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ON THE BERRY-ESSEEN THEOREM FOR U-STATISTICS

By Y.-K. CHAN! AND JoﬁN WIERMAN
University of Washington

Assuming the existence of fourth moment only, we prove the Berry-
Esseen theorem for U-statistics. Assuming the third absolute moment, we
obtain the order bound O(n-tlogtn). This improves earlier results of
Bickel, and Grams and Serfling.

Let X}, - .-, X, be independent random variables with the same distribution
function F. Let & be a symmetric function of two variables such that A(X,, X,)
has mean 0, and such that E(k(X,, X,) | X;) has a positive variance. Introduce,
as in [3], the U-statistic U= U, = (3)™' 115 %41 #(X,, X;). The subscript n
for U, and those random variables defined later will be suppressed throughout
this paper. Let ¢” denote the variance of U. Let ® denote the standard normal
distribution. We prove the following theorem.

THEOREM. If h(X,, X,) has finite third absolute moment, then sup, |P(67*U < x) —
®(x)| = O(n~tlogtn) as n— co. If K(X,, X,) has finite fourth moment, then
sup, |P(67'U £ x) — @(x)| = O(n~#).

Bickel [1] obtained the order bound O(n~%) with the assumption that % is
bounded. Grams and Serfling [2] have the order bound O(n=#+¢) (¢ > 0 arbitrary)
assuming the existence of all moments for A(X;, X,). The key step in the present
proof is the consideration of S + A’ below. The rest is a combination of the
techniques used in [1] and [2].

First, assume that 2(X,, X;) has finite third moment. Introduce the function
g(x) = § A(x, y)dF(y). Thus E(h(X » X;)| X7) = g(X)), and therefore g(X,) has mean
0and positive variance s,2. Let U= 2n=1 3% g(X;) = (3)™ 2r=2 2% i0a (9(X) +
9(X;)), the projection of U. Then U also has a positive variance ¢°. Simple
computations show

@ =4n7'e} and
o' = G ER Xy, Xo) + n(n — 1)(n — 2)0,} .
For each nlet I = [n — 3nt log n]. Define the random variables
S= (7/6 =2n7'67 1, 9(X))
Y = (X, X;) — 9(X) — 9(X;), 1g£icjgn
A= (U—0)6'= )76 D15 Dheins Vi s
AI = (n)—lo.—l 11—11 g i1 Yij ,

A=A A= (n)_la“1 228 Zy avirer Yig -

Received December 1, 1975.

1 Research partially supported by NSF Grant MPS75-09084.
AMS 1970 subject classification. Primary 60F07.

Key words and phrases. Berry-Esseen bounds, U-statistics.

136

[ ,4’2
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )2
The Annals of Probability. STOR ®

WWW.jstor.org



U-STATISTICS 137

Note that Y,; (1 < i < j < n) are uncorrelated and have mean 0. Let ¢, stand
for the characteristic function for a random variable X. From the ordinary
Berry-Esseen theorem, we have
Jord £3le= 2 — oy (1)] dt = O(n~*)
where ¢, is a positive constant independent of n. We will obtain a similar order
bound for ¢5,,,. Write 7 for the characteristic function ¢, ,. There exists
e € (0, &) sosmall that [p(0)| < 1 — 6%*/3 < exp(—0%}*/3)if |0] < ¢/o,. Inthe
following assume n is so large that n* > ¢~*and n — 2 > n/2. We estimate
Vot 17 es() — posa(t)] dt
Ssd t—llEeitS(l _ eitA’)l dt
< (M [t EeSitD'| + 7'E|1 + ith — 4| dt
()67 DA Dhains V¥ [Be™SY,| dr 4 §5F e E(PA") dt
§-1 Sg,i |7]n—2(2n_1&_1t)| X |Ee2in—19—-lz(g(x1)+g()(2))le dt + mMEAN”
671 {3t {exp(n — 2)(—4n~%6"10 }[3)}
X |Eezin_lé‘_lt(g(Xl)+y(X2))lel dt + O(n‘*)
G-1 S:z‘ e—tz/elEeﬁin—lil‘—lt(y(Xl)+y(X2))le dt + O(n‘*)
— -1 SSL* e—t2/6|E[e2in"13‘1t(g(X1)+0(X2)) —1
— 2in'67H(g(X)) + 9(X2)] Y| dt + O(n™%)
671 {2t e="E|4n=26"*}(g(X,) + 9(Xy))* Yyl dt + O(n™?)
4n*3=E|(9(X) + 9(X,))* Y| {7 e~ dt + O(n~H)
= O(Il_%) .

A TIA A

IIA

A TIA

(In the second equality above we used the fact that g(X,) + g(X,) and Y, are
uncorrelated.) On the other hand

E’Ill' -
Sat t7es(f) — @sialt)| dt
= {4 171 Eetts(1 — et dt

= S:i* t_l|Ee“”‘13‘1t<v<X1+1)+-~~+g<Xn))Eezin-1.’;—1z(g<X1)+---+g<X1))(1 _ eizA')l dt

<\ i @nma)| X 2de

< (5 2t exp[(n — I)(—4n~%6"%% */3)] dt

< (% 2171 exp[(3n? log n)(—4n—26"*% */3)] dt

= ;"f 2t"Indt

= O(Il_%) .
Combining, we have ferd 1-1e=2 — @, ,(t)| dt = O(n~¥), and the usual Berry-
Esseen argument yields

sup, |P(S + A’ < x) — D(x)| = O(nt).

Therefore, for any choice of the constants a,, an elementary calculation gives
(*)  sup, [P(S + A < x) — Q)| < O(n) + P(A — &| = a,) + O(a,) -
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If we let a, = n~tlog! n, we have
P(A — &| 2 a,) = P(A"| 2 a,) < a,"EA,"

= ‘11._2(3)#2""\_2 paary D eaviynEYi;
=< a,7%(3)%7*(n X 3ntlog n)EY?},
= O(n~tlogtn).

Combining, we see that ’

sup, |P(Ufé < x) — O(x)| = sup, |P(S + A < x) — O(x)|
= O(n~tlogtn) .
This, together with the observation that |1 — G/s| = O(n™"), implies
sup, |P(Uje < x) — @(x)| = O(n~*logt n) .

The first assertion of the theorem is proved.

Now assume that #(X,, X,), and therefore Y,,, has finite fourth moment. Then,
if we let a, = n~%, we have

P(A — | 2 a,) = P(A"| 2 a,) < a,~EA,™
=nrE) 0 DN Y EY Vi, Yigiy Yoy s

where in the summation the subscript i, (k = 1, 2, 3, 4) runs through 1, ...,
n — 1, the subscript j, runs through (I v i)+ 1, ...,n(k = 1,2, 3,4). Many
terms in the summation vanish. More precisely, since Y;; is a function only
of X; and X;, we see that a summand in the above sum vanishes unless every
subscript occurs at least twice. Consider a nonzero summand. Suppose that it
contains four distinct subscripts a, 3, 7, d. At least two of @, §, 7, d must be each
equal to some of j,, j,, jis, j,- Hence there are most (§)n*(n — I)* way to select the
quadruple (a, 8, 7, 6). Suppose next that a nonzero summand contains 3 distinct
subscripts @, 8, y. At least one of a, 8, y must each be equal to some j,, j,, jss ji
Hence there are at most (})n’(n — I) ways to select the triple (a, 8, y). Evidently
there are at most 2%4® + n summands which contain fewer than three distinct
subscripts. Combining, we see that the number of nonzero terms in the above
sum is bounded by a constant multiple of n*(n — I)®. Consequently, with a, =
n—%, we have

P(IA — N'| 2 a,) < C¥g)6~*n(n — I’
= Cr'(3)~*4~n’e ,~*n’(1 + 3nt log n)?
= O(n7).
(Here C'is some constant dependent on ¢, x, x,, but not on n.) This and (*) yields
sup, |P(S + A < x) — O(x)| = O(n~?) .
As |1 — é/o| = O(n™), this again implies
sup, |P(Ule £ x) — O(x)| = O(n~?).
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Although stated in terms of a one-sample U-statistic of order two, the theorem
of this paper may be extended to the general case of multisample U-statistics of
arbitrary order, provided only that the minimum sample size tends to infinity.

Consider a c-sample U-statistic with sample sizes n,, n,, n,, - - -, n,, and corre-
sponding blocks of m,, m,, - .., m, arguments in the kernel. Letting n denote
the minimum sample size, define /= [n — 3ntlogn]. The difference A =
(U — U)/s is partitioned into A’ and A” = A — A’ with A’ having the form

A = [T G167 2 Yiisg e tom, 2
where the sum is over all combinations iy, iy, - - -, i, for which all indices from
the smallest sample are less than or equal to I.

The Berry-Esseen theorem for independent nonidentically distributed random
variables is applied to § = U/é. S + A’ is then handled by Fourier analysis,
using the fact that A’ is independent of the last n — I observations from the
smallest sample. The counting arguments used for the number of terms of
nonzero expectation in A”, A”?, and A" are more involved than those presented.
Moment bounds found then handle A” by the methods of Grams and Serfling,
to obtain the rate of convergence for U/é. The equation allowing replacement
of ¢ by ¢ is obtained from Hajek’s projection lemma and the moment bound
of Grams and Serfling, which combine to show |¢* — ¢°| = O(rn~?). For details,
see [4].
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