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ASYMPTOTIC BEHAVIOR OF STABLE MEASURES

BY ALEJANDRO DE ACOSTA
Universidad Nacional de Buenos Aires

It is proved that if 4 is a stable measure of index p on a vector space
and ¢ is a seminorm, then lim;_. tPp{x: g(x) > t} exists.

1. Introduction. A classical theorem of P. Lévy asserts that if ¢ is a stable
distribution of index p on the real line, then lim,_, tPo{x: |x| > t} exists and is
strictly positive if p < 2 and ¢ is nondegenerate. Kuelbs and Mandrekar [5]
have generalized this result for the case of a stable measure on Hilbert space;
they obtain it as a consequence of the theory of domains of attraction. In [1]
we proved that if 4 is a stable measure of index p on a vector space E and g is
a measurable seminorm on E, then

lim sup, ., tPp{x: g(x) > t} < oo .

A similar, though somewhat weaker result has been obtained independently by
Kanter [4] using quite different methods. We further showed in [1] thatif p < 2
and p satisfies a nondegeneracy condition with respect to ¢, then

lim inf,_, ?p{x: q(x) >t} > 0.
In the present work we refine the methods developed in [1] and prove that

lim,_, ?u{x: q(x) > t}

exists and is strictly positive if p < 2 and p satisfies the nondegeneracy condition,
thus obtaining a complete generalization of P. Lévy’s result. It should be men-
tioned that when the seminorm is not a Euclidean norm, the existence of this
limit does not seem to have been proved even for stable measures on finite-
dimensional vector spaces.

2. Preliminaries. We refer to [1] for the definitions and results that we use.
In particular, throughout the paper our basic framework will be a measurable
space (E, &), with E a real vector space and <7 the g-algebra induced on E by
a real vector space F in duality with E.

3. Basic inequalities. For convenient reference, we state some elementary
inequalities which are explicitly or implicitly proved in [1]. They are essential
for the rest of the paper.

LeMMA 3.1. Let X,Y be independent E-valued random vectors. Let q be a measur-
able seminorm on E.
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(a) Let s >0,e>0. Then
Plg(X + Y) > s} = P{g(X) > s(1 + ¢)}P{g(Y) < s¢}
+ P{g(Y) > s(1 + ¢)}P{g(X) < s¢} .
(b) Let s >0,0<a<1,b=1—a. Then
Plg(X + Y) >'s} < P{g(X) > as} + P{g(Y) > as}
+ P{q(X) > bs}P{q(Y) > bs}.

LEMMA 3.2. Let y be a strictly stable measure of index p, and let y = 2V?. Let
X be an E-valued random vector with £ (X) = p.

(a) Lets >0,¢,>0forn=1,2,.... Let
0, = P{g(X) £ rsey},
0, =PgX) = rsTlici (1 +¢)e,} for n=2.
Then for all n = 1,
Plg(X) > s} = 2°P{q(X) > r"s [Iia (1 + )} TP 9,
(b) Lets >0,a,=1,0<a;<1,b; =1 —a;forj=1,2,.... Let ¢(t) =
P{g(X) > t}. Then foralln =1,
Pig(X) > s} < 2°P{g(X) > 1"sa, - - - a,} + D50 27N (e(rsay - - - a;15))

4. Tail behavior. Given a Borel set 4 in R, we denote by _#(A4) the space
of all finite nonnegative measures on the Borel subsets of 4. We denote the
restriction of a measure v to the Borel subsets of 4 by v| 4. We write v, -, v
if a net {y;} converges to v in the weak topology of _Z(A).

Let x be a stable probability measure on (E, &%) and let ¢ be a measurable
seminorm on E. For eacht > 0, let 2, be the measure on _#([0, o)) defined by

A,(B) = t*p{x: q(x)etB}, B aBorel setin [0, o).
For each r > 0, let I, = [r, o), 1,° = (r, o).
LEMMA 4.1. Let p be a strictly stable probability measure of index p on (E, 7).

(a) For each r > 0 the set of measures {2,|1,},5, is relatively compact for the
weak topology of _#(1,).

(b) Let {1,} be a sequence such that t, — co and {2, |1,} converges weakly in
A(1,) for each r > 0. Then there exists h = 0 such that for each r > 0,

2, (I,) — hr=? as k— oco.

Proor. (a) Itis enough to prove that {2,]|7,},,, is uniformly bounded in norm

and tight. By Theorem 3.1(1) of [1], there exists a constant C such that
mxig(x) = 1} < Ct? forall +>0.

Fixr > 0. Then (1) = t*p{x: g(x) = tr} < Cr~?forallt > 0. This proves that
SUPso ||(4, | 1,)]] < 0.
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Now choose s > r such that Cs—? < e. Then (4,|L)([r, 5])° = 4(I,°) < ¢ for
all # > 0. This shows that {4,|1,},,, is tight.

(b) Let 2, |I, —, 0, (a finite measure on 1,), and let F,(s) = 0,((s, o)) for
s = r. It is clear that the family of measures {6,},., is consistent in an obvious
way and the formula F(s) = F,(s) for r < s defines uniquely a nonincreasing,
right-continuous function on (0, co). We proceed to identify the function F.

Let « > 0, 8 > 0 be such that a*» 4 ? = 1. Let X, Y be independent E-
valued random vectors with (X)) = £(Y) = p. Then L(aX + BY) = p,
and applying Lemma 3.1 (a) we obtain: for all + > 0,

P{g(X) > 1} = P{g(aX) > «(1 + ¢)}P{q(BX) = te}
+ P(g(BX) > 1(1 + e)Plg(aX) < e} .
Therefore, for all s > 0
A (1,°) Z A, (I21.010)P9(BX) = stie} + A, (IP1040)Pl9(aX) = stye} .

Assume that s, a~'s(1 4 ¢) and g~'s(1 + ¢) are continuity points of F. Then
letting k — oo, we obtain

F(s) 2 F(a™s(1 + ¢)) + F(87's(1 + <)) -
Letting ¢ | O through an appropriate sequence, we get
(1) F(s) = F(a™'s) 4+ F(87') .

By right continuity (1) is true whenever s > 0, a > 0, 8 > 0 and a” + p7 = 1.
To obtain an inequality in the opposite direction, we apply Lemma 3.1 (b):

P{g(X) > 1} < P{g(aX) > at} + P{g(BX) > at}
+ Plg(aX) > br}P{q(BX) > bt} .
This implies: for all s > O,
A, (1°) < A, (I1a) + A, (If-1a) + 1,7 P{g(aX) > bst,}P{q(BX) > bst,} .

Choose s, a~'sa and p~'sa to be continuity points of F. Letting k — oo, and
using the fact that P{g(X) > ¢t} < Ct~?, we obtain:

F(s) £ F(a~'sa) + F(f'sa) .
Proceeding as above, we get
) F(s) < F(a™s) + F(87%)

valid for s > 0,a > 0,8 > 0and a? + 5 = 1. Now (1) and (2) yield the func-
tional equation for F

F((u» + v?)™"?) = F(u™") + F(v7"), u>0, v>0:
Therefore there exists # = 0 such that F(u) = hu=? for all u > 0. []

THEOREM 4.1. Let p be a stable probability measure of index p on (E, <%'). Then
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I =lim,_, t*p{x: q(x) > t} exists and for each r > 0
AN —, 2|1, as t— oo

where A(B) = 1§, ps=?='ds for B Borel in (0, o).

Proor. It is enough to prove the first part of the statement. The rest follows
then from

lim,_ ., 2,(1,) = lim,__, r=2(rt)?p{x: q(x) > tr} = Ir-* = 2(1,) .

We prove the existence of the limit for strictly stable measures first. Let p be
a strictly stable probability measure, and let X be an E-valued random vector

Let us consider the sequence ¢, = 7", where y = 2"?. Since by Lemma 3.1(a),
{2, 1,};5, is relatively compact for r = k!, k =1,2, ..., we can apply the
standard diagonal method to obtain a subsequence {z, } such that {4, [I,} con-

verges weakly in _#(1,) for each r > 0. By Lemma 4.1(b), there ex1stsl =0
such that for each r > 0,

lim; ., 2"iP{g(X) > ry™i} = Ir-".

We shall prove: lim,_,, s?P{g(X) > s} = .
Let p > 1, » < 1 be given. Choose

(i) areal number ae (%, 1)
(ii) a natural number m such that

[ems P{9(X) < (ra)*} > 9

e (I + @) <p
(iii) a real number 8 > 0 such that
e (1 + B9 <o
(iv) a real number s, = 1 such that
ITi= P{g(X) = (rB)*sot > 7 -
The possibility of choice (ii) is guaranteed by Lemma 3.3 of [1]. Applying
Lemma 3.2(a) with ¢, = g* for k < m, ¢, = a* for k = m + 1, we have
P{g(X) > s} = 2"3P{g(X) > 7"is TIf= (1 + B*) TTilmsn (1 + a*)}
X T2 P < (7)) It PUCX) < (re)'s)
= 2"iP{q(X) > risp’ly’

for all s > s,, n; = m. Letting j — co, we obtain for s > s,:
(1) SPg(X) > 5} 2 lo~n .

In order to obtain an inequality in the opposite direction we proceed as follows.
Let 6 < 1, ¢ > 0 be given. Choose

and
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(i) a real number a € (774, 1),
(ii) a natural number m such that

M (1 —af) >3,
(iii) a real number 8 > 0 such that
e (=89 >0,
(iv) a real number s, such that
$C07 7 2B < esy”
Applying Lemma 3.2(b) with g, =1 — ¥ for k < m, a, =1 — a* for k =
m + 1 and using Theorem 3.1(1) of [1], we have
P{g(X) > s} < 2P{g(X) > 7"isd’} + X 247 (p((rB)*59))?
+ Zklni 257 (e((ra)*so%)?
< 20P{g(X) > prisd’} 4 $C°67 T, ((rB) ) s
+ 30 T (Ara)r)s
< 2%P{g(X) > r"isd’} + es™P 4 Ms™®
where M isa constant, foralls = s, n; = m. Letting j — oo, weobtain fors = s,,
2) sPP{g(X) > s} < 107 + ¢ + Ms™?.

From (1) and (2) we conclude: lim,_,, s?P{g(X) > s} = L.

Now let 4 be a stable probability measure of index p. Let X, Y be independ-
ent E-valued random vectors with <A X) = Z(Y) = p. Then LA(X - Y) =
p = f1 is a symmetric stable probability measure of index p, hence a strictly
stable probability measure of index p.

From Lemma 3.1(a) we have: for each # > 0,¢ >0

PP{g(X — Y) > 1(1 + &)™} = 2t*P{q(X) > t}P{q(Y) = t(1 + ¢)7%¢} .
Letting t — co we obtain:
I(1 + ¢)» = 2lim sup,_., t?P{g(X) > t},
where | = lim,_, (¢ x g){x: g(x) > t}. Since ¢ is arbitrary it follows that
(3) lim sup, ., #P{q(X) > 1} < I]2.. '
Applying Lemma 3.1(b) we have for eacht > 0,0 < a < 1
?P{g(X — Y) > ta='} < 20P(g(X) > 1} + 2(P{q(X) > ta~B}) .

Letting r — co, the second term on the right tends to 0 and we get

al < 2liminf,_, *P{g(X) > t}.
Making a 1 1, we obtain
4) /2 £ lim inf,_, t*P{g(X) > t} .
Finally (3) and (4) yield: lim,_, "p{x: q(x) > ¢} = {/2. []
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Let us write, for a seminorm ¢ and a stable probability measure x of index p,

L (1) = lim,_ tPp{x: q(x) > t}.
If p = 2, then p is Gaussian and Fernique’s [3] result on tail bounds implies
that / (#) = 0. On the other hand, we have

THEOREM 4.2. Let u be a stable probability measure of index p < 2 on (E, <%).
Suppose that there exists a measurable linear form f on E such that (a) |f| < Kq for
some constant K and (b) p o f~* is nondegenerate. Then [ (1) > 0.

Proor. This follows at once from Theorem 3.1 of [1]. []

In the next proposition we consider the properties of /, when restricted to the
class of stable probability measures of a fixed index and generalize partially a
result of Feller ([2], page 271). We omit the proof; the argument is based on
Lemma 3.1 and is analogous to other arguments in the paper.

Given a measure z and a > 0, let T, ¢ be the measure defined by (7', ¢#)(B) =
m(a'B), Be .

THEOREM 4.3. Let y, v be stable probability measures of index p on (E, <%). Then

(2) L (pxv) = 1(p) + L(»)
() {(Tap) = @l (1)
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