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FUNCTIONALS OF BROWNIAN MEANDER AND
BROWNIAN EXCURSION

BY RicHARD T. DURRETT! AND DONALD L. IGLEHART?

Stanford University

The primary concern of this paper is to calculate the distributions
and/or means of the maxima, first entrance times, and occupation times of
Brownian meander and Brownian excursion. The method employed is to
develop conditioned families of random functions which have Brownian
meander (or Brownian excursion) as their weak limit and then use the
continuous mapping theorem.

1. Introduction and summary. This paper is a sequel to Durrett, Iglehart and
Miller (1977). We use the notation of that paper, often without mention. In
the above paper a number of functional central limit theorems (f.c.l.t.’s) are
proved in which either Brownian meander, {W*(¢): 0 < r < 1}, or Brownian
excursion, {Wy*(f): 0 < ¢ < 1}, is the limit process. The most important feature
of f.c.l.t.’s is that a great variety of other limit theorems can be obtained im-
mediately by employing the continuous mapping theorem. Such results are of
little use if we do not know the distribution of functionals of the limit process.
In the case of Donsker’s theorem (for which the limit process is Brownian mo-
tion) we know the distribution of many functionals of interest; see Iglehart
(1974), page 237, for a listing. Our concern in this paper is to calculate the
distributions and/or means of the maxima, first entrance times, and occupation
times for Brownian meander and Brownian excursion. Functionals of Brownian
meander are studied in Section 2 and functionals of Brownian excursion in
Section 3.

2. Functionals of Brownian meander. In this section we shall exploit the fact
that (W|m > —¢)= W+ as ¢ | 0 to obtain the distribution of a variety of
functionals of W+. The idea behind the method is to use the continuous mapping
theorem; [1], Theorem 5.1. Suppose 4 is a measurable mapping from C to R*
and that P{W+* e D,} = 0, where D, is the set of discontinuities of 2. Then
h(W*) = h(W+).

For h(x) = (max,g,g, x(s), x(1)) the method mentioned above yields
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2.1) PROPOSITION. For x >0and 0 < y < x
PM* < x, WH(1) < )} = Epo [e M — emtberutn],

Proor. The probability of the condition P{m > —¢} ~ (2/n)tcase | 0. From

[1], equation (11.10),
Pl—e<m=Mx<x, —e< W() <y}
= Mrece [Ni(—€ + 2k(x + €), y + 2k(x + ¢))
— Ny(—y — 2¢ + 2k(x + ¢), —e + 2k(x + ¢€))] .

Now use dominated convergence to show that as ¢ | 0
Pl—e<m<M<Z x, —e < W) Sy} ~ (2fn)te Do [e" k2 — g-Ghatwi?] |
From this expression and the probability of the condition we obtain the desired
result.

(2.2) COROLLARY. For x > 0,

- (2:3) PIM* < x} =1+ 2 35, (—1)* exp{—(kx)*/2} .
Also
(2.4) E{M*} = 27)'In2 = 1.7374 ... .

Proor. For (2.3) just set y = xin (2.1) and simplify. For (2.4) use (2.3) plus
the relation E{M*} = {3 P{M* > x}dx.

Next we turn our attention to the distribution of (M*(7), W+*(r), W+(1)). Using
the same method employed in (2.1) we obtain
(2.5) PROPOSITION. For0 <t <1, x>0,and0<y<x,2z>0
P{M*(t) < x, WH(t) edy, W*(1) e dz} ‘ .

=t e (2kx + y)g(l — ¢, p, 2) exp{—(2kx + y)}/2t} dy dz .
(2.6) COROLLARY. For0 < t< land x >0
P{M*(t) < x} =2 X5 _, [e= 2N, ,_,,(2kx(1 — 1), 2kx(1 — t) + 2x)
— e—[<2k+l)z]2/2tNm_t)(O, x)] .

First entrance times for Brownian meander are defined for x > 0 by 7,* =
inf {t > 0: W*(f) = x}. From the usual duality relationship we have P{T,* > 1} =
P{M*(t) < x} which in conjunction with (2.6) yields the first entrance law for
Brownian meander to the level x.

As a last functional we consider occupation times. Let 4 be a Borel set of
[0, o). Then the expected amount of time in [0, 1] that W* is in A is given by
E{§} 1, (W*(5)) ds) = §, 5 PIW*(s) e dx} ds .

A simple probabilistic argument yields
2.7 PROPOSITION. For A a Borel set of [0, o)

E{§3 1,(W*(s)) ds} = §, m(x) dx,
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where

m(x) = 2 {5 exp{—(x + y)’/2} dy .
Proor. Begin by writing
E{§3 1,(W*(s))ds} = §, \s P{W*(s) e dx} ds
= {, dx {}2s~ixe=="/N,_(0, x) ds .
Next write N,_,(0, x) as an integral and interchange order of integration to obtain
3 xe——xi!/zs . e—uz/ﬁ(l—s) ds:l .
(2rs®)t  [2z(1 — 9)]
Let T, = inf {# > 0: W(¢) = x}, the passage time to the level x. Then for x > 0,
P{T, e ds} = (xe~***|(2rs%)?) ds; see Ito-McKean (1974), page 25. Furthermore,

PUW(1) edy + x|T, = s} = P(W(1) edy + x| W(s) = x)

e—ya/ﬁ(l—s)

T e =9

@8 E( LOVE) ds) = $.] 2@ $5dy |

dy.

Using these facts together with the path continuity of W (for W to hit x 4 y at
t = 1 it must hit x at some time s € (0, 1)), (2.8) yields
E(\} 1,(W+(s)) ds} = §, [2(2n)* {3 PIW(1) e dy + x}] dx

= §4[2 §§ exp{—(x + y)[2} dy] dx ,
the desired result.
Observe that m’(x) = 4 exp(—2x’) — 2 exp(—x*/2) so that m is unimodal and
attains its maximum at [(%) In 2]t = 0.67978 . ...

3. Functionals of Brownian excursion. Using the fact that (W* | W*(1) < ¢) =
W+ we shall compute the distribution of My*(7) for 0 < r < 1. In addition the
expected occupation time of a set 4 by W,* will be calculated. From [3], Theo-
rem 6.2, we have

3.1) PRroPoOSITION. For x > 0
P(M," < %} = 1 + 2 T, exp{—(2kx)"/2)[1 — (2kx)’] .

For an analytic verification that the expression in (3.1) is a df and that its
density is positive for x > 0 see Chung (1975), pages 24-26. In order to com-
pare the df’s P{M* < x} and P{M,* < x} we have plotted them in Figure 1.
Note that M* is stochastically larger than M,*, as one would guess.

3.2) COROLLARY. E{M,*} = (n/2)} = 1.2533 ....
Proor. Since E{M,*} = (¢ P{M,* > x} dx, we have
E{M,*} = 21im,_,, {2, Y5, ek [(2kx)* — 1] dx .

Now for k > n/2 the integrand is nonnegative on [n~!, co) so monotone conver-
gence and integration by parts give

E{M0+} =2 lim”_,w ZIT=1 e-~(2k/n)2/2n—.l =2 Slo)o e—(2x)2/2 dx = (71'/2)* .
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Fi1c. 1. Distributions of maxima.

The calculation above was first done by M. Bramson. Observe that justifying
the interchange here is more than a technicality since a haphazard interchange
of {¢> and Y ¢, gives the absurdity E{M,*} = 0.

Next we obtain the distribution of M,*(¢) for 0 < ¢ < 1.

(3.3) PROPOSITION. For0 <t < land x >0

PIM(1) < )
= [2/z£(1 — O] Do o "2 §7 p(2kx 4 y)e-lrrsksa-opa-o gy

Proor. First use Proposition 2.5 to calculate P{M™*(f) < x, W*(¢t) e dy,
W*(1) < ¢} and integrate out y from 0 to x.

Define T,*(x) to be the first entrance time of Brownian excursion to the level
x > 0. Then again (3.3) yields P{T*(x) > t}.

Finally we turn to the expected occupation time of a Borel set 4 C [0, o) by
Brownian excursion. This result was first obtained by Lévy (1939). The prob-
abilistic evaluation of the integral is new and was also discovered independently
by K. L. Chung ([2], page 30), who has also calculated higher moments of the
occupation time.

(3.4) PROPOSITION. For A a Borel set of [0, co)
E($} 1,(W,*(s)) ds} = {, e(x) dx ,

where
e(x) = 4xexp(—2x%) .
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Proor. Following the procedure used in proving (2.7) we see that
e(x) = 5 pt(0, 0, 5, x) ds
= 2/7)t i [s(1 — 5)]"ix* exp{—x*/2s(1 — s)} ds .
Next regroup the terms in the integrand to obtain

. xe—-:cz/Zs xe—m2/2(1—s)

(3.5 0= D' e @at = 9

In the proof of (2.7) we noted that f,(s) = xe~*"*/(2xs%? is the density at s of the
passage time T, for Brownian motion. Thus (3.5) can be written as

e(x) = (87)* S3fuls)fu(1 — 5) ds

However, the integral above can be viewed as a first entrance decomposition of
f2(1); if Brownian motion is to hit level 2x for the first time at r = 1, it must
have previously hit level x for the first time at some time s e (0, 1). Hence

e(x) = (8m)*fun(1)
which is the desired result.

As we saw in the meander case the function e is unimodal, since e'(x) =
4 exp(—2x")[1 — 4x’]. Its maximum is attained at x = J.

In order to compare the occupation time densities m and e for Brownian
meander and Brownian excursion we have plotted them in Figure 2. Note that
m has a heavier tail and larger mode than does e. This is in keeping with our
intuition that the meander should assume larger values than the excursion.

2)

/-— e(x) = 4x exp(-2x

X
=2 exp{-(x+y)2/2}dy

0.0 0.5 1.0 1.5 2.0 2.5 3.0

F1G. 2. Expected occupation time densities.
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