sequence of nonnegative numbers
such that

(2.6) Q1) = Zino 4.0
converges for 0 < t < 1. Suppose for some a = 0, as t 1 1,
2.7 (1 — 0)2Q,(r) — A4, uniformly for iel,

and sup; A; < co. Then as n — oo,
(2.8) n=(qy? + - + q,?) > 4,/T(a + 1) uniformly for iel.

Furthermore, if for each i € I, the sequence (q,'*) is monotone and a > 0, then as

n— oo,
(2.9) n'=%q,"” — A4,/T'(«) uniformly for iel.

When [ is a singleton, these theorems are well known and their proofs (see
[12], pages 189-195) can be easily modified to prove the above uniform versions
when 7 is an arbitrary index set. We remark that Theorem 6 corresponds to
the discrete case of Theorems 3 and 5. In fact, letting y, in Theorem 3 be the
atomic measure putting mass ¢,'” at the point n, n = 0, 1, 2, - . -, the conclusion
(2.8) is an immediate consequence of Theorem 3. In the subsequent sections,
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in addition to the above uniform Tauberian theorems, we shall also make use
of the following uniform Abelian theorem. Its proof is straightforward (see [12],
pages 181-182 for the case where [/ is a singleton).

THEOREM 7. (i) Let {p;, i€ I} be a family of real-valued functions on [0, o)
such that for each T > 0, sup, supy,<r |¢(t)] < oo and p, is of bounded variation
on [0, T] for all iel. Suppose for some a =0, (2.3) is satisfied as t — oo and
sup, |4,| < co. Then the improper Riemann—Stieltjes integral f(s) defined by (2.1)
converges for all s > 0 and i € I and (2.2) holds as s | 0.

(i) For each icl, let (q,7),5, be a sequence of recl numbers such that
SUP; SUP<,sn |92 < oo for every positive integer N. Suppose for some a > 0,
(2.9) is satisfied as n — oo and sup,|A,| < oo. Then the series Q(t) defined by
(2.6) converges for 0 < t < 1 and (2.7) holds for t 1 1.

3. Proof of Theorem 1. Throughout this section, we shall use the same no-
tations and assumptions as in Theorem 1 which is stated in Section 1. We first
prove some preliminary lemmas.

LemMa 1. Let 0,X(F) = Vary (X Jyxyzat)s # = 1,2, - - - and let @ denote the
distribution function of the standard normal distribution. The series

(3.1 2 ntsup, [Pg[nS, < x] — Q(x/o,(F))|

converges uniformly for F e . Consequently the series

(3.2) Zr (@ [m)(Pel S, = O] — §)

converges uniformly for Fe & and t ¢ [0, 1], andinf,. . cp > 0, supp. - ¢p < 0.

Proor. The uniform convergence of the series (3.1) is a2 uniform version of
the result of Friedman, Katz and Koopman [4]. Set

Xk,n = Xkl[lxklé'n’l] s Sn,n = A1,n + - + Xn,n .
We shall show that as k — oo,

(3.3) SUPre o Limak 1 HEp Xy 4| — 03
(3.4) SUPre Dinmi M HER| X, ,[*— 0
(3.5) SUPpe - D Prl|Xi| > nt] — 0
(3.6) g i(F)—1 uniformly for Fe & ;

3.7 SUPpe o~ o notsup, | P((x — ntE, X, ,)[0.(F)) — O(x/o,(F))| — 0.
To prove (3.3), we note that for k = 2,

D HER X | < §ixyzet |X1|(Z2§nsxl2 n~t) dPy
=2 §|X1|ak% |X1[2dPF
—0 uniformly for Fe. % as k— oo by (1.8).
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To prove (3.4), we have for k = 3,
Tt ER X LIPS T n_%EF|X1|3[[|X1|§k%]
+ D n X Pl — 1 < X2 <]
< 2(k — 1)_§{k%EF‘X’121[k*§|X1|§ki] + k*EF‘qul[lxllék*]}
+ 3 25 Pel) — 1 < X <]
—0 uniformly for Fe & as k— .
The relations (3.5) and (3.6) are immediate- from (1.8). We now prove (3.7).
By the mean value theorem, for all x,
|D((x — n*Ep X,,)[0,(F)) — O(x[o,(F))| < (27)~*n}|E X, /o, (F)

< nHE X, for n=n,,

al

where n, is independent of F in view of (3.6). Therefore (3.7) follows from
(3.3). Making use of (3.3), (3.4), (3.5), (3.6) and (3.7), we can follow the same
argument as in the proof of Theorem 1 of [4] to prove the uniform convergence
of the series (3.1). (The use of Rosén’s theorem in [4] is totally unnecessary,
as our proof of (3.7) shows. This point is also mentioned in the note added in

proof of [4].)
LEMMA 2. Let q,(F) = Pg[N > n] forn=20,1,.... Thenast11,
(3.8) (1 — 0 Xw o qu(F)t" > ¢y uniformly for Fe & .
Proor. It is well known (cf. [10]) that
(3.9) (I — 1) 230 gu(F)" = exp{ L7 (¢"/m)(Pe[S, =< 0] — $)} .

By Lemma 1, the series (3.2) converges uniformly for Fe & and t¢[0, 1]. It
therefore easily follows that as ¢ 1 1,

(3.10)  Zr (/) (P[S, = 0] — §) = X7 n7'(P[S, < 0] — &
uniformly for Fe & .

The desired conclusion (3.8) then follows from (3.9) and (3.10).

LeEMMA 3. Asn— oo,
(3.11) Py[n~tS, < x] — O(x)

uniformly for Fe & and xe(—o0, 00);

(3.12) Ep(n74S,)= — (2/n)t * uniformly for Fe 5 .

Proor. The relation (3.11) is due to Parzen ([8], page 38). To prove (3.12),
we note that P,[|n=%S,| > x] < x~* for allnand F e 5. Hence givene > 0, we

can choose B > O such that {3 P,[n1S, < —x]dx < ¢and {§ ®(—x) dx < ¢ for
all Fe & and n = 1. Therefore writing '

Ep(n7tS,)" = {§ Pp[n74S, < —x]dx = §¢ + {3,
we easily obtain (3.12) from (3.11).
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LEMMA 4. Asn — oo,
(3.13) EpS, Iiysn — —274¢s uniformly for Fe &
(3.14) ExSyliysa — 0 uniformly for Fe & .

ProOF. Leta,(F) = EpS,Iiysap Ar(t) = X5-a,(F)t". Then it is well known
(cf. [10], page 159) that the sequence (a,(F)),s, is negative and monotone and
Ap(t) = (X7 kT *Ep S Iis, <o) exp{ 1T (£*/k)Ps[S, < O]} .

Since supy. - ¢ < oo, to prove (3.13) using Theorem 6, we need only show
thatas 71 1,
(3.15) (1 — ) Ax(t) > —27%c, uniformly for Fe. & .
We now prove (3.15). By (3.10), we have as 1 1,
(3.16) (1 — 1) exp{ LT (#*/k)Pe[S, = O} = exp{X¢ (F*/k)(Ps[Si = 0] — $)}
_ — ¢y uniformly for Fe & .
We note that E,S,~/k < Ez|X,| < 1 for all k and Fe .5 and by (3.12),
kY(EpS,~ k) — (2/m)} uniformly for Fe & .
Therefore by Theorem 7, as ¢ 1 1,
(3.17) (I — 0 e (5 k)ERS,- — 27 uniformly for Fe & .

From (3.16) and (3.17), the desired conclusion (3.15) follows.
To prove (3.14), we note that

EpSyliyzn = lim,, ., 2 7n (ErSilins i — EpSilin>i)
(3.18) = lim,, . 337, (EpS;—1linsi-11 — EpSilivsi1)
= EpSy i liysa-ny — 1My o EpSpliysm
4 = EpS, 1liysn-n + 274, .

From (3.13) and (3.18), (3.14) follows immediately.

ProOF oF THEOREM 1. Defining ¢,(F) = P,[N > n] as in Lemma 2, since
SUPpe - €p < oo and (¢,(F)),s, is monotone and nonnegative, (1.9) is an imme-
diate consequence of Lemma 2 and Theorem 6. We now prove (1.10). By

(3.14), given ¢ > 0, we can choose m large enough such that E,Syliyom < ¢
for all Fe .. Then

EpSylisysa = € + 201 EpS, I[N:n,Sn>a]
Se+ Dra EpSydigsa S €+ Linat.

4. A uniform renewal theorem when there is no drift. In this section, we
shall prove the analogue (1.5) of the elementary renewal theorem-for the case
of zero mean. To do this, we shall divide the random variables X, X;, - - - into
large blocks and take their sum within each block to form new i.i.d. random
variables X', X;’, ---. We then apply Theorem 1 to analyze the successive
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ladder epochs defined in terms of X/, X,’, - --. This argument turns out to give
not only (1.5), but with a little more work, also its uniform version as stated
in the following theorem.

THEOREM 8. Let & be a family of distribution functions with mean 0, variance
1 and satisfying the uniform square integrability condition (1.8). Let X, X,, - - - be
i.i.d. with a common distribution function Fe &, S, = X, + --- + X, and define
T(a) asin (1.1). Then letting @ denote the distribution function of the standard
normal distribution, we have as a — co,
4.1) Py[T(a)/a* > u] — 2Qu~t) — 1

uniformly for Fe % and u>0;
(4.2) forany 0<r<i%,
E(T(a)|a®) — r (& w7 2Qu~t) — 1) du uniformly for Fe 5 .

Proor. To prove (4.1), define successive ladder epochs M, = inf{n > 1:
S, >0}, M, =inf{n > N;: S, — S, >0}, etc. Let Z, =S8, —S,,_ (M,=
S,=0),N=M,—M,,,c(a) =inf{n>1:Z + --- + Z, > a}. By the uni-
form integrability condition (1.10), Chung’s uniform law of large numbers (see
(1.14)) is applicable, and so for any ¢ > 0,
(4.3) PllnY(Z, 4+ --- + Z,) — 27%;| > ¢] >0  uniformly for Fe & .
As an immediate corollary of this, we obtain that as a — oo,
4.4) Pl|(z(a)/a) — (2/cp)| > ] — 0 uniformly for Fe & .

By Theorem 1, supy. - [(n7)}P[N, > n] — ¢z| > 0 as n— oo, sUpye - ¢p < o0
and inf,. - ¢, > 0. Hence by Theorem 9(i) in the next section, we have as
n— oo,
(4.5 Pel(Ny+ - -+ + N)[Ges'n?) > u] = 20u™t) — 1 -

uniformly for Fe. % and u >0.

Take any 0 < ¢ < 1. We note that
Py[T(a) > a’u] < Py[r(a) < 241 + e)afcp, Ny + -+ + Nptasoaep) > @4]
+ Prle(a) = 2X(1 + e)a/er]
= Pela™(Ny + -+ + Notaraaep) > ¥l
+ Pel(a) = 2¢(1 + e)afes]
—20((1 + e)ut) — 1 uniformly for Fe.% and u>0.
The last relation follows from (4.4) and (4.5). In a similar way,
Pp[T(a) > a'u]
Z Pl (N + -+ + Notacoaep) > 4] — Prle(a) < 241 — e)aje,]
—20((1 — e)ut) — 1 uniformly for Fe % and u>0.

Since ¢ is arbitrary, (4.1) is established.
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To prove (4.2), since T(a) < T(a’) if a < a’, we can without loss of generality

restrict ourselves to integral values of a. Let
Xn(a) = (‘Xv(n—l)a2+l + -+ Xna2)/a ’ Sn(a) = ‘X’l(a) + -+ Xn(a) .
Define the successive ladder epochs My(a) = 0, My(a) = inf{n = 1: S,(a) > 0},
M,(a) = inf{n > M(a): S,(a) — Siy@(@) > 0}, etc. Set Ny(a) = M(a) — M;_,(a),
Z(a) = Sy,a(@) — Su,_,@(a). Choose > 0 such that y + 6 < 4. Itiseasy to
see that for any u > 1,
Py[T(a) > a®u]
= Pg[max,g., S,/a < 1] < P [max;, S;(a) < 1]
(4.6) = Pp[Ni(@) + -+ + Nu(a) S, Zy(a) + -+ + Zpn(a) < 1]
+ Pe[Ni(a) + -+ + Ny,ei(a) > u]
= PelZy(a) + -+ + Zin(a) = 1]
+ PelNi(@) 4 - -+ + Nyusy(a) > u].

We note that E, X,(a) = 0, E; X;*(a) = 1 and by Lemma 5 below,
4.7) SUPuz1,re s Er Xi(@) 4y ay>01 — 0 as x— 0.
Therefore letting c,(F) = exp{}.7 k= (Pz[Si(a) < 0] — 1)}, we obtain by Theo-
rem 1 that sup,.; rc . ¢.(F) < oo, inf,5; re - ¢,(F) > 0, and as n — oo,
(4.8) (nm)tPL[Ny(a) > n]— ¢, (F) uniformly for a =1 and Fe. & .
Hence we have a constant ¢ > 0 and a positive integer n, such that
(4.9) Py[N(a) > n] < c(nm)* forall n=n,, a=1 and Fe. & .

In view of (4.9), we can choose constants § > 0.and { and construct a new
probability space (Q, <&, P) on which we define a random variable Y, and a
family {Ny(a, F):a = 1, Fe &} of random variables such that the following
conditions are satisfied:

(4.10a) Y, has a stable distribution with exponent };

(4.10b) Ny(a, F) < 0Y, + ¢ forall a>1 and Fe .5 ;
(4.10¢) the distribution function of N(a, F) is Py[N,(a) < x],

—o << x<L 0.
(See the proof of Theorem 9(i) in Section 5 below and [5], pages 144-145.) Let-
ting Y, Y,, - .. be i.i.d. random variables on (Q, <7, P), we then obtain for all

az=1land Fe &,
Pp[Ni(a) + -+ + Nun(a) > u]
(4.11) S PO(Yy+ -+ + Yiuny) + {w] > 0] -
= P[Yy > (u — ([w’])/(0[#'T)] -
The last equality in (4.11) follows from the fact that (Y, + --. + Yi.5)/[#*]?
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has the same distribution as Y,. Noting that P[Y, > x] ~ Ax~* as x — oo for
some 4 > 0, we obtain from (4.11) that

(4.12)  PIN(@) + -+ + No@) > u] < 2404
forall u>=u,, a=1 and FeF .

By (3.11), Pg[Z\(a) > 1] = Pp[Xy(a) > 1] = Pp[S,2 > a]l = 1 — ®(2) for all
Fe # anda = a,(where a, > 1isindependent of F). Therefore P,[Z,(a) < 1] <
®2)=p< 1l,andso foralla =a, u >1and Fe &,

@.13)  PZya) + - + Zun(@) < 1] < (Pl Z(0) < 1) < p70.

By (4.6), (4.12) and (4.13), since y + 0 < 4, for any given ¢ > 0, we can
choose B > u, such that
(4.14) Y S3ur—'P[T(a) > a*u]du < ¢ forall a>=a, and Fe. .57 .

By (4.1), we obtain that as a — oo,

(4.15) y S8 ur'Py[T(a) > a’u]du — ¢ (Fur~'Q2Ow—%) — 1) du
uniformly for Fe & .

From (4.14) and (4.15), the desired conclusion (4.2) follows.

LEMMA 5. With the same notations and assumptions as in Theorem 8, we have
as x — oo,

(4.16) SUPuz1,re s Ep(n™48, ) ljn-1s, 150 — 0 .
Proor. Given e > 0, we can choose ¢ large enough such that § ., x*dF(x) < ¢

for all Fe . Let X/ = Xiljy i X" =X, — X/, S/ =X+ --- + X,

S  =X"+ ...+ X,)”. Clearly S, :L (S, — E.S,)) + (S,” — E.S,"). FZ)r
all Fe &,
(4.17) nE(S,” — EpS,") < Ex(X") < <.
By the Marcinkiewicz-Zygmund inequality (cf. [7]), there exists a universal
constant K such that for all Fe &,

Ex(S) — EpS,Y < KE((51 (X! — Ep X/} < 16Kcin? .
Therefore by the Schwarz inequality,
(4.18) nEp(S," — EpS,)ljn-is, 50 = 4K Ppi[|n=4S, | > x]

< 4Kic*x~ ' — 0 as x—oo.

The second inequality above follows from the Chebyshev inequality. From
(4.17) and (4.18), the desired conclusion (4.16) follows.

5. A uniform limit theorem for distributions in the domain of attraction of
a stable law.

THEOREM 9. Let 0 < @ < 1 and let & be a family of distribution functions
such that F(0—) = 0 and as x — co,

(5.1) x*(1 — F(x)) > Ax/T(1 — a)  uniformly for Fe &,
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where sup,. , A, < oo and inf,. . A, > 0. Let X,, X,, - -- bei.i.d. random vari-
ables with a common distribution function Fe &7, and set S, = X, + --- + X,
(So = 0). Let G, be the distribution function of the stable distribution with Laplace
transform f(2) = exp(—2%), 2 > 0.
(i) Asn— oo,
(5.2) Pi[(ndg)2S, < x] — G (x) uniformly for Fe # and x=0.
(i) Let Ug(x) = Y-y PelS, < x]denote the renewal function. Then as t — oo,
(5.3) =2 Ug(t) = (A T(1 + a))™* uniformly for Fe & .

Proor. To prove (i), we make use of an argument due to Lévy ([5], pages
144-145). For each F e &, define F~'(f) = sup{x: F(x) < #},0 < ¢ < 1. Since
x*(1 — Go(x)) = 1/T'(1 — a) as x — oo, it follows from (5.1) that given any 1 >
0 > 0, there exists 7 > 0 such that
G4 T =G f(1 = )A4:")) = 1 — F(x) = 1 — Go(x/(1 + 0)4,4%))
for all x = and Fe & Setting G,(x) = G(x/((1 + 6)4;¥%)) and G,(x) =
G (x/((1 — 0)Az"%)), we obtain from (5.4) that G,(x) = F(x) = G,(x) for x > 5
and Fe ., and therefore
(5.5) G S FH) <G if 12 Gun).

Let & = G,(G(n)). Clearly 6 > nand if t < G,(7), then 0 < F~(r) < 6 and
0= G,7'(r) < 0. It then follows from (5.5) that

(5:6) G, M) — 0 < F(1) < G() + 0
forall re[0,1) and Fe. & .
Set Y = G,'and Z(F) = F~'. Then Y and Z(F) are random variables on
the probability space ([0, 1), <&, P) where <% denotes the class of Borel sets and

P is the Lebesgue measure. Also the distribution functions of Z(F) and Y are
F and G, respectively. Therefore from (5.6), we obtain that for all Fe &,

(5.7 (1 =0)4"*Y — 6 < Z(F) < (1 + 8)A,Y*Y + 6.
Letting Y, Y}, Y,, - -+ be i.i.d. random variables on ([0, 1), <7, P), we then ob-
tain that for all Fe % and x = 0,
Pl(nAp)™*{(1 + 9)Ag"" L3y Yy + nb} < x]
(3-8) = Ppl(ndg)™%S, < x]
= Pl(nAp)™*{(1 — 0)Ag"* 1, Y, — nf} < x].

Noting that (n4;)~"%(nf) — 0 uniformly for F ¢ .5, we have
P(ndp) (1 + 8) A" T3, Y, + n} < x]

= P[(1 4 0)Y, + (nA;)™"*nf < x]

— P[Y, < x/(1 + 0)] uniformly for Fe.% and x=0.



UNIFORM TAUBERIAN THEOREMS 639

Likewise the last term of (5.8) converges to P[Y; < x/(1 — 0)] uniformly for
Fe & and x = 0. Hence the desired conclusion (5.2) follows.

To prove (ii), let ¢u(2) = {§ e dF(x), W) = (e dUy(x), wp(x)=
{o e *(1 — F(x))dx. Then w,(2) = (1 — ¢x(2))/2and ¥, = 1/(1 — ¢,) (cf. [3],
page 446). Since sup;. . A, < oo, it then follows from (5.1) and Theorem 7
thatas 2 | O,

5.9) Pwy(2) — Ay uniformly for Fe .5 .
Since infj,. - 4, > 0, this implies that as 1 | O,
(510) 27U, (2) = 2f(1 — ¢,(2)
= /(A wy(R)) — A" uniformly for Fe & .
The desired conclusion (5.3) then follows from Theorem 3.
6. Uniform versions of classical renewal theorems. Theorem 2 stated in Sec-

tion 1 is a uniform version of the renewal theorem (1.2). We now make use of
Theorem 3 to provide its proof.

Proor oF THEOREM 2. We first assume that P,[X = 0] = 1 for all Fe . 5.
In this case, obviously P,[N = 1] =1 and (1.10) holds. To prove (1.12), we
let Up(x) = E,T(x) = S50 PalS, < x] (S,=0). Let ¢,(2) = §7 e dF(x),
W,(2) = §7 e dU,(x), @p(2) = (1 — p4(2))/2 for > 0. Define vy(r) = §5(1 —
F(x))dx, x = 0. Then by (1.11b), as t — oo,

6.1) vp(f) = pp uniformly for Fe &,

and supy. - p#p < co. Since w, is the Laplace transform of the measure v, it
follows by Theorem 7 that as 2 | 0,

(6.2) 0p(2) > pp uniformly for Fe & .

Noting that inf,. . ¢, > 0, this implies that as 1 | 0.

(6.3) LA = 2/(1 — ¢p(R) = 1wp(2) — pp uniformly for Fe. & .
Hence as @ — oo, Ug(a)/a — p,~' uniformly for F e & by Theorem 3.

We now consider the general case and drop the assumption that P,[X > 0] = 1.
We first prove that sup,. , E; N < oo. It is well known that
(6.4) EpN = exp{27 n7'Pg[S, = 0]}

(cf. [10]). By (1.11a), there exists > O such that p, = 20 for all Fe .&. By
(1.11b), we can choose ¢ > 1 such that E, X/ ,.,, < 0 for all Fe % . For i =
15 sl let Xi, = Xil[lXilscn]a Xi” = Xi - Xi, and define Sn, = Xl’ + e+ Xn,’
S,/  =X"+ .-+ X,). Thenfori=1,...,n,
(6'5) EFX’E, = EFXI[IXlécn] g EFX[[Xécn] Z 5 for all FE ﬁ‘.
We note that '
(6.6) 2 nTtPL[S, = 0] Z N ntP[X) #+ 0 forsome i=1, ..., n]

= 27 PellX] > en] < Eg|X]/c.
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Using (6.5) and the Chebyshev inequality, we obtain that
Zr TP, = 0]

= ¢ n7'P,[S,) — ES,) £ —on]
(6.7) S0 BT Ep Xl xigem)

= 075 17 (g X2 APy + x50 X(Zenzin 17°) P}

< 6+ & + cEX} .
~Since (1.11b) implies sup,. E,X* < co, it follows from (1.1la) that
SUp;. - Ex X~ < oo. Hence sup,. . Ef|X| < oo, and therefore from (6.4), (6.6)

and (6.7), we obtain that sup,. . E, N < co.
To prove the uniform integrability condition (1.10) for Sy, we note that

EFSNI[SN>a] = 2 S[N=n,SN>a] Xt dPy = 2104 S[N;n,Xn>a] X,* dPy
= Xiwa1 PolN = 1] (x50) X dPp = (ExN) (x50) Xdp,
and apply condition (1.11b).

We now prove (1.12). Define successive ladder indices M, = inf{n = 1:
S, >0}, M, = inf{n > N,: S, — Sy, > O}, etc.,and let Z;, = S, — S, (M, =
S, =0), Ny=M, — M,_,. Sett(a)=inf{n=>1:2Z 4+ --- + Z, > a}. Then
T(a) = N, + --- + N, and by Wald’s lemma,

(6.8) EyT(a) = (EpNy)(Ep(a)) -

We note that P,[Z, > 0] = 1, inf,. . E,Z, = inf,. . E, X* > 0 and by (1.10),
SUPpe o Ep Zy 11754 — 0 as x — co. Hence applying the theorem which we have
established for the nonnegative case, we obtain that as a — oo,

(6.9) Ey(t(a)/a) —> (Ep Zy)™! uniformly for Fe . & .

Since E, Z, = p, E, N, by Wald’s lemma, the desired conclusion (1.12) follows
from (6.8) and (6.9). )

In the literature on renewal theory, instead of the first passage time 7'(a)
defined in (1.1), one often considers the random variable

(6.10) Ma) = X1 Jis a1 -

The function 1 4+ EA(a) = 1 + X2, P[S, < a] is called the renewal function
and it is well known (cf. [9]) that if X, X,, - .. are i.i.d. with EX; = ¢ > 0 and
E(X,;")* < oo, then

(6.11) EA(a) ~ a/p as a— oo .

This result is commonly called the elementary renewal theorem. In general, if
E(X,")™** < oo, then EA"(a) < oo and

(6.12) EA"(a) ~ (a/p) " as a— oo,

By making use of Paley-type inequalities on the tail distribution of sample
sums (cf. [1]), we obtain the following uniform version of (6.12).
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THEOREM 10. Let r > 0 and let & be a family of distribution functions satis-
fying the following conditions:

(6.13a) infp. - (. xdF(x) > 0;

(6.13b) SUPpe o % [X["THdF(x) < o0

(6.13¢) SUPpe - 0 x7dF(x) < oo for some 7 > 1.

Let X, X,, X,, - -+ be i.i.d. random variables with a common distribution function

Fe & and let p, = E,X. Set S, = X, + -+ + X, and define A(a) by (6.10).
Then as a — oo, :
(6.14) Ey(A(a)ja)" — pp~ uniformly for Fe & .

The above conclusion (6.14) remains true if we replace A(a) by T(a), where T(a) is
the first passage time defined in (1.1).

Proor. Given any 0 < ¢ < 1, define L(d, F) =sup{n = 1:S, < dnpy} =
sup{n = 1: 22 (X, — pp) < —(1 — O)np,} (sup @ = 0). Without loss of gen-
erality, we can assume that in (6.13c), y < min (2, 7 4+ 1). Then as proved in
[1], there exists a universal constant A, depending only on r such that

(6.15)  EpL7(6, F) = A{E((X~[(1 — 8)pp)™ + Eg7/7"(IX|/(1 — 0)per)"} -

(See Theorem 1 and Lemma 2 of [1].) Since infy . pr > 0, it follows from
conditions (6.13b) and (6.13c) together with (6.15) that sup,. - Er L"(d, F) < oo.
Therefore

(6.16) SUPygssr SUPFre o Er L0, F) < oo .
We note that if n = max {L(3, F) + 1, (3yz)~'a}, then S, > dnp, = a, and so
(6.17) Aa) < L3, F) + (3pr)a

for all Fe . Writing r = k + ¢ where k is a nonnegative integer and 0 <
e < 1, it follows from (6.17) that

(6.18) A(a) < (L@, F) + (Gpp)~a)* (L3, F) + (Bpp)~a) .

Applying the binomial expansion to (L(d, F) + (dp)"'a)* in (6.18) and making
use of (6.13a) and (6.16), we can choose g, > 1 such that

(6.19) E (A(@)fa)" < (1 — 0) + (Opp)~" forall a>=a, and Fe & .
Clearly A(a) = T(a) — 1. By Lemma 6 below, as a — oo,
(6.20) Py[T(a) > dpp'a] — 1 uniformly for Fe & .
Therefore we can choose a, > 1 such that
(6.21)  E,T"(a) 2 (3py"ayPo[T(a) > dpp~"a] .
= (Opp"ta)7o forall a=a and Fe & .
The desired conclusion then follows from (6.19) and (6.21).
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LEMMA 6. Let & be a family of distribution functions satisfying the uniform
integrability condition (1.13). Let X, X,, X,, - - - be i.i.d. random variables with a
common distribution function F € & and let p, = E, X. If inf,. ;. p, > 0, then
forany e > 0,

(6.22) Suppe & Pp[|T(a)Ja — pp7Y > ] —0 as a— oo,
where T(a) is as defined in (1.1).

Proor. Take any 6 > 0. By Chung’s uniform version (1.14) of the strong
law of large numbers and the assumption that inf,. » ¢, > 0, we can choose q,
such that for all ¢ = g,and Fe .&,

(6.23) Py[sup;zsa (J7'8; — pr) Z 5”1 = 0.
Since (S;, j = 1) is a submartingale, so is (S;*, j = 1) and therefore
(6.24) Py[max;,, S; > a] = a7 'EpSfh,) < 0Ep X* .

Hence for all ¢ > g, and Fe %,

Py[T(a) < (pp™" — €)a] = Pp[max;c;, S; > a] + Pp[MaX,,g;ciup-1-6aS; > al
S 0E X' 4 P[sup;.,, (J7'S; — pr) > epty’]
< JE, X+ +9d.

From (1.14), it also follows that

Pe[T(a) > (pr™" + €)a] = Pp[maX;g 1400 S; < a]
§ PF[S[(,uF‘1+e)a,] é a]
-0 uniformly for Fe F as a— .
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