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ON THE MAXIMAL DEVIATION OF k-DIMENSIONAL
DENSITY ESTIMATES

By M. ROSENBLATT!
University of California, San Diego

Probability density estimates are generated by a kernel or weight
function. Limit theorems are obtained for the maximum of the normalized
deviation of the estimate from its expected value. The results are, in part,
an extension to the k-dimensional case (k > 1) of those obtained by P.
Bickeland M. Rosenblatt (Ann. Statist. 1973, 1071-1095) one dimensionally.

1. Introduction. Let X, X,, ---, X,, --. be independent and identically dis-
tributed random k-vectors with continuous density function f(x). We consider
probability density estimators f,(x) determined by a weight function w of
bounded support

1

" x —X;
(1) f,,(x) = W j=1w<‘g(—n)—>

= 1 w <u> dF,(s) .
b(n)* ~ \ b(n)

In formula (1) F, is the sample distribution function and b(n) is a bandwidth
that tends to zero as n — oo and is such that nb(n)* — co. Components of a
vector will be given by left indexing, that is, x = (jx,j =1, ---, k). The
asymptotic distribution of
(2) M, = MAXog oiijm,... b MEO(M)f(X) 74 fu(x) — Efo(x)|
as n — oo will be determined under appropriate conditions on f and the weight
function w.

There are a number of results that are of particular interest and will be given
here for reference later on in the paper. The first of these is a remarkable result
due to Komlés, Major and Tusnady [4]:

THEOREM A. Let X,,X,, ---, X,, - -+ be independent random variables uniformly
distributedon [0, 1]. A sequence of Brownian bridges B,(x) can be constructed so that

(3) SUPyz.zs [MH(Fu(x) — X) — B,(x)| = O(n™* log n)
almost surely.
This appears to be a “best” result. A one-dimensional Brownian bridge

B(x) = W(x) — xW (1), 0<xgl1,
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1010 M. ROSENBLATT

where W(x) is a one-dimensional Wiener process. In the case of a k-dimensional
parameter x = (;x,j =1, - - -, k), by a Brownian bridge B(x) we mean

(4) B(X): W(x)_lxzx"'kxw(l’ 1a "'sl)a
0<x=1,j=1,.--, k. Here W(x) is a k-dimensional Wiener process, that
is, W is Gaussian with
®) EW(x)=0
Cov (W(x), W(x')) = 1}, min (;x, ;x'),
0 ,x, xXx<1,j=1,. ..., k.
A result that fully corresponds to Theorem A in the k-dimensional case (in

the sense that it is best) does not appear to be available yet. However, the
following result due to Csorgd and Révész [3], [5] will be useful:

THEOREM B. Let X, X,, - .-, X,, - - . be independent random variables uniformly
distributed over the unit k-cube [0, 11¥. A sequence of Brownian bridges B,(x) can

then be constructed so that

(6)  SUPogjesjmren e [MH(FU(x) — TT5o1 ;%) — Bu(x)| = O(n2+2 (log m)?)

almost surely as n — co.

The following result of Bickel and Rosenblatt [1] on the maximal deviation
of a Gaussian process with k-variate parameter will be required in some of the
derivation given later on:

THEOREM C. Let Y(x), x = (1X, +++, %), —c0o < jx < o0, j=1,-..,k, bea
Gaussian separable stationary process with mean zero and covariance function r(x).
Assume that

(7 r(x) =1 — [x|* §s, |(x/|x], 0)|*1(d0) + o(|x|7) »
0 < a<2,as x— 0 with p a finite measure on the unit k sphere S, in R* with at

least two distinct rays in its spectrum so that the integral form on the right side of
(7) is nonsingular. Further let re L*. Set

@) B(t) = (2k log 1)} + {i (ﬁ — 1) log log ¢
2\ a

+ log ((27r)—%Ha(Zk)[‘“‘/‘“—ll/z)} (2k log 1)t ,
where
) H, =lim,_, T7% {7 e P[sUpyg , ... asr Z(:X, =+ -5 4X) > s]ds
with Z a Gaussian process having
(10) E(Z(x)) = —|x|* {s, |(x/1x], O)[*1(dO) = g(x),
and

(11) Cov (Z(x), Z(¥) = g(x) + 0(¥) — g(x — ¥ .
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Then if the maximal absolute value M, is

(12) M; =max{|[Y(x),0< x<T,j=1, oo, k),

it follows that

(13) P[{2k log TY(M, — B(T)) < x] — exp{—2exp(—x)},
as T — oo.

In the following two cases, H, can be evaluated. If

(14) r(x) =1 — xZx' + o(|x]’)
with 2 a k X k nonsingular matrix, then
(15) H, = 7=+ {det (S))F .
If
(16) rx) =1 —=Clx| + -+ + [ix]) + o(Tho ;%)) ,
then :
H, = C*.

Theorem A implies the following theorem which is an improvement of
Theorem 3.1 of [2]:

THEOREM 1. Let k = 1 and assume the weight function w satisfies conditions
A1—A3 of [2] with

a7 bny=n", 0<o<1.
Then
M"‘ X |— e %"
(18) P[(Zﬁ log n)t <W —d,) < ] et
with
(19) Aw) = § wi(r) dt
and
(20) d, = (20 log n)* 4 m {log —I% + % [log 6 + log log n]}
where
— W) + w(—4)

@1 ) = AT A,
if K;(w) > 0 and otherwise ,

_ 1 L (K )
22) dn_(25logn)5+mlog7< . ) ,

where

(23) Ky(w) = 3[§ (w'(1))* di]ja(w) .
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We make the following assumptions in the k-dimensional case which are
referred to as assumptions B, and B,.

B,. The probability density f is positive and continuously differentiable up
to kth order.

B,. The weight function has bounded support and is continuously differentia-
ble up to kth order.

The proof of a k-dimensional analogue of Theorem 1 will proceed via a series
of intermediate approximations as in Theorem 3.1 of [2] though some variations
will be required. Also, one result will not be as broad since Theorem B which
is used does not give estimates as good as those supplied by Theorem A (or a
corresponding result) in one dimension.

The process

(24) Y, (x) = ntb(n)* f(x)74(fu(x) — Efu(x))
ke X — 8
= b(n)~HfH(x) § w( o > dz,(s)
where
(25) Z,(s) = n}(F,(s) — F(s)) .

If the random variables X, ,X, ..., X have joint distribution F(;x, ,x, - - -,
«X), let Fi(;x) be the marginal distribution of X, F,(,x|,x) the marginal con-
ditional distribution of ,X given X, ..., and F,_,(,.x|,_.X, - - -, ,X) the conditional
distribution of X given ,_,X, , X, --., X. Let

X = Fi(X )
(26) X = F(X|X)

kX’ = Fk—l(kX|k—1X’ ) 1X) P
or
27) X = (X, -, X)) = M(X, X, -+, X) = MX

with M the transformation given by (26). If X, ..., . X have joint distribution
F then X', ..., X’ are uniformly distributed on [0, 1]* given condition B, (see
[6]). Using assumption B,

28)  (w (xb(—n)s> dZ,(s) = § w (____x ~ (]"g 'ls') dZ,(M-s')
= (% . %) {w (_____x - (Z'W» Z,(M-'s') ds’

on integrating by parts. Theorem B implies that one can replace Z,(M~'s') by
a Brownian bridge B(s’) with a sufficiently small error. Thus we have

(29) [1Ya() = oYa(+)l| = Oy(b(n)~*n~ 225+ (log m)i)
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where ||+|| is the sup norm and

(B0)  WYa(x) = b(n) M) § (af e 52—,) v ("—:b%’s')} B(s') ds

= blm) i) Y (%) ()

b(n)
Further
(1) bYa(e) = 1Ya(e)ll = Oy(6(m)*")
where
(32) X.) = b)) S w () d )

and W is k-dimensional Wiener process. This follows since f is bounded away
from zero in [0, 1]*. The process ,Y,(x) has the same probability structure as

(33) Y.(x) = bl ) §w () S0 ).
Let
(34) JYa(x) = b(n)yH2 § w ("b(‘ )s> AW(s) .
Then since
(%) = 5¥a(0)
(35) — b(n)~*" § w("b;l;‘) {( S > }dW(s)
= o5 (o g ) Co () — 1w,

it follows that

(36) SUPog astii=t,eoo k[ Yu(X) — 5 w(X)] = 0,(b(n)*) .
The process ,Y,(b(n)x) has the same probability structure as the stationary
Gaussian process

37) U(x) = § w(x — 5) dW(s)

since it is Gaussian and has the same mean and covariance function as U(x).
The normalized process

(38) U(x) = U)/{aw)}
with A(w) given by (44) has covariance function
(39) r(x) = § wx + y)w(y) dy[A(w)

=1 —xZx" 4 o(|x%)
as x — 0 with

(40) T = (g _g_;v_ 637‘” du/z(w))
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If b(n) = n=? with 0 < 0 < 1/k(k + 1), the analysis of the asymptotic distri-
bution of (2) as n — oo can be reduced to that of

(41) MAXoe o<him=Lij=1, k |Uy(x)|

as n — oco. However, Theorem C can now be used to obtain the following
theorem.

THEOREM 2. Let f and w satisfy assumptions B, and B, with

I 1
(42) b(n) = n~?, 0<5<m.
Then

3 Mn _ — —2—%

(43) P[{Zk log n}? <(z(w))% d,,> < x] e
as n — oo where
(44) A(w) = { w(u)*du,
and

(45) d, = {2k log n’}}
+ {4(k — 1) loglog n’ + log ((27)~tH,(2k)*~/%)}(2k log n’)~*

with
(46) H, = n~**{det Z}},
(Z is given by (40)).

With the error term given by Theorem B rather stringent conditions on f and
w are required to replace Ef,(x) by f(x) in Theorem 2. One certainly believes
better conditions are possible. However, we shall state a corollary making use
of stringent conditions. The additional condition B is first required.

B, w satisfies the moment conditions

(47) { uow(u) du = 0
fors=1,...,/—landi=1, .-, k.

COROLLARY. Let f and w satisfy the conditions of Theorem 2. Further assume
w satisfies condition B, and that f is continuously differentiable up to order | with
[ > 1/20 + k/2. Then the conclusion of theorem holds with M, replaced by

(48) M, = MaXo 4y jm,.... 1O()A(X) 7 fo(x) — f(x)] -
The corollary follows immediately on noting that
(49) Ef.(x) — f(x) = O(b(n)") .

We just remark in passing that a corresponding result for a weight function
w(x) =1 if |xZL j=1,---,k
=0 otherwise

could be obtained by making use of Theorem C with condition (16).
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