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Let X1, Xz, -+ be independent random variables with values in a
Banach space E. It is then shown that Chung’s version of the strong law
of large numbers holds, if and only if Eis of type p. If the X,’s are identi-
cally distributed, then it is shown that the central limit theorem is valid,
if and only if E is of type 2. Similar results are obtained for vectorvalued
martingales.

1. Introduction. Let E be a Banach space, (Q, &, P) a probability space and
{X,} a sequence of E-valued random variables, so that [EX, = 0 for all n = 1,
where E denotes the expectation (that is, the Bochner integral with respect to
P). We shall then study the law of large numbers, that is when do we have °

(1.1) | %(XHL e 4 X) oy 0
and the central limit theorem, that is when do we have

(1.2) (X -+ + X,) —,_. a Gaussian measure.

(n )*

In Section 2 we shall treat the law of large numbers. This problem has been
treated by Fortet and Mourier in [7], [8] and [15] and by W. A. Woyczynski in
[18]. We shall show that if {X,} satisfies (for some 1 < p < 2)

(1.3) 2 nPEX|)P < oo,

then a.s. convergence holds in (1.1) for all independent sequences {X,}, if and
only if E is of type p. And a.s. convergence in (1.1) holds for all martingalé
differences, (X,), satisfying (1.3), if and only if E is isomorphic to a uniformly
p-smooth space.

In Section 3 we treat the central limit theorem. This problem has been’
treated by Fortet and Mourier in [7], [8] and [15], Dudley and Strassen in [5]
and [6], Giné in [9], and by Marcus and Jain in [14]. We shall here show that
(1.2) holds under the classical hypothesis (independent, identically distributed,
mean 0, finite second moment) if and only if E is of type 2.

Let (¢,) be a Bernoulli sequence, that is (e,) are independent real random
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588 J. HOFFMAN-JORGENSEN AND G. PISIER

variables with P(e, = +1) = } for all n. Then we define
C(E) = {(x,) € E*| 3 7., ¢;x; converges in probability} .

From Theorem 4 page 17 in [12] we know that we may substitute “‘converges
in probability” with “converges in L?(E)” for all pe R,. Let , denote the
usual metric in L?(E) for p e R, (for this and further notation see [10]), and put

Ixl, = [| 252 &5 %511, for x = (x;)e C(E).

Then a standard argument shows that (C(E), |-|,) is a Fréchet space for pe R,.
And since all the |.|,-topologies are stronger than the product topology on C(E),
we find from the closed graph theorem, that all the |.|,-topologies (p € R,) are
equivalent, that is: .

LemMma 1.1. Let (¢,) be a Bernoulli sequence, and define the set L by
L = {X5¢x;](x;) € C(E)}
then L C L?(E) for all p e R, and all the L-topologies, for p € R, coincides on L.

Now let pe[l, 2], then E is said to be of type p if we have I?(E) € C(E).
Since the injection from [?(E) into C(E) has a closed graph in case that E is of
type p, we find that E is of type p, if and only if

(1.4) 34eR,, sothat E||XI5, & x]P £ 4255, ||x;]|r  for all
(x;) € C(E) .

Finally we note that it follows easily from Theorem 2, page 11 in [12], that
we have:

LemmMma 1.2, If (X,) are independent E-valued random variables so that the series
3. X, converges in probability, then it converges a.s.

2. The strong law of large numbers. Let {X,} be a sequence of E-valued
random variables satisfying

(2.1) EX, = 0 Vnx1.

Then {X,} is said to satisfy the strong law of large numbers if
1 Yt X, -0 a.s.
n

We shall here mainly consider Chung’s condition (see [3])
(2.2) Zra nPE|IX])F < oo
where p is some fixed positive number.

THEOREM 2.1. Let 1 < p < 2, then the following four statements are equivalent:

(2.1.1) E isoftype p.
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2.1.2) 3C>0 sothat E||Sio Y|P < C X3 EIIX,|P
for all independent, X,,---,X,, with mean 0
and finite pth moment.

(2.1.3) The strong law of large numbers holds for all independent

sequences, {X,}, satisfying (2.1) and (2.2).
(2.1.4) If 35.772||%l|P < oo and (¢;) is a Bernoulli sequence,
then n='Y%_ e, x; — 0 in probability.
Proor. Suppose that (2.1.1) holds, then there exists a constant B, so that
(see (1.4))
EllZ5mexll? = B X llxll”  Vx, - x,eE V.
So by Fubini’s theorem we find
El| X% X1P = B 2= EIXGI?

where (¢;) is a Bernoulli sequence independent of X;, -+, X, and X;, - -+, X,
are independent random vectors with mean 0 and finite pth moment. Now from
Theorem 4.3 in [10] it follows that

El| X3 XG||P < 8PE|| X% 6 X7 -

So (2.1.2) holds with C = 87B.

Suppose that (2.1.2) holds, and that (X)) satisfies (2.1) and (2.2). Then the
series ) j—'X; converges in L?(E) by (2.1.2), so by Lemma 1.2 it converges a.s.
Now we notice that Kronecker’s lemma is valid in any Banach space (with the
same proof as in the real case), so applying Kronecker’s lemma to (X;(w)), for
those w for which the series 3] j~'X;(w) converges, we find that n~}(X, 4 - ..
+ X,) — 0 a.s., when n — co. And so (2.1.3) holds.

(2.1.3) obviously implies (2.1.4). Now suppose that (2.1.4) holds, and let (x;)
be a sequence in E so that

L5l PlxlP < oo
Then from (2.1.4) and Lemma 1.1 we have that
% s 6%, —>0  in LXE).
Now let
1
F = {(x) € B[ sup, - {EI| S5 ¢,%,|P}* < o0} .

Then F is a linear space and we may define the norm

1
|x| = Sup,” —h—- {EIIZ?:I ej lelp}l/p
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for x = (x;) € F, and a standard argument shows that (F, |.|) is a Banach space.
Now let

Fy = {(x;) € E=| 25 772lIx4]|” < oo}
xXlo = {22507 l]x,11PY

then (F,, |+|,) is a Banach space, and by assumption we have F, & F. The
injection F, — F is clearly a linear operator with closed graph, and so it is
continuous. That is, there exists C > 0 so that

El| X% &7 < Cn? X5, 7l
forall x,, ---,x,e Eand all n > 1. Now let x,, -+, x, € E and define

y; =0 for 1<j<N
= X;_y for NKjE=N+n

where N is some integer. Then

n n X ?
ElSo e x,|P = ElDE eyl < OV + nyp By, Kiexll”

]’P
N ?
< ¢ (1) Tl

for all N > 1, and so
E”Zy—l 7x.7||p =C Z =1 ”xi”p Vo, -, x,ekE ‘ Vnz=1.
Hence E is of type p and the theorem is proved.

REMARKS. A. Beck has shown that if E is B-convex (for definition see [1]), .
then the strong law of large numbers holds for all independent sequences, {Xabs
satxsfymg (2.1) and

(2.3) sup, B[, < oo .

It was shown in [16] that E is B-convex if and only if E is of type p for some
p > 1. Hence the result of Beck is included in Theorem 2.1, since (2.3) obvio-
usly implies (2.2) for all p > 1.

W. A. Woyczynski has in [18], shown that if E is a G,-space (see [18] for a
definition) with « = p — 1, then the strong law of large numbers holds for all
independent sequences, {X,}, satisfying (2.1) and (2.2). So by Theorem 2.1 we
find that every G,-space is of type (1 + «). However, the G,-spaces are in
general much smoother than type (1 4 a)-spaces, since a fairly easy argument
shows, that E is a G,-space (0 < a < 1), if and only if E is uniformly (1 + a)-
smooth, that is the modulus of smoothness, p, satisfies

(2.4) o(t) = O(£+%) as 1 —0

where the modulus of smoothness is defined by

() = sup {J(lx + yll + llx =yl =[xl =1, [yl =1}



LIMIT THEOREMS IN BANACH SPACES . 591

So G,-spaces are in particular superreflexive (see: Theorem 4, page 169 in [4]).
However, R. C. James has given an example of a B-convex space E, which is
not even reflexive, that is E is of type (1 + a) for some a« > 0, but E is not a
G,-space [11].

Let {X,, X,, ---} be a finite of infinite sequence of random variables taking
values in E, then {X,} is said to be a martingale difference if there exist g-algebras
F, e F, < - € .F,such that

(2.5) X, is &, measurable Vn
(2.6) EX,| & .1) =0 Vn.

If Q = {—1, 1}¥, & = the Borel g-algebra, P = the normalized Haar measure,
&, = the o-algebra spanned by the first n-coordinates for n > 1 and & =
{¢, Q}, then {X,} is called a Walsh—Paley martingale difference. If {X,}is a Walsh-
Paley martingale difference then (2.5) and (2.6) may be stated as follows:

(2.5 X,(e) = X,(¢ -+ +»¢,) isonly a function of the n first coordinates
(2.6) Xo(eyy ooneu 1) = =X (e, + v+, 6,0, —1) Ve Vn.
THEOREM 2.2. Let 1 < p < 2, then the following four statements are equivalent:

(2.2.1) E is isomorphic to a uniformly p-smooth space:
(2.2.2) 3C >0 sothat E| X%, X]P < C X, El|X;||P

for all martingale differences, X, ---,X,, with

finite pth moment;
(2.2.3) The strong law of large numbers holds for martingale

differences, {X,}, satisfying (2.2);
(2.2.4) The strong law of large numbers holds for Walsh—Paley martingale

differences, {X,}, for which 3, n~?||X,|]? e L=(Q, &, P).

SKETCH OF A PROOF. The equivalence of (2.2.1) and (2.2.2) is proved in [17].
The implication “(2.2.2) = (2.2.3)” can be proved as in the proof of Theorem
2.1. Ttis evident that (2.2.3) implies (2.2.4). Finally the implication “(2.2.4) =
(2.2.2)” can be proved by standard martingale technique, and by using the
method in Burkholder’s paper [2]. (cf. the proofs of sublemmas 3.2 and 3.3
in [17]).

THEOREM 2.3. Let {X;} be independent E-valued random variables with mean 0,
andlet 1 < p £ 2. If Eis of type p, and {X,} satisfies
(2.3.1) Ve>0 3(a;) a sequence of positive numbers, so that

2 (@fj)r < oo and E(|IX||1yxzep) S Yz 13

. then we have

. 1
lim, . B {-- |3 X1} = 0.
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ReEMARK. Even when E = R, it is well known that (2.3.1) does not imply
the strong law of large numbers.

Proor. Let ¢ > 0 be given and choose (a;) according to (2.3.1). Now we
define
X/ =X, if |X/|<aq
=0 if |IXll = ey
X" =X/ — EX/.
Then ||X;"|| < 2a;, and so

AP
B5 BN IP £ 2 2 (%) < oo
Hence by Theorem 2.1 and its proof we find that
Lsn x50  as andin LXE)
n

since EX; = 0 we find
EX;" = —{ixize; X; AP
and so
IIEX,| < $1ix jiza; 15[ dP < .
Moreover we have
ElX; — Xll = Sixjuze; |1X;l| dP < &
and so
El| 2% Xl = Ell 2% X" + Zia [IBX || + X5 El1X; — X
Hence we find

lim sup, .. _’11. El| X5 Xl < 2

and since ¢ > 0 is arbitrary we have proved the theorem.
THEOREM 2.4. Let {X;} be independent E-valued random variables with mean 0,
and satisfying
(2.4.1) Ve>0 3K compact C E so that
]E(”Xi”l(szx)) Se Vjz= 1,
then we have '

. 1
lim E | | D5 X1} = 0

ProOOF. Let ¢ > 0 be given and choose a compact set, K, accordmg to (2.4.1),
we may of course assume that K is convex. Now let

X/ =X, if X,ek

=0 if X,¢K
XJ_H — le _ Ele .
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Then X;(0) e C for all j = 1 and all o, where C = K — K. Hence we have
%Z';ﬂxj"(w)ec Vizl Vo.
Moreover we have
% K T X (@) -0 as. VX eE
by the real valued strong law of large numbers. But this implies that
_’11_ 2. X" —0 a.s. andin LYE)

(for the Ll-convergence see Corollary 3.4 in [10]). Now the rest of the proof
is identical to the last part of the proof of Theorem 2.3.

3. The central limit theorem. We shall now turn to the central limit theorem
in Banach spaces. We shall need some additional notations. Let (E, ||+||) be a
Banach space, and let E’ be its dual space. If xis a Radon probability on E,
then its characteristic functional, fi, is defined by

A(x) = § 5 €K p(dx) for x'cE'.

If 4 has mean zero and finite 2nd moment, then its covariance functional, R, is
defined by

R(x's y") = (g (X5 XD, x)p(dx) for x',y'e E'.

We shall say that a Radon probability, x, on E is pregaussian, if 4 has mean 0,
finite second moment, and for some Radon measure, 7, on E we have

(3.1) 7(x") = exp(—3R(x', x')) Vx'ek
where R is the covariance functional of .

It is easily seen, that if y satisfies (3.1), then 7 is a Gaussian measure on E
with mean 0 and the same covariance functional as .

Now let 1 be a probability on E, and let X,, X,, - - - be independent random
variables with distribution law . Then we put

1 s
Z, = (n—)* Zg‘:l‘X’vj

¢, = the distribution law of Z, .

We shall then say that p belongs to the domain of normal attraction if there exists
a Gaussian Radon measure, 7, on E, so that g, — 7 ||+||-weakly.

(If (T, r) is a Hausdorff topological space, and v, and v are Radon probabilities
on (7, r), then we say that v, — v r-weakly, if

Ve f()(dl) — §o fleu(dr) Ve ()

where C(T) is the space of all continuous, bounded real functions on 7.)
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Fortet and Mourier (see [7], [8] and [15]) have proved that, if E is a separa-
ble, reflexive G,-space admitting a Schauder basis, then any Radon probability,
#, Wwith mean 0 and finite 2nd moment belongs to the domain of normal at-
traction. R.M. Dudley raised the problem of characterizing those Banach spaces
for which this result holds. We shall in this section prove that this class of
Banach spaces coincides with the type 2 spaces.

Suppose that g is a Radon probability with mean 0 and finite 2nd moment.
From the two inequalities

lett — 1 — it 4 32| < |t VieR,
let — 1 — it + 32| < |¢]° , VieR,
we find that
(3.2) |A(x') — 1+ 3R, )| < @IX]1° A+ Sz |1X1P]1X]%4(d)

for all @ > 0 and all x’ ¢ E/, where R is the covariance functional of x. Let g,
‘be defined as above, then it follows easily from (3.2) (see also [15]), that we
have ‘

(3.3) lim, ., 2,(x') = exp(—4R(x', x")) : Vxek.

So if ¢ belongs to domain of normal attraction then p is pregaussian, and the
||-||-weak limit of {z,}, must satisfy (3.1). As a consequence of Lemma 5in
[13] we have: '

LemMa 3.1. Let (T, t) be a Hausdorff topological space and F a subset of C(T),
which separates points of T and satisfies

(3.1.1) : If f,geF then fgeF.
Let {u,} and p be Radon probabilities on T, so that
(3.1.2) lim, .. §,f(1)a(dt) = o f(0) () VicF;

then p, — p o(T, F)-weakly, where o(T, F) is the weakest topology on T making
all functions f e F continuous.

COROLLARY 3.2. If p is a pregaussian probability on E, and y is the Gauss
measure defined by (3.1), then p, — y o(E, E')-weakly, where p, is the distribution
law of

1’ n
Z, = w na X;

and X,, X,, - - - are independent random variables with distribution law p.

PrOOF. Let F = {eX*>|x’ € E'}, then F separates point in E and satisfies
(3:1.1). Moreover, evidently we have that ¢(E, F) = d(E, E’), so the corollary
is an immediate consequence of (3.3) and Lemma 3.1.

DEFINITION. Let (S, Z, ¢) be a positive measure space and X, = {4 € X | u(A4) <
oo}; then a second-order additive process with variance p, is a stochastic process
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X = {X(A4)| A € Z,}, so that
(3.4) X(A) hasmean O and variance p(A4) forall AeZX,.
(3.5) If 4,,.--,A4, aredisjointsetsin X, then

X(A,), - -+, X(4,) are independent and

X(U5= 4)) = 25 X(4;) -

If X in addition to (3.4) and (3.5) satisfies:
(3.6) X(A) has a Gaussian distribution for all Ae¢ZX,,
then X is called a white noise with variance p.

ProrosiTION 3.3. Let (S, Z, yt) be a positive measure space and X a second order
additive process with variance p. If E is of type 2, then there exists a unique linear
map

f—fdx

from LXS, 2, p, E) into L¥Q, 7, P, E) with the following properties
(3.3.1) (fdX = Tix,X(4) i f= Siaxl,
and there exists a constant C, so that »
(3.3.2) Elf faX|* = C§ || f1I* dpe VfelLXS, 2, p, E) .

If X is a white noise, then we have
(3.3.3)  Efexp (iKx', § fdXD)} = exp (—F {5 <x', f(5))’1x(ds))

VfeLXS, I, 1, E) .
Proor. Let & be the class of Z,-simple functions, then we may define
{ fdX

for fe &by (3.3.1). Using the fact that X(.) is a LYQ, &, P)-valued measure
on ,, it follows that § fdX is a well-defined linear map from .~ into L(Q, .7,
P, E). If fe & then we may write f on the form f = RS lAj, where 4,, - - -,
A, are disjoint sets from X,. Now, since X(4,), - --, X(4,) are independent
random variables with mean 0 and variances p(4,), -- -, p(4,), we find from
(2.1.2) that

E[§ faX|P < C X5, |[x1Pe(4;) = C S || £ dee -
Hence the linear map
f—§fdX

is a continuous linear map: &*— L¥Q, &, P, E), and as such it admits a unique
extension to LS, Z, u, E).
Now, suppose that X is a white noise, and f = 37 x; 1,,, where A4, .., 4

n
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are disjoint sets from X,. Then
E exp(i¢x', § fdX)) = E [I3-1 exp (iKx', x;7X(4;))
= exp(—3% D51 <X, x;)"(4;))
= exp(—3% {5 (¥, f(5))*1(ds)) -
So (3.3.3) follows by continuity.
PROPOSITION 3.4. Let {X,|t = 0} be a square integrable right continuous (real)

martingale. If E is isomorphic to a uniformly 2-smooth space, then there exists a
unique linear map

f— & fdx,
from LXR,, 0, E) into LX(Q, 5, P, E), where o(t) = E(X(t))’, satisfying
(34.1) e fdX, = 5. x(X() — X(152))
if f= Z;‘xilltj_l,tj] and t, <t < ---
and there exists a constant C, so that
(3.4.2) E|l§e fdX|P < C 5 /()| do(r) V[ elXR,, 0, E).

Proor. The proof is mutatis mutandis as the proof of Proposition 3.3.

IA

THEOREM 3.5. E is of type 2, if and only if every Radon probability, p, on E
with mean O and finite variance is pregaussian.

RrOOF. Suppose that E is of type 2, and let ¢ be a Radon probability on E
with mean 0 and finite variance. Let W be a white noise with variance p, then

X = {; xW(dx)

is an E-valued random variable by Proposition 3.3 since f(x) = x e L¥E, B(E),
#, E). Moreover we have

Efe’" 0} = exp(—4 {5 {¥'s x)*(dx)) .
So the distribution law of X is a Radom probability on E statisfying (3.1).
Hence p is pregaussian.
Now suppose that every Radon probability with mean 0 and finite second
moment is pregaussian. Let x; be a sequence in E, so that x; = 0 for all j, and

25 lxlf=1.
Let 2; = ||x;||* and y; = ||x;]|*x;. Then the probability measure
® = Z;';l Z.1'(%51/‘7' + %5—11]')
is a Radon measure on E having mean 0, second moment equal to 1, and

Vo Ky )% u(ds) = 2055, (X, X%

Hence there exists a Radon measure, 7, on E so that

P(x) = exp{—% D7 (X5 %% -
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Now, let ,, 7,, - - - be independent (realvalued) normally distributed random
variables with mean 0 and variance 1. Let
X, = 25175 %; -
Then
Eei®#n> = exp {—% 21", (x5 x;)% =0 7(X)) VxeE.
Hence the law of X, tends o(E, E’)-weakly to y by Lemma 3.1, so by Theorem
6.2 in [10] (we may of course assume that E is separable) we have

28 05 %;
converges a.s. From Theorem 3.1 in [10] it follows that this series converges

in L*(E). Hence by Theorem 4.3 in [10] we find that } ¢; x; converges in L E),
and so E is of type 2.

REMARK. From the proof it actually follows that if any discrete symmetric
probability measure on E, with mean 0 and finite second moment, is pregaus-
sian, then E is of type 2 and any Radon probability, with mean 0 and finite
second moment, is pregaussian.

THEOREM 3.6. Let E be of type 2, and pr a Radon probability on E with mean 0
and finite second moment, then p is in the domain of normal attraction.

Proor. Let p be a Radon probability on E, with mean 0 and finite second
moment. Let I be the o-algebra of y-measurable sets and W a white noise with
mean 0 and variance g, defined on the probability space (Q, &, P). Let T be
the linear map from L*E, Z, u, E) into L¥Q, &, P, E ) defined in Proposition
3.3.

Let f(x) = x, then fe L¥E, X, y, E), and U = Tf is a Gaussian E-valued
random variable. Now we can find Z-simple functions, f,, so that

Sefo(¥)p@dx) =0 and  |[|f — fill, <2777,
Let X}, X,, - - - be independent random vectors with distribution law x. Then
we define
Z,=n"t 5 X; Zyp =17 T fo(X)) U, =Tf, .
Then by the central limit theorem in finite dimensional space we have (here

LX) denotes the distribution law of X)
(i) AZ ) 2o LUy)

-weakly vp=1.
Moreover, if C is the constant from (2.1.2), then
E“ZM) - Zn” é E(”ZM) - Znyllz)&
= (Cnt 24 E|IX; — fL(X)IP)?

= (OHIf = foll: = (C)27*7.
So we find

(ii) EllZ., — Zal| = (C)1277 Va,pz1.
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From Proposition 3.3 we have
(iii) E|U, — U] £ (C)2-7 Vp=1.

Now let L denote the set of all bounded Lipschitzian functions, ¢ : E — R.
And let ¢ € L. Then there exists a constant 4 > 0 so that

lp()| = 4 VxekE
p() — o) = Allx — y|l Vx.yekE.
From (ii) and (iii) we find

Ee(Z,) — Ee(U)| < Ele(Z,) — ¢(Z.,)| + |Ee(Z,,) — Eo(U,)|
+ Ele(U,) — oU)|

= A(C)&Z_” =+ |E90(an) - E¢(Up)| .
So from (i) we have

(lV) limn—»eo ESD(Zn) = EQD(U) v ¢ € L.

Now L is a function algebra contained in C(E, ||+||), which separates points.
Hence from Lemma 3.1 we find that

AZ,)— AU) o(E, L)-weakly.

But the o(E, L)-topology is easily seen to be equal to the ||« ||-topology, and so
4 is in the domain of normal attraction.

REMARK. The counterexample in [5] shows that a Radon measure may be
pregaussian without being in the domain of normal attraction. It still remains
an open problem to characterize those spaces, E, in which all pregaussian
measures are in the domain of normal attraction.

Often the preceding results have straightforward extensions to the case of
operators of type p.
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