ON THE BERRY-ESSEEN THEOREM FOR U-STATISTICS

BY Y.-K. CHAN1 AND JOHN WIERMAN

University of Washington

Assuming the existence of fourth moment only, we prove the Berry-Esseen theorem for *U*-statistics. Assuming the third absolute moment, we obtain the order bound $O(n^{-\frac{1}{2}}\log^{\frac{1}{2}}n)$. This improves earlier results of Bickel, and Grams and Serfling.

Let X_1, \dots, X_n be independent random variables with the same distribution function F. Let h be a symmetric function of two variables such that $h(X_1, X_2)$ has mean 0, and such that $E(h(X_1, X_2) | X_1)$ has a positive variance. Introduce, as in [3], the U-statistic $U \equiv U_n = \binom{n}{2}^{-1} \sum_{i=1}^{m-1} \sum_{j=i+1}^{n} h(X_i, X_j)$. The subscript n for U_n and those random variables defined later will be suppressed throughout this paper. Let σ^2 denote the variance of U. Let Φ denote the standard normal distribution. We prove the following theorem.

THEOREM. If $h(X_1, X_2)$ has finite third absolute moment, then $\sup_x |P(\sigma^{-1}U \le x) - \Phi(x)| = O(n^{-\frac{1}{2}} \log^{\frac{1}{2}} n)$ as $n \to \infty$. If $h(X_1, X_2)$ has finite fourth moment, then $\sup_x |P(\sigma^{-1}U \le x) - \Phi(x)| = O(n^{-\frac{1}{2}})$.

Bickel [1] obtained the order bound $O(n^{-\frac{1}{2}})$ with the assumption that h is bounded. Grams and Serfling [2] have the order bound $O(n^{-\frac{1}{2}+\varepsilon})$ ($\varepsilon > 0$ arbitrary) assuming the existence of all moments for $h(X_1, X_2)$. The key step in the present proof is the consideration of $S + \Delta'$ below. The rest is a combination of the techniques used in [1] and [2].

First, assume that $h(X_1, X_2)$ has finite third moment. Introduce the function $g(x) = \int h(x, y) \, dF(y)$. Thus $E(h(X_1, X_2) | X_1) = g(X_1)$, and therefore $g(X_1)$ has mean 0 and positive variance σ_g^2 . Let $\hat{U} \equiv 2n^{-1} \sum_{i=1}^n g(X_i) = \binom{n}{2}^{-1} \sum_{i=1}^{n-1} \sum_{j=i+1}^n (g(X_i) + g(X_j))$, the projection of U. Then \hat{U} also has a positive variance $\hat{\sigma}^2$. Simple computations show

$$\begin{split} \hat{\sigma}^2 &= 4n^{-1}\sigma_g^{\ 2} &\quad \text{and} \\ \sigma^2 &= \binom{n}{2}^{-2}\{\binom{n}{2}Eh^2(X_1,X_2) + n(n-1)(n-2)\sigma_g^{\ 2}\} \ . \end{split}$$
 For each n let $I = [n-3n^{\frac{1}{2}}\log n]$. Define the random variables
$$S \equiv \hat{U}/\hat{\sigma} = 2n^{-1}\hat{\sigma}^{-1}\sum_{i=1}^n g(X_i) \ , \\ Y_{ij} \equiv h(X_i,X_j) - g(X_i) - g(X_j) \ , \qquad (1 \leq i < j \leq n) \\ \Delta \equiv (U-\hat{U})/\hat{\sigma}^{'} = \binom{n}{2}^{-1}\hat{\sigma}^{-1}\sum_{i=1}^{n-1}\sum_{j=i+1}^n Y_{ij} \ , \\ \Delta' \equiv \binom{n}{2}^{-1}\hat{\sigma}^{-1}\sum_{i=1}^{I-1}\sum_{j=i+1}^I Y_{ij} \ , \\ \Delta'' \equiv \Delta - \Delta' = \binom{n}{2}^{-1}\hat{\sigma}^{-1}\sum_{i=1}^{n-1}\sum_{j=(I\vee i)+1}^n Y_{ij} \ . \end{split}$$

136

Received December 1, 1975.

AMS 1970 subject classification. Primary 60F07.

Key words and phrases. Berry-Esseen bounds, U-statistics.

¹ Research partially supported by NSF Grant MPS75-09084.

Note that Y_{ij} $(1 \le i < j \le n)$ are uncorrelated and have mean 0. Let φ_X stand for the characteristic function for a random variable X. From the ordinary Berry-Esseen theorem, we have

$$\int_0^{\varepsilon_1 n^{\frac{1}{2}}} t^{-1} |e^{-t^2/2} - \varphi_S(t)| dt = O(n^{-\frac{1}{2}})$$

where ε_1 is a positive constant independent of n. We will obtain a similar order bound for $\varphi_{S+\Delta'}$. Write η for the characteristic function $\varphi_{g(X_1)}$. There exists $\varepsilon \in (0, \varepsilon_1)$ so small that $|\eta(\theta)| \leq 1 - \theta^2 \sigma_g^2/3 \leq \exp(-\theta^2 \sigma_g^2/3)$ if $|\theta| \leq \varepsilon/\sigma_g$. In the following assume n is so large that $n^{\frac{1}{2}} > \varepsilon^{-1}$ and n-2 > n/2. We estimate

$$\begin{split} & \int_{0}^{n^{\frac{1}{4}}} t^{-1} |\varphi_{S}(t) - \varphi_{S+\Delta'}(t)| \ dt \\ & = \int_{0}^{n^{\frac{1}{4}}} t^{-1} |Ee^{itS}(1-e^{it\Delta'})| \ dt \\ & \leq \int_{0}^{n^{\frac{1}{4}}} \left[t^{-1} |Ee^{itS}it\Delta'| + t^{-1}E|1 + it\Delta' - e^{it\Delta'}| \right] dt \\ & \leq \left(\frac{n}{2} \right)^{-1} \hat{\sigma}^{-1} \sum_{i=1}^{I-1} \sum_{j=i+1}^{I} \int_{0}^{n^{\frac{1}{4}}} |Ee^{itS}Y_{ij}| \ dt + \int_{0}^{n^{\frac{1}{4}}} t^{-1}E(t^{2}\Delta'^{2}) \ dt \\ & \leq \hat{\sigma}^{-1} \int_{0}^{n^{\frac{1}{4}}} |\eta^{n-2}(2n^{-1}\hat{\sigma}^{-1}t)| \times |Ee^{2in^{-1}\hat{\sigma}^{-1}t(g(X_{1})+g(X_{2}))}Y_{12}| \ dt + n^{\frac{1}{2}}E\Delta'^{2} \\ & \leq \hat{\sigma}^{-1} \int_{0}^{n^{\frac{1}{4}}} |\exp(n-2)(-4n^{-2}\hat{\sigma}^{-2}t^{2}\sigma_{g}^{2}/3)| \\ & \times |Ee^{2in^{-1}\hat{\sigma}^{-1}t(g(X_{1})+g(X_{2}))}Y_{12}| \ dt + O(n^{-\frac{1}{2}}) \\ & \leq \hat{\sigma}^{-1} \int_{0}^{n^{\frac{1}{4}}} e^{-t^{2}/6} |Ee^{2in^{-1}\hat{\sigma}^{-1}t(g(X_{1})+g(X_{2}))}Y_{12}| \ dt + O(n^{-\frac{1}{2}}) \\ & = \hat{\sigma}^{-1} \int_{0}^{n^{\frac{1}{4}}} e^{-t^{2}/6} |E[e^{2in^{-1}\hat{\sigma}^{-1}t(g(X_{1})+g(X_{2}))}Y_{12}| \ dt + O(n^{-\frac{1}{2}}) \\ & \leq \hat{\sigma}^{-1} \int_{0}^{n^{\frac{1}{4}}} e^{-t^{2}/6} |An^{-2}\hat{\sigma}^{-2}t^{2}(g(X_{1})+g(X_{2}))^{2}Y_{12}| \ dt + O(n^{-\frac{1}{2}}) \\ & \leq 4n^{-2}\hat{\sigma}^{-3}E|(g(X_{1})+g(X_{2}))^{2}Y_{12}| \int_{0}^{\infty} e^{-t^{2}/6}t^{2} \ dt + O(n^{-\frac{1}{2}}) \\ & = O(n^{-\frac{1}{2}}) \ . \end{split}$$

(In the second equality above we used the fact that $g(X_1) + g(X_2)$ and Y_{12} are uncorrelated.) On the other hand

$$\int_{n\frac{1}{4}}^{\epsilon n\frac{1}{2}} t^{-1} |\varphi_{S}(t) - \varphi_{S+\Delta'}(t)| dt
= \int_{n\frac{1}{4}}^{\epsilon n\frac{1}{2}} t^{-1} |Ee^{itS}(1 - e^{it\Delta'})| dt
= \int_{n\frac{1}{4}}^{\epsilon n\frac{1}{2}} t^{-1} |Ee^{2in^{-1}\hat{\sigma}^{-1}t(g(X_{I+1}) + \dots + g(X_{n}))} Ee^{2in^{-1}\hat{\sigma}^{-1}t(g(X_{1}) + \dots + g(X_{I}))} (1 - e^{it\Delta'})| dt
\leq \int_{n\frac{1}{4}}^{\epsilon n\frac{1}{2}} t^{-1} |\eta^{n-I}(2n^{-1}\hat{\sigma}^{-1}t)| \times 2 dt
\leq \int_{n\frac{1}{4}}^{\epsilon n\frac{1}{2}} 2t^{-1} \exp[(n - I)(-4n^{-2}\hat{\sigma}^{-2}t^{2}\sigma_{g}^{2}/3)] dt
\leq \int_{n\frac{1}{4}}^{\epsilon n\frac{1}{2}} 2t^{-1} \exp[(3n^{\frac{1}{2}}\log n)(-4n^{-2}\hat{\sigma}^{-2}t^{2}\sigma_{g}^{2}/3)] dt
= \int_{n\frac{1}{4}}^{\epsilon n\frac{1}{2}} 2t^{-1}n^{-1} dt
= O(n^{-\frac{1}{2}}).$$

Combining, we have $\int_0^{\epsilon n^{\frac{1}{2}}} t^{-1} |e^{-t^2/2} - \varphi_{S+\Delta'}(t)| dt = O(n^{-\frac{1}{2}})$, and the usual Berry-Esseen argument yields

$$\sup_{x} |P(S + \Delta' \leq x) - \Phi(x)| = O(n^{-\frac{1}{2}}).$$

Therefore, for any choice of the constants a_n , an elementary calculation gives

(*)
$$\sup_{x} |P(S + \Delta \leq x) - \Phi(x)| \leq O(n^{-\frac{1}{2}}) + P(|\Delta - \Delta'| \geq a_n) + O(a_n)$$
.

If we let $a_n = n^{-\frac{1}{2}} \log^{\frac{1}{2}} n$, we have

$$P(|\Delta - \Delta'| \ge a_n) = P(|\Delta''| \ge a_n) \le a_n^{-2} E \Delta_n''^2$$

$$= a_n^{-2} \binom{n}{2}^{-2} \hat{\sigma}^{-2} \sum_{i=1}^{n-1} \sum_{j=(I \vee i)+1}^{n} E Y_{ij}^2$$

$$\le a_n^{-2} \binom{n}{2}^{-2} \hat{\sigma}^{-2} (n \times 3n^{\frac{1}{2}} \log n) E Y_{12}^2$$

$$= O(n^{-\frac{1}{2}} \log^{\frac{1}{2}} n).$$

Combining, we see that

$$\sup_{x} |P(U/\hat{\sigma} \leq x) - \Phi(x)| = \sup_{x} |P(S + \Delta \leq x) - \Phi(x)|$$
$$= O(n^{-\frac{1}{2}} \log^{\frac{1}{2}} n).$$

This, together with the observation that $|1 - \hat{\sigma}/\sigma| = O(n^{-1})$, implies

$$\sup_{x} |P(U/\sigma \le x) - \Phi(x)| = O(n^{-\frac{1}{2}} \log^{\frac{1}{2}} n) .$$

The first assertion of the theorem is proved.

Now assume that $h(X_1, X_2)$, and therefore Y_{12} , has finite fourth moment. Then, if we let $a_n = n^{-\frac{1}{2}}$, we have

$$P(|\Delta - \Delta'| \ge a_n) = P(|\Delta''| \ge a_n) \le a_n^{-4} E \Delta_n''^4$$

$$= n^2 \binom{n}{2}^{-4} \hat{\sigma}^{-4} \sum_{n} \sum_{n} \sum_{n} E Y_{i_1 j_1} Y_{i_2 j_2} Y_{i_3 j_3} Y_{i_4 j_4},$$

where in the summation the subscript i_k (k=1,2,3,4) runs through $1, \cdots, n-1$, the subscript j_k runs through $(I \vee i_k) + 1, \cdots, n$ (k=1,2,3,4). Many terms in the summation vanish. More precisely, since Y_{ij} is a function only of X_i and X_j , we see that a summand in the above sum vanishes unless every subscript occurs at least twice. Consider a nonzero summand. Suppose that it contains four distinct subscripts α , β , γ , δ . At least two of α , β , γ , δ must be each equal to some of j_1 , j_2 , j_3 , j_4 . Hence there are most $\binom{4}{2}n^2(n-I)^2$ way to select the quadruple $(\alpha, \beta, \gamma, \delta)$. Suppose next that a nonzero summand contains 3 distinct subscripts α , β , γ . At least one of α , β , γ must each be equal to some j_1 , j_2 , j_3 , j_4 . Hence there are at most $\binom{3}{2}n^2(n-I)$ ways to select the triple (α, β, γ) . Evidently there are at most $2^8n^2 + n$ summands which contain fewer than three distinct subscripts. Combining, we see that the number of nonzero terms in the above sum is bounded by a constant multiple of $n^2(n-I)^2$. Consequently, with $a_n = n^{-\frac{1}{2}}$, we have

$$P(|\Delta - \Delta'| \ge a_n) \le Cn^2 \binom{n}{2}^{-4} \hat{\sigma}^{-4} n^2 (n - I)^2$$

$$\le Cn^2 \binom{n}{2}^{-4} 4^{-2} n^2 \sigma_g^{-4} n^2 (1 + 3n^{\frac{1}{2}} \log n)^2$$

$$= O(n^{-\frac{1}{2}}).$$

(Here C is some constant dependent on $\varphi_{h(X_1,X_2)}$ but not on n.) This and (*) yields

$$\sup_{x} |P(S + \Delta \le x) - \Phi(x)| = O(n^{-\frac{1}{2}}).$$

As $|1 - \hat{\sigma}/\sigma| = O(n^{-1})$, this again implies

$$\sup_{x} |P(U/\sigma \le x) - \Phi(x)| = O(n^{-\frac{1}{2}})$$
.

Although stated in terms of a one-sample U-statistic of order two, the theorem of this paper may be extended to the general case of multisample U-statistics of arbitrary order, provided only that the minimum sample size tends to infinity.

Consider a c-sample U-statistic with sample sizes $n_1, n_2, n_3, \dots, n_c$, and corresponding blocks of m_1, m_2, \dots, m_c arguments in the kernel. Letting n denote the minimum sample size, define $I = [n - 3n^{\frac{1}{2}} \log n]$. The difference $\Delta = (U - \hat{U})/\hat{\sigma}$ is partitioned into Δ' and $\Delta'' = \Delta - \Delta'$ with Δ' having the form

$$\Delta' = [\prod_{i=1}^{c} \binom{n_i}{m_i}]^{-1} \hat{\sigma}^{-1} \sum Y_{i_{11}} i_{12} \cdots i_{cm_c},$$

where the sum is over all combinations i_{11} , i_{12} , \cdots , i_{em_e} for which all indices from the smallest sample are less than or equal to I.

The Berry-Esseen theorem for independent nonidentically distributed random variables is applied to $S = \hat{U}/\hat{\sigma}$. $S + \Delta'$ is then handled by Fourier analysis, using the fact that Δ' is independent of the last n-I observations from the smallest sample. The counting arguments used for the number of terms of nonzero expectation in Δ'^2 , Δ''^2 , and Δ''^4 are more involved than those presented. Moment bounds found then handle Δ'' by the methods of Grams and Serfling, to obtain the rate of convergence for $U/\hat{\sigma}$. The equation allowing replacement of $\hat{\sigma}$ by σ is obtained from Hájek's projection lemma and the moment bound of Grams and Serfling, which combine to show $|\sigma^2 - \hat{\sigma}^2| = O(n^{-2})$. For details, see [4].

REFERENCES

- [1] BICKEL, P. J. (1974). Edgeworth expansions in nonparametric statistics. Ann. Statist. 2
- [2] Grams, W. F. and Serfling, R. J. (1973). Convergence rates for *U*-statistics and related statistics. *Ann. Statist.* 1 153-160.
- [3] HOEFFDING, W. (1948). A class of statistics with asymptotically normal distributions. *Ann. Math. Statist.* 19 293-325.
- [4] Wierman, J. (1975). First passage percolation, a Berry-Esseen theorem for *U*-statistics, and optimal stopping. Ph. D. thesis, Univ. of Washington.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF WASHINGTON SEATLE, WASHINGTON 98195 DEPARTMENT OF MATHEMATICS UNIVERSITY OF MINNESOTA MINNEAPOLIS, MINNESOTA 55455