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FUNCTIONAL CENTRAL LIMIT THEOREMS IN
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Suppose that (X»;) is a triangular array of random variables taking
values in a Banach space E and that (By) is the corresponding sequence of
random paths in E. Conditions are considered under which the distri-
butions of B, converge to a Gaussian measure on C([0, 1]; E). Under
stronger conditions on the array it is shown that if E is of type 2 the paths
enjoy certain regularity properties, which are reflected in the convergence.
The technique here is to factorise the integration procedure by which one
passes from the array to the sequence of paths, using fractional integrals.

1. Introduction. Kuelbs (1973) has shown that if (X,;) is a triangular array
of random variables taking values in a Banach space E, if each row of the array
consists of independent identically distributed random variables, and if the central
limit theorem holds for the row sums, then an invariance principle (functional
central limit theorem) holds for the array.

In Section 5 we show that similar results hold for more general arrays, in
which the entries in each row need not be identically distributed, and indeed
that the cylindrical convergence of the distributions of the sums to a measure
on E is sufficient for the existence of a suitable measure on C([0, 1]; E).

It is well known that 1-dimensional Brownian motion enjoys certain regularity
properties, and in Section 7 we show that similar properties are enjoyed by the
limits of vector-valued arrays in the case where E is a Banach space of type 2
or of cotype 2.

Finally Section 8 contains some rather elementary results which ensure that
the central limit theorem does indeed hold.

Sections 2 to 4 contain some preliminary ideas and results which we shall
need later, and Section 6 contains a discussion of the properties of Banach
spaces of type 2 and of cotype 2 that we use in Sections 7 and 8.

I wish to thank the referee of an earlier version of this paper for pointing out
its shortcomings so clearly.

2. Measures and cylinder measures. We shall assume basic results about
measures on topological spaces and c¢ylinder measures on topological vector
spaces (cf. Badrikian (1970), Parthasarathy (1967) and Schwartz (1973)).

We recall that a cylinder measure 2 on a Banach space E is Gaussian if e'(4)
is a Gaussian measure for each ¢’ in E’. In this paper, we suppose that all
Gaussian measures and cylinder measures have zero mean.
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PRroOPOSITION 1. A Radon probability measure y on a Banach space E is Gaussian
if a(y) is Gaussian for each a in a linear subspace A of E' which separates the points
of E.

Proor. The natural map j: E' — L%(y) is continuous when E’ is given the
topology of uniform convergence on the compact sets of E, and A is dense in
E’ in this topology. Thus j(E') < j(A); since j(A4) is a Gaussian subspace of
L(y), so is j(E").

Fernique (1970) has shown that if 7 is a Gaussian Radon measure on a Banach
space then | e*'*I*y(dx) < oo for some a > 0. If ¢ > 0 and p is a measure on a
Banach space E, let

J(u) = inf{s > 0: p(||x|]| > 5) < ¢} .

Then Fernique’s arguments easily show the following.

PROPOSITION 2. If ¢ > 0and 1 < p < oo, there exist positive constants K, , and
k.. such that if y is a Gaussian Radon measure on a Banach space E,

kpoJu(7) = (V[Ixl[Pr(dx)"” = K, J(7) -

The interest is of course in the second inequality. It follows immediately too
that similar estimates can be made relating the different L? norms.

3. Spaces of continuous functions. We shall be concerned with vector-valued
functions on [0, 1]. If E is a Banach space, we denote by C([0, 1]; E) the Banach
space of all continuous E-valued functions on [0, 1], with the usual norm. If
feC([0, 1]; E) and € [0, 1], let =,(f) = f(r). It is easy to verify that a col-
lection M of Radon probability measures on C([0, 1]; E) is uniformly tight if

(a) givene > 0 there exists 8 > Osuch that u({f : || f(t) — f(*)|| £ ¢ whenever
[t — | £0}) = 1 — ¢ for each p in M, and
(b) {m,(¢); 1 € M} is uniformly tight on E, for each ¢ in [0, 1].

We shall also consider subspaces of C([0, 1]; E) consisting of functions satis-
fying a regularity condition. If0 < a < 1, let @,(f) = I'(a)~ > for 0 < r £ 1.
Then ¢, e L}0, 1) and ifa >0, 8 >0anda + B < 1,

§5 Pu(8)85(t — 3) ds = By (1) -
If fe LY(0, 1), we define the fractional integral

(T )0) = §if(5)pa(t — 5)ds .

Note that T, f is the indefinite integral of f, and that if « > 0, 8 > 0 and & +
8=1,T,,=T,T, Inparticulareach T, isa one-one compact linear mapping
of C[0, 1] into itself, and in the usual way we also obtain a one-one continuous
linear mapping T, of C([0, 1]; E) into itself. We denote by C#([0, 1]; E) the
space T,(C([0, 1]; E)) with the norm defined by ||T, f]|, = ||f||- The spaces C*
provide a measure of regularity of the functions involved; for example if



602 D. J. H. GARLING

0 < B < a there is a constant K,, such that if fe C*([0, 1]; E) then

|t — SI‘8 B

SUP, 4,

4. Triangular arrays. Let us describe the setting and terminology which we
use. Let E be a Banach space, and for each n suppose that X,,;, - -+, X,,; isa
sequence of independent E-valued integrable random variables on a probability
space (2, P,,) Suppose further that for each n we are given an increasing
sequence (f,;);%, of numbers such that z,, =0, z,; = 1. We set v; = 1,; —
t, ;—, and denote the interval [¢, ;_,, ,;] by 7,;. In the usual way we construct

n,

a sequence (B,) of random variables by setting
(t) - Zk_iX k + (t - t'nj l)v—zX

for rin1,;. We consider B, as taking values in C7([0, 1]; E) for any 0 < < 1.
We shall suppose that, for all n and j,

(1) E(X,;)) =0
and
(2) 0 <o, = E(|[X,4]) < vy

If we are to prove a central limit theorem for dist (B,), we must certainly have
a classical central limit theorem for each of the sequences (¢’(B,(f))). By the
Lindeberg-Feller central limit theorem (see Chung (1974), Theorem 7.2.1), this
is so if and only if the two following conditions hold. First, for each ¢ in [0, 1]
(with ¢ in I,;) and ¢’ in E’ there exists (¢, ¢) such that

3) Za(t €)= Xizion(e) + (1 — 1, ;)01 00,(e") > A1, €)
where o,,(¢') = E((¢'(X,.))?). Secondly, we have a Lindeberg condition: for each
7>0

(4) 1 E((¢'(X0))M(e'(Xa )| > 7)) — O
as n— oo.

Thus if conditions (1)-(4) are satisfied there exists for each ¢ in [0, 1] a
Gaussian cylinder measure y(f) on E, with ¢'(y(¢)) distributed N(0, A(¢, ¢’)), such
that B,(f) converges cylindrically in distribution to y(r). More generally if
0 <5 <r<1 there exists a Gaussian cylinder measure (s, ) on E such that

B,(t) — B,(s) converges cyllndrlcally in distribution to d(s, f). This leads to the
following questions.

(i) When is y(f) a Radon measure?
(ii) If it is, does B, () converge in distribution to 7(¢)?
(iif) When is there a Radon measure y on C([0, 1]; E) (or on Cr([0, 1]; E)
such that 7,(y) = 7(#)?
(iv) If there is, does B, converge in distribution to 7?
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5. Functional central limit theorems. Kuelbs (1973) makes the interesting
remark that in the setting in which he works “the central limit theorem implies
the invariance principle.” We shall see that this is largely so in our more
general setting. First we observe that if y(1) is a Radon measure then y(¢) is a
Radon measure for 0 < ¢ < 1. Since (1) = 7(¢)*d(z, 1), this is an immediate
consequence of the following proposition.

PRrOPOSITION 3. Suppose that 2 and p are symmetric probability cylinder measures
on a Banach space E and that v = 2*p is a Radon measure on E. Then A and p are
Radon measures.

Proor. Given ¢ > 0 there exists a convex compact set K such that y(K) =
1 — ¢/2. If m, is a continuous projection onto a finite-dimensional quotient E/N
of E then m,(v)(7my(K)) = 1 — ¢/2. Since my(v) = my(A)*my(t), 7y(A)(74(K)) =
1 — ¢, by the lemma on page 12 of Kahane (1968). The result now follows from
Prokhorov’s theorem (Bourbaki (1969), Chapter IX. 4, Théoréme 1, page 52).

Before establishing a functional central limit theorem, we first obtain a central
limit theorem for dist (B,(¢)) from the convergence of dist (B,(1)).

I wish to thank Professor V. Mandrekar for suggesting the use of Fourier
transforms in the proof of this theorem; this suggestion led to a considerable
improvement in the result obtained.

THEOREM 1. Suppose that (X,;) is a triangular array satisfying (1)—(4), and that
the convergence in (4) is uniform on the unit ball of E'. Suppose also that

%) M) =sup{y,(t,e):n=1,2,3, .-, ||¢]| £ 1} < o0

for each t in [0, 1]. If y(1) is a Radon measure and if B,(1) converges in distri-
bution to y(1), then B,(t) converges in distribution to y(t) for each 0 < t < 1.

Proor. Iftel,;, let B,/(f) = }izi X, and let B,”(t) = i, X,;. By Theo-
rem 2.2 (page 59) of Parthasarathy (1967), the sequences (B,’(f)) and (B,"(¢)) are
shift compact. Since B,(f) is a convex combination of (B,/(¢)) and (B,”(t)), the
sequence (B,(7)) is shift compact. Let f,(t, ¢) = E(exp (ie'(B,(¢)))) and let
#(t, €') = L exp(—(A(t, €'))?). Then by Theorem 4.5 (page 171) of Parthasarathy
(1967) it is sufficient to show that f,(z, ¢’) converges to ¢(¢, ¢’) uniformly on the
unit ball of E’. To see this we follow through the proof of the Lindeberg-Feller

- central limit theorem (see Chung (1974), page 212, Exercise 4).
Given e > 0, let » = 3¢/M(¢). Then |f,(¢, ¢') — (¢, ¢')] =< R, + R,, where

Ry = % Sio s ni<y [€(Bu(D)P AP, < €2,
by the choice of 7, and ‘
R, = Vimpeni<y le"(B.(1)|*dP < ¢/2,

for sufficiently large n, which does not depend on e’ (for [l¢’|| < 1), since the
convergence in (4) is supposed to be uniform in such ¢’. This establishes the
theorem. ‘
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Note that (¢, ¢’) < § ||x||*.(dx), which is finite, by the results of Fernique
(1970). Thus condition (5) is satisfied if the convergence in (3) is also uniform
on the unit ball of E’.

It is now a straightforward matter to adapt the arguments given by
Parthasarathy (1967), pages 222-224, as was done by Kuelbs (1973), to establish

THEOREM 2. Suppose that (X,;) is a triangular array satisfying the conditions of
Theorem 1. If y(1) is a Radon measure and the sequence (B,(1)) converges in distri-
bution to y(1), then there exists a Gaussian Radon measure y on C([0, 1]; E) such
that ©(y) = r(t) for 0 <t < 1, and such that (B,) converges in distribution on
C([0,1}; E) to y.

Let us remark that if each (X,;) is symmetric then it is not necessary to
assume the uniformity of convergence in (4) or condition (5) for Theorems 1
and 2 to hold. For the sequence (B,(?)) is shift compact and symmetric, and
so the shift may be taken to be 0; thus (dist (B,(t))) is relatively compact.

We now use this theorem to show that even if B,(1) does not converge to
7(1), the fact that y(1) is a Radon measure is sufficient to ensure the existence
of a Radon measure y on C([0, 1]; E) with the property that z,(y) = r(?).

First note that if K is any compact subset of £ and .#"is the collection of
closed finite-codimensional subspaces of E,

Vi lIxIPr(1)(dx) = sUPye., Yoy IIX[1*qn(r(1))(dx)

SUpye_, lim, Yopexr lgw(B.(1))|[* aP,
1

A TIA

(the equality being justified by Bourbaki (1952), Chapter IV. 1, Théoréme 1,
page 104) so that . ||x||*7(1) dx < 1. From this and from the arguments given
earlier it follows that foreach 0 < 1, < #, < 1 there is a Gaussian Radon measure
d(t,, 1) such that y(t;) = r(#)*0(1,, t,) and ( ||x|*6(t,, &,)(dx) < #, — 1. Thus the
assertion follows from the following theorem.

THEOREM 3. Suppose that {0(s,t):0 < s < t < 1} isa family of Gaussian Radon
measures on a Banach space E such that o(s, t)*0(t, u) = 0(s, u) whenever 0 < 5 <
t <u<1 and such that  ||x||*(s, £)(dx) < t — s. Then there exists a Gaussian
Radon measure y on C([0, 1]; E) such that n(t) = 9(0, t) for each t in [0, 1].

Proor. For each n, let X, - .-, X, be independent E-valued random varia-
bles on some probability space with distributions (0, 1/n), - - -, 6((n — 1)/n, 1).
Then the triangular array (X,,;) satisfies all the conditions of Theorem 2.

6. Banach spaces of type 2 and cotype 2. While the results of the preceding
section hold in a general Banach space, we shall find it necessary in the proofs
of the next section to impose conditions on the Banach space in question.

Recall (cf. Hoffmann-Jgrgensen (1972), Pisier (1973)) that a Banach space E
is of type 2 if there exists a constant C such that whenever x,, ---, x, are in E
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and ¢; - - -, ¢, are Bernoulli random variables

(B(| 2 eaxil M) = C(Zz_lllxllz)*

Subspaces and quotient spaces of Banach spaces of type 2 are of type 2 (and
the same constant C will suffice). L? spaces are of type 2 if 2 < p < oo.
We shall need the following result.

ProrosiTION 4. If E is a Banach space of type 2 and if p = 2 there exists a
constant K, such that if X,, - - -, X, are independent E-valued random variables with
E(X)) =0and E(|X,||") £ 1 for1 £i<n,anda,, -, a, are scalars, then

(E(| Xt a: Xi||P)? < K (X ab)t .

Proor. Let X,*, ..., X, * be a symmetrization of X;, - .., X,. Thenife, ..,
¢, are Bernoulli random variables

E, (|12t a:Xy(o)|]”) = E (| Zia a: X *(@)]?)
= EE(|| Z7-1 a;e(t) X *(0)| )
= E,E(|| 271 a;:(0) X * (0)]]7)
= LE(E(| 21 ase (X *(0)][))?)
= OV E (Xt al| XX (o))
= 2°CP (X al)

the first inequality coming from Hoffmann-Jgrgensen (1972) Theorem 2.6, the
second from the arguments of Kahane (1968) pages 15-17, the third from the
fact that E is of type 2 and the fourth from Minkowski’s inequality in L?/2

A Banach space is of cotype 2 if there is a constant C such that whenever
Xy, -+, X, are in Eand f, - - -, f, are independent normalised Gaussian random
variables,

Zia Il = CE(| Zi= fexd PN

or alternatively if whenever (f;) is a sequence of independent normalised Gaussian
random variables and (x,) is a sequence in E such that )}, f; x, converges almost
surely, then Y32, ||x,||* < co. L” spaces are of cotype 2 if ] < p <2, and a
Banach space is of type 2 and cotype 2 if and only if it is isomorphic to a Hilbert
space.

In the next theorem we extend a characterisation of Banach spaces of cotype
2 given by Maurey (1973). If H is a Hilbert space and y is the canonical Gaussian
cylinder measure on H, a linear mapping # from H into a Banach space F is said
to be y-Radonifying (weakly y-Radonifying) if u(y) is a Radon measure on F (on
F",a(F", F')). Recall that a linear mapping u from a Banach space E into a
Banach space F is 2-summing if there exists a positive constant C such that

P | [u(x)]]? = CPsup s i l€(x)]P

for any finite sequence x,, - --, x, in E. Alternatively, if (x;) is a sequence in
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E such that >}, |e'(x,)|* < oo for each e’ in F’, then X 3, ||u(x)||? < oo. A 2-
summing mapping from a Hilbert space is always y-Radonifying.

THEOREM 4. If E is a Banach space, the following are equivalent:

(i) E is of cotype 2.
(ii) Every weakly y-Radonifying map from a Hilbert space H into E is 2-summing.
(iii) Every y-Radonifying map from a Hilbert space H into E is 2-summing.
(iv) If 6 is a Gaussian Radon measure on E, there is a Hilbert space H, a con-
tinuous linear map u from H into E and a Gaussian Radon measure 0, on H such
that u(d,) = 0.

Maurey (1973) established the equivalence of (i) and (ii). Clearly (ii) implies
(iii). We shall show that (iii) implies (i), that (iii) implies (iv) and that (iv)
implies (iii).

Suppose that (iii) is satisfied. Let H = [ and let y be the canonical Gaussian
cylinder measure on /2. Let 2:[* — L¥Q, ) be an associated mapping, so that
(A(ey)s A(ey), - - -) is a sequence of independent normalised Gaussian random
variables. Suppose that (x,) is a sequence in E such that };2, A(e,)x, converges
almost everywhere. Then )2, A(e,)x; € LYQ, p; E), and if e’ ¢ E’

lle' (X5 Ae)x)lee = || 2520 €' (x)A(e)|] e
= L le' ()l = | 252 A€l ra) -
Thus if for any finite sequence a = (a, ---, ,,0,0, -..) we set T(a) =
> a;x;, T extends to a continuous linear map from /* into E. Clearly T(y) =
dist (3] 4(e;)x;), so that T' is y-Radonifying. By hypothesis, 7 is 2-summing, so
that since 32, |[<h, e,)|* < oo for each A in H, X132, ||Te|]* = 25, ||x]]? < oo.
Thus E is of cotype 2.

Suppose again that (iii) is satisfied and that d is a Gaussian Radon measure
on E. Let A: E’ — L*E, 9) be the natural mapping. We can write 2 = ji, where
2, maps E’ into a Gaussian linear subspace G of L*E, d) and j is the inclusion
mapping. Then if y is the standard Gaussian cylinder meaure on G’, § = 4,/(7).
It is easy to verify that 4, maps G’ into E, and, by hypothesis, 4," is 2-summing.
Thus there exists a Hilbert space H, a Hilbert-Schmidt mapping R: G' > H
and a continuous linear mapping u from H into E such that 4/ = uR. 6 =
u(R(r)) and R(y) is a Gaussian Radon measure on H. Note that we may assume
that u is compact. ’

Finally, suppose that (iv) is satisfied. Let v be a continuous linear mapping
from a Hilbert space H, into E such that v(y) is a Radon measure on E, where
7 is the standard Gaussian cylinder measure on H,. We must show that v is 2-
summing. By hypothesis, there exists a Hilbert space H, a Gaussian Radon
measure J, on H and a continuous linear mapping «: H — E such that u(d,) =
v(r). We may clearly suppose that u is 1 — 1. Now let j: H' — L*H, d,) be
the natural map, and let k: H’ — G be an isometry of H,’ with a Gaussian
subspace G of a space LR, P), associated with the cylinder measure y. Thus
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we have the diagram
W H' —— L¥H, 3,)
’
E’\v,
NH 6 c Iy, P).

Nowifx, - -, x,arein E', dist (ju'(x,), - - -, ju'(x,)) is the same as dist (kv'(x;), - - -,

kv'(x,)), and so there is an isometry i from ju’(E’) into G (which may be extended

by continuity to an isometry from j(H’) into G) such that iju’ = kv’. Then if

w = (k7Y%j)’, uw = v and w(y) = 6,. Thus w is Hilbert-Schmidt, so that v = uw

is 2-summing.

7. Functional central limit theorems in C’([0, 1]; E). We shall now show
that if we impose stronger conditions on the moments, if the Banach space is
of type 2 and if the random variables are symmetric then we can deduce a
functional central limit theorem in a suitable C’([0, 1]; E) from the central limit
theorem.

Symmetry enters in an essential way; we shall need the following result, which
is an immediate corollary of Ryll-Nardzewski and Woyczyfski (1974) and which
extends the lemma on page 12 of Kahane (1968).

THEOREM 5. If X, --., X, are independent symmetric random variables taking
values in a normed space E, if K is an absolutely convex Borel subset of E and if
|2 £ 1for1 <i < nthen

We now come to the functional central limit theorem.

THEOREM 6. Suppose that (X,;) is an array of symmetric random variables satis-
fying conditions (1)—(6), and taking values in a Banach space E of type 2. Suppose
that there exist p > 2 and a constant M such that

(©) (E(|XaslIP))"? = MEE(|X5]) = Mo,
for all n and j. Suppose that 0 < 6 < 4+ — 1/p. If B,(1) converges in distribution

to a Radon measure on E, then there exists a measure y on C*([0, 1]; E) such that
the sequence (B,) converges in distribution on C°([0, 1]; E) to 7.

Proor. The proof is related to one given by Garling (1973), Theorem 8.
(Note though that the symmetry condifion was inadvertently omitted there, and
that the condition on d should be as here.)

We define new sequences of random variables by setting

A () = v} X,; for ¢+ in I
and
C,4t) = (T,4,)(r) for 0<a<l.

Thus B, = T,C,'~?. In order to prove the theorem, it is sufficient to show
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that (dist (B,)) is uniformly tight in C%([0, 1]; E); that is, we must show that
(dist (C,'~?)) is uniformly tight in C([0, 1]; E).

Let us first choose « and 8 such that « > 1, 8> 1/pand a + =1 — 4.
Suppose that re 7,;. Set

= (D(@)v,)7" §;,, (1 — 9)*71ds for 1<k<j
and
a,; = L(a)v,;)™ Stn’j-l (t — s)*tds.

Then C,%(r) = 2i{=1 @ui V3 X 50 that (E(||C,2(0)|[7))? < K,(XZi-1 a3.)}, by Pro-
position 4 and condition 7. But it follows easily from the Cauchy-Schwarz
inequality that

Sia ek < (D(@)Q2a — 1)t
so that there is a constant N independent of » such that

E(§3IC2(0)||7dr)) = N,
and so
P (G IC.5()|? dt = Nfe) < e

But ##-'¢ L?’, and so a simple argument using Holder’s inequality shows that
there exists » > 0 such that if {}||C,%(7)||?dr < N/e and if |t — /| < 7 then
[|C,2+8(t) — C,**#(¢')|| < . Thus condition (a) of Section 3 is satisfied.

We now turn to condition (b). Suppose that 0 < r < 1. Let usnowseta =
1 —d. Given 0 < ¢ < 4, chose 0 < s < ¢ so that

K,(D(@) 72 — )7t — st < er+2,
Now suppose that se 7, and te€1,;. Then

CoX(t) = Zim @iV X + Diloin a4, 030X,
=E,+ F,, say.
Arguing as before,
(E(|F|P)? = Ky(Zicim an)t < e

so that P(||F,|| > ¢) < ¢ < ¢/2.

On the other hand, if n is large enough, r — 1,, > 4(t — s), so that for 1 <
i< Layvy £ (T(a@)(E(t — )% It follows from Theorem 5 and the uniform
tightness of dist (B,(1)) that there exists a compact set K such that P,(E, ¢ 8K) <
¢/2 for all n. Thus there is a finite set S such that P,(d(C,%(¢), S) > ¢) < ¢ for
each n, from which it follows that condition (b) is satisfied (cf. Parthasarathy
(1967) page 49).

We can now improve on Theorem 3, in the case where E is of type 2.

THEOREM 7. Suppose that {0(s, t): 0 < 5 < t < 1} is a family of Gaussian Radon
measures on a Banach space E of type 2, satisfying the conditions of Theorem 3.
Then if 0 < & < % there is a Gaussian Radon measure y on C*([0, 1]; E) such that
m,(r) = 06(0, 1) for each t in [0, 1].
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Proor. If we construct a triangular array as in Theorem 3, we have only to
verify that (7) holds for any p > 2. This follows from the remark following
Proposition 2.

THEOREM 8. Theorem 7 also holds for Banach spaces of cotype 2.

ProoF. As d(0, 1) is a Gaussian Radon measure there exists a Hilbert space
H, a Gaussian Radon measure d(0, 1) on Hand a 1 — 1 compact linear mapping
u from H into E such that u(d(0, 1)) = §(0, 1). Let B denote the unit ball of H.
Then for each ¢ > 0 there exists K, > 0 such that d(0, 1)(||x|| > K.) < ¢/2. Thus
8(0, 1)(K,u(B)) > 1 — ¢/2, and so (s, 1)(K,u(B)) >1—cforeach 0 <s<t< 1.
In particular 6(s, f)(u(H)) = 1 for each 0 < 5 < t < 1; since we may clearly
assume that H is separable, from which it follows that a subset 4 of H is Borel
in H if and only if u(A) is Borel in E, there exist for 0 < 5 < t < 1 Gaussian Radon
measures d(s, ) on H such that u(d(s, 1)) = d(s, t). Applying Proposition 2,

(Y [1XI[* d(s, 1) dx)t < K,y Jy(d(s, 1))
= Ko yllullJ4(3(s, 1))
= Kk yl[ul|(Vg [|X]1°0(s, £) dx)t .

Thus, as H is of type 2 we can apply Theorem 7 to the family of measures
{d(s, 1): 0 < s < t < 1} to obtain a measure g on C’([0, 1]; H); composition
with u then produces the required measure on E.

It would be of interest to know if Theorem 7 holds for any Banach space E.

8. The central limit theorem. Let us finally investigate the circumstances
under which the central limit theorem holds for the triangular arrays which we
consider. Hoffmann-Jgrgensen (1974) has shown that a central limit theorem
holds for every independent identically distributed sequence (X,) of random
variables with E(]|X,|[*) < oo if and only if E is a Banach space of type 2.
Necessary and sufficient conditions are given by Parthasarathy (1967) page 200
for a central limit theorem to hold for triangular arrays (rather more general
than those which we consider) taking values in a Hilbert space. Note that
condition (3) of the theorem there is essentially a compactness one; it is neces-
sary to impose some such condition, as the following example (described to me
by A. Beck) shows. Let (e,) be an orthonormal basis in a Hilbert space H,
and for each n let (X,;: 1 < j < n) be a sequence of independent variables,
with X, ; taking values + n—te; with probability 4. Then clearly the sequence
(dist (33%-, X,;)) is not uniformly tight in H and cannot therefore converge,
while the array (X,;) and the space H satisfy all the sorts of conditions which
one usually imposes.

PROPOSITION 5. Suppose that (Y,;) is an array of random variables satisfying
conditions (1), (2) and (4), and taking values in a Banach space E of type 2. Suppose
that T is a compact linear operator from E into a Banach space F,andlet X,,; = TY ;.
Then S, = Y in, X,; converges in distribution to a Gaussian Radon measure y on F,
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provided that
3 E((f'(S,))}) is convergent for all f' in F'.
ProoF. As usual it is sufficient to show that the sequence (dist (S,)) is uni-
formly tight. By Proposition 4,
E(|| X Yusll') = K& 2jma E(I|Ysl) < Ko7
for all n, so that
P(| 252 Yol P > Kife) < e .
Thus if B is the unit ball of E and K = T(B),
P.(S,¢ (K,/eHK) < ¢, for all n.

This result has the possible disadvantage that it involves two Banach spaces
and a compact operator. The final result is closer in spirit to the result in
Parthasarathy (1967) mentioned above.

THEOREM 9. Suppose that (X, ;) is a triangular array of random variables satis-
fying conditions (1), (2) and (4), and taking values in a Banach space E of type 2.
Suppose that

3" E((e'(S,))?) is convergent, for all e’ in E'

where S, = i, X, ;. If for each ¢ > O there exists a finite dimensional subspace
F of E such that

©) in, B(d(X,;, F))) <e  for n=1,2,...

then S, converges in distribution to a Gaussian Radon measure on E.

Proor. Recall that if E of type 2, so is E/F, with the same constant. Thus
in Proposition 4 we can take the same constant K, for E and all its quotients.
Given ¢ > 0, let 7 = ¢%/2K,?, and let F be the finite dimensional space cor-
responding to 7.

Then
E((d(S,, F))) £ K,y for n=1,2, ...
so that
P(d(S,, F) > ¢) < Kjpfe* = ¢[2 .
Also
Pn(IIS'n” > 2K2/€*) é 6/4 2
so that if ‘

K ={xeF:|x]] £ 2K,/¢t),

P,(d(S,, K) > eforn=1,2,.... By the remark on page 49 of Parthasarathy
(1967) this ensures that (dist (S,)) is uniformly tight.

Note also that the conditions of the theorem are satisfied if the array is
generated in the usual way by an independent identically distributed sequence
of random variables; this provides an alternative proof of Hoffmann-Jgrgensen’s
central limit theorem.
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