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RANDOM OVERLAPPING INTERVALS—A GENERALIZATION
OF ERLANG’S LOSS FORMULA

By DAvID OAKES
Harvard University

Consider a queueing system with infinitely many servers, a general dis-
tribution of service times and an instantaneous rate aj of new arrivals,
where aj depends only on the number of busy servers. This is called a
generalized Erlang model (GEM) since if ax = a (k < N), ax = 0 (k = N),
then Erlang’s model for a telephone exchange with N lines is recovered.

The synchronous and asynchronous stationary distributions of the
GEM are determined and several interesting properties of the process are
discussed. In particular the stationary GEM is shown to be reversible.

1. Introduction. Consider a queueing system with infinitely many servers,
a general distribution F of service times and an instantaneous rate a, of new
arrivals which depends only on the number K(f) = k of busy servers at time ¢.
Call this a generalized Erlang model (GEM), since if a, = a (k < N), a;, = 0
(k = N) Erlang’s model for a telephone exchange with N lines is recovered.
The terminology of queueing theory is convenient and will be used in this paper.
However, the GEM is a natural procedure for generating random ov rlapping
intervals on the real line, and as such has other applications. For example, if
a, = a + kb then K(f) becomes an immigration branching process. Oakes (1975)
discusses an interesting connection with a process of stochastic backtrackings.
With «, = ab* (0 < b < 1) a generalization of the Type I counter is obtained,
in which dead periods reduce but do not entirely eliminate new registrations.

If the service times are exponentially distributed, say F(x) = 1 — e~#*, then
K(?) is a Markov birth and death process. It is easily seen that a stationary
distribution {z,} of K(f) must satisfy

(1) kpm, = &y 174y -
Thus
= 178, X [[g =TI ﬁ:;}
n'k i=1 1‘8 { +Z:—1 Hz—l 1‘8

unless the sum diverges, when there is no stationary probability distribution.
It is known that in the specialization to the Erlang model the same stationary
distribution applies for any distribution of service times which has finite mean
B7'. Let the customers being served at ¢ be labelled in a random order i =
1,2, ..., K(t), and let the spent and residual service times of the ith customer
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OVERLAPPING INTERVALS 941

be denoted by U,(r) and V(¢) respectively. Then it is also known that in the
stationary Erlang model the U,(f) are mutually independent with the commom
density {1 — F(u)} du. The same result holds for the V(s).

Khintchine (1963), Sevast’yanov (1957) and Takacs (1969) discuss these re-
sults from various viewpoints. Khintchine derives the specialization of (1) but
appears to assume the independence of the {U,(#)} without proof. Sevast’yanov
proves the ergodicity of the Markov process Z(t) = {K(t), Uy(t), Uy(t), - - -,
Ux,(t)} and finds its stationary distribution by solving a set of integro-differential
equations. Takacs studies the discrete parameter Markov process obtained by
sampling Z(¢) at epochs of new arrivals, remarking that this approach consider-
ably simplifies the discussion. More recently, Shanbhag and Tambouratzis (1973)
show that the pooled process of departures and lost customers is itself a Poisson
process.

We use a refinement of Takacs’ approach to derive the stationary distribution
for the GEM. The calculations become even simpler if Z(¢) is sampled at all
transitions of K(7)—departures as well as arrivals. In Section 2 the stationary
distribution of this discrete parameter skeleton of Z(r) is obtained. In Section 3
the stationary distribution of Z(¢) itself is derived, using a result from the theory
of semi-Markov processes. Four interesting properties of the stationary GEM
are liste:, and some simple moment relations given. In Section 4 a dual process
Z*(t) is defined and used to show that K(r) is a reversible process. This fact is
used to generalize the result of Shanbhag and Tambouratzis.

2. The skeleton. The skeleton Z, of Z(¢) is defined by

Zn = {An’ Ien; 01n5 027;5 T ﬁl}(n),n} :
Here A, = 1 or —1 according as the nth transition is an arrival or a departure,
and K(n) is the number of busy servers at the time of the nth transition. The
arriving or departing customer is not included. The U,, are the spent service
times. To ensure that the particular labelling i = 1, 2, - .., K(¢) of the K(f) = k
customers being served at any time is uninformative, the following conventions
are made.

(i) If the customer currently labelled j departs, customers j 4 1, j + 2, -+, k
are then relabelled as j, j + 1, - -+, k — 1 respectively.

(ii) An incoming customer is assigned label j (1 < j < k + 1) with probability

1/(k + 1). Those customers previously labelled j,j 4 1, - .., k are relabelled
asj+ 1,j+ 2, .-+, k + 1 respectively.
If w= (u,uy ---,u,) and ¢t >0 we write (u, #); = (uy, Uy, + -+, U;_y, 1, U,

Ui,y -+, u,) for the vector u with the extra component ¢ inserted in the jth
position (1 < j < k + 1),and (u, #) = (u, #),,,. Alsow ¢ =@, =4y, 1, - -,
u, + f). The index of min,,, u, is denoted by m, so that u,, = min,,, #,, and
u‘™ denotes the (k — 1)-vector obtained by dropping the zero component from
u— u,. Also,

du = [[t., du,, du™ = 1] du, .
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942 DAVID OAKES

It is clear that Z, is a Markov chain. We shall show that provided the nor-
malizing factor
V= D hng & T,

is finite, there is a stationary distribution given by
q(8; ks u) = féﬂl’[{.;l[ﬁ{l — Fu)}]du 6= —-1,1k=0,1, ...
Y

Note that v is the mean rate of new arrivals.

Let T, denote the time of the nth transition and X = X, =T,,, — T, the
intertransition interval. Take K, = kand U, = (4, u,, - - -, #;). The transition
probabilities of Z, are determined by the (incomplete) conditional distributions
G, .(dx| ks w) and G; _,(dx; j| k; u) of X given Z,. The subscripts correspond to
A, and A, respectively. The argument j refers to the label of a customer de-
parting at the (n + 1)th transition (1 < j < k), j = 0 corresponding to a cus-
tomer who arrives at the nth transition and is thus not included in Z,.

It is convenient to use the notation F(x|u) = (F(x + u) — F(u))/(1 — F(u))
for the conditional distribution of the residual service time given the spent
service time. Noth that (as in renewal theory)

| -0 F(dx | 1){1 — F(u)} du = B(1 — F(x)} dx .
Then it is easily seen that
G_,.(dx|k;u) = [Tk, %%(%)L) a, ek dx

1 e 1 — F(u; + x)
k+ 177701 — Fu,)

X {l — F(x)}a) e~ %+1" dx ,

(2) G, (dx|k; ) =

Gy (@i jlhs ) = TNy~ EW D) owopar|u) 1<) <k,
' =TT Ry

G, _,(dx; 0| k; u) = [T, 1 — Fu + x) e-en*F(dx) ,

1 — F(u;)
. 1 1—F
3) Gyl j s 0) = - TTbegim — ) _“;f(;; R
X {1 — F(x)}F(dx | u,) 1<j<k.

The factors (k 4+ 1)~* and k~* in (2) and (3) arise from the need (at the second
transition) to choose a label for the arrival at the first transition.
The one-step iterate ¢’ of ¢ is given by the equations
g'(1; k; u) du = g(1; k — 1; u™) du™ G, (du, |k — 1;u™)
+ §amg(—1 k;u — x)du G_ (dx|k;u — x),
¢(—1; k; u)du = {*m g(1; k; u — x) du G, _(dx; 0| k; u — x)
+ T S5m (L ks (™, y),) dut™ dy
X Gy, o(dun; jl ks (0™, 3);)
+ 2540 8 (5o g(—= 1 k + 15 (w — x, y),) dudy
X G_y_y(dx;jlk + 1, (a— x,y);).
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Note that if U,,, = u, then X, =T,,, — T, satisfies X, = u,,, or 0 < X, < u,,
according as A, = 1 or —1. The three terms in the second equation arise ac-
cording as the first transition is the arrival of the customer who departed at the
second transition, the arrival of a different customer, or a departure.
It is easily shown by direct substitution, use of (1) and a single partial inte-
gration that
q'(0; k; u) du = ¢(9; k; u)du,

so that g is a stationary distribution for Z,.

Successive visits by Z, to the state E = {1;0} form a persistent recurrent
event in the sense of Feller (1967), Chapter XIII. For ¢(1; 0) > 0, and E may
be reached with positive probability from any state in Z,. Following Takacs
(1969) we may deduce that Z, has the (Cesaro) limiting distribution g, inde-
pendently of its initial state. Note that the chain Z, has period 2.

3. The continuous time process. We now investigate the continuous time
process Z(t) using a standard construction from the theory of semi-Markov
processes on abstract state spaces (see Orey, 1961; Kesten, 1974). Let N(¢) =
sup{n: T, < t} and W(f) =t — N(r). Then

Z(’) = {W(t)’ ZN(t)}
is a Markov process in continuous time. It has a stationary distribution
2vq(dz)R(w | z) dw ,

where R(w|z) is the conditional survivor function

o Lo —apw 1 ——F(H—I—W)
R —1; k; = k B,y T 77
v D e O

H

Rw|1; ks u) = eseswfl — F(w)} [k, L LW+ W)
1 — F(u,)
It is easily seen that this distribution on Z(r) induces on Z(r) the stationary
distribution

plk;w)du ==, [T, [B{1 — F(uy}] du.

It is convenient to refer to p as the asynchronous stationary distribution of Z(7),
in contrast to the synchronous stationary distribution g.

Several useful properties of the stationary process Z(r) follow immediately.
These are ;

(i) the robustness of K(tf) to F. The one dimensional marginal synchronous
and asynchronous distributions of K(f) depend on the distribution F of service
times only through the mean of F.

(ii) the conditional independence of the spent holding times U(f), given K(f).
Note also that the distribution of each U,(¢) is the same as the recurrence time
distribution of an equilibrium renewal process with interval distribution F.

(iii) truncation. 1If, for some N, the process is modified by setting ay = 0,
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then the stationary distribution of the modified process is the same as the con-
ditional distribution of the original process given K(r) < N.

(iv) synchroneity. The distribution of the number K, of busy servers just be-
fore an arbitrary arrival, or just after an arbitrary departure is that obtained
by a naive application of the Bayes formula P(B;| A)aP(A|B;)P(B;) with 4 =
{arrival at 1} and B; = {K(f) = j}. Moreover, (ii) still holds.

A fifth property, reversibility, is discussed in Section 4 below. Notice that
these properties do not generally hold unless the process is in a stationary state.

An easy consequence of (iv) is the relation vE(K,") = BE[K(f){K(f) — 1}"] be-
tween the moments of the synchronous and asynchronous distributions of K(f)
(when these moments exist). It follows from (ii) that the expected number of
customers whose service times completely cover the interval [f,¢ 4[] is
v {7, {1 — F(x)}dx, whereas the expected number whose service times are
completely included in [¢, t + []is v {} F(x) dx.

4. Reversibility. Consideration of residual rather than spent service times
leads to a nuv Markov process

Zx(1) = {K(1); Vi), Va(®), - -+, V(D))
with skeleton
Z'n* = {A'a; Ien: Vl’n’ Vzw ) I7Im} ’

where A, and K, have the same meaning as before, and the V(f), V,, are the
residual service times of the customers in the system at ¢, T, respectively. As
before the currently departing or arriving customer is not included.

The transition distributions for Z,* are determined by the (incomplete) con-
ditional distributions of X, given Z,*. These are

G*,.(dx|k; V) = qpe~?dx  (x £ v,,),

GEs(Va | K3 V) = €mm

et dx F(ds) (x < s,v,),

; 1
G¥ (dx; ds; jlk; v) =
£ Y =4
Gf_(dx; 0| k; v) = e #1"F(dx) (x < v,,),
Gy, uds: I v) = - emerrnF(ds) (s 2 v.)-
Here s is the service time of the earlier arrival and j is its assigned label. Note
that X, = v,, when the second transition is a departure.

It may be verified from these equations or (more simply) from the results of
Sections 2 and 3 that the stationary distributions of Z,* and Z*(r) are given by

o T [B(L — Fw)Hdv,
POk v)dv = 7, 15 [B(L — F))]dv .

The main purpose of this section is to show that the distributions of Z,* are

q*(0; k; v)dv =
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the same as the reversed-time distributions of Z, when the roles of arrivals and
residual service times are exchanged with, respectively, departures and spent
service times. The corresponding result relating Z(f) and Z*(r) follows im-
mediately. This duality principle will be used to prove that K() is a reversible
stochastic process, and hence to generalize Shanbhag and Tambouratzis’ result
concerning the output process.

The following equations, which are easily checked by direct substitution, are
the analogues of the familiar “p, p,; = p; p;;” reversibility conditions for discrete
Markov chains. We have

g(—Lkiu —x)duG_, (dx|k;u — x) = g*(—1; k; u) du G*, \(dx |k, u),
9(—1; k — 1 u"™) du™ G, \(du, |k — 1;u™) = g*(—1; k; u)du G*, _(u,|k,u),
=Lk + L u—ys—y))dudsG, _,(dyjlk + 1@—ys5—)),,

= q*(1; k; u) du G} (dy; ds, j| k, u),
q(1; k;u — y)ydu G, _,(dy; 0| k; u — y) = g*(1; k; u) du G*, \(dy; 0| k; u),
q(1; k; (™, 5 — u,);) du'™ ds G, _,(du,; j| k; (@™, s — u,);),
= q*(1; k; u) du G} _,(ds; j| k; u) .

As the consequence of these equations we have property (v) reversibility. The
GEM is invariant under the transformation which reverses time, exchanges
spent with resid:~l holding times, and arrivals with departures.

Thus K(¢) is itself a reversible stochastic process. With exponential service
times, K(#) is a Markovian birth-death process and the reversibility is immediate.
However it is easily seen that non-Markovian birth-death processes need not be
reversible, so the reversibility of K(7) proved here is a nontrivial result.

Another consequence of property (v) sheds some light on the results of
Shanbhag and Tambouratzis concerning the output process of the Erlang model.
Consider a pure loss queueing system with infinitely many servers, general
service time distribution and Poisson arrivals. Suppose however that the number
of busy servers acts as a deterrent to a new customer joining the queue. In
terms of the GEM, this means taking a, < « for all i, where « is the rate of
arrivals. The probability that an arrival will enter the system when there are
already k busy servers is a,/a. The rejected arrivals are termed losses.

Conditionally on the process Z(r), the losses form a nonstationary Poisson
process whose rate function is given by A(f) = @ — ay,. This process is un-
altered by the transformation defined by property (v). Since the superposition
of the process of accepted arrivals and the process of losses is a Poisson process
of rate a, (v) ensures that the superposition of the departures and the losses
is also a Poisson process of rate a. This result was given by Shanbhag and
Tambouratzis (1973) for the Erlang model with a, = @ (k < N) ay = 0.

In conclusion, we note that the arrivals and departures from a GEM form a
bivariate point process in the sense of Cox and Lewis (1972) and Wisniewski
(1972). However, this aspect of the GEM will not be explored further here.
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