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STABLE PROCESSES: SAMPLE FUNCTION
GROWTH AT A LAST EXIT TIME

By DITLEV MONRAD
University of California, Berkeley

For stable processes of index @, 1 < a < 2, exact upper functions are
determined for the sample function growth at a last exit time.

1. Introduction. Let {X,, 7 > 0} be a real valued stable process of index a
with 1 < a <2, i.e., a stochastic process with stationary independent increments

and
E{exp (iuX,)} = { e"p(y) dy = exp{1¢(u)},

where ¢(u) = —|u|*(1 + if sign (¥) tan (ra/2)). The skew parameter § satisfies
|8] < 1. If B = 1, then any right continuous version of {X;} will have no upward
jumps, and if 8 = —1, then it will have no downward jumps. We shall assume

that {X,} has right continuous paths with left limits.

For each real number x, let T, = inf {t > 0: X, = x} denote the first hitting
time of {x}. Then P{T, = 0} = 1 and P{T, < oo} = 1. By the strong Markov
property we know how the process behaves immediately after hitting the point
{1} (say) for the first time. But how does the process approach {1}? We know
that it is in a continuous manner. It is also well known that {X,} approaches
{1} for the first time in exactly the same way as the process escapes from {0} for
the last time before hitting {1}. In fact, let {X,'} be the process obtained by
killing {X,} at time T}, i.e. X,;'! = X, if t < T, and X;! = Aif T, < 1, where A is
the usual adjoined point in the general theory of Markov processes. Define

L =sup{r>0:X!=0}

and put Z, = X},,, t 2 0. Then Z is a strong Markov process. (See [6]. The
entrance law, however, requires special considerations.)
Let { denote the lifetime of Z and put

Z, =2 —1—) if 0gt<¢
= A if Cét,

i.e., Z is Z reversed in time. (See Chapter 1, Section 6 of [5].) Then 1 — Z is
a strong Markov process equivalent to Z.

The goal of this paper is to analyze the sample function growth of the process
{Z,} for small . Most of the basic facts about this process can be found in [7].
In [7] Millar gives necessary and sufficient conditions for

lim inf,_o | XY(L + 1)|//*f(1)
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being 0 or co, where f is a nonnegative increasing function. In this paper it is
shown that if || < 1 and f is a nonnegative decreasing function, then with

probability 1
lim sup, o X*(L + 1)/tV*f(t1) = 0 or oo
according as {5 (#(f))"'dt < oo or = co. In particular, we see that whereas
lim,_, X()/#/*|log (¢)| = O (see [3]), we have lim sup,_, X*(L + r)/r"*|log (1)] = oco.
If |8] = 1, then the process {X'(L + 1), t > 0} has the same sign as 3 for an
initial period of time. Furthermore
lim sup, _, | X*(L 4+ 1)|/t/*(log|log (¢)])*~"/=

equals a finite positive constant a.s.

We can summarize by saying that if |8| < 1, then the process {X*(L + 1)}
escapes faster from {0} than the process {X(7)}. If 3 = 1, then {X*(L + t)} and
{X(7)} have exactly the same upper envelope at zero.

2. The last exit process. It turns out that instead of studying the process Z
it is easier to analyze the related process Y defined below. Put

L =sup{t < T,:X(t) =0}
Ly =sup{t < Tyo 0, : X(t) = 1}
and define for r > 0
Y(£) = X(L +9) if L+tr<L,
=A if L+t>=1L,.
Then Y is given by the path of X from its last O before hitting 1, until its last
1 before returning to 0 again. Obviously, Y has right continuous paths with

left limits. We will show that Y is a strong Markov process with respect to the
o-fields -

F o= N Y@): 0 < u< s}, 120,
First, let Q, denote the probability distribution with density
9:(y) = py) + (1 = 1)V §5(py) — pe-o(y))s¥*~*ds .

We note that g,(y) = 1=V2q,(r""*y).
Next, put A(x) = P{T, < T,}.

TueoreM 2.1. ({Y,, .5 ,,t = 0} is a strong Markov process with transition
functions

Hyx, [) = EQ(fB)(X)t < TW})/h(x)  if x#0
H(0, f) = C, tl/a_th(fh) ’
where Cy™' = —p(0)['(@)T'(1/a)['(1 — 1/a) cos (za[2)[1 + £ tan® (ra/2)].

Proor. Let F: (R U {A}) — Rand f: R U {A} — R be bounded and continu-
ous. Let0 < 1, < .-+ < t, and put p(0) = F(u(ty), - - -, w(t,)) for any function
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o: R, > RU{A}. Letrs, <s. Then

EYo(Y)f(Y(s))}
= E'lim, 3,1 { <L<k-|—l k+1

<o (oo () (e (5 + >

:E°1imZI{Tl>k+1, Tooa<k>§i, Tooo<k+1>>zm}
n n

n
<o (xe0(F50)
fren(E ) ()
pen( )l

=limE°Zl{Tl>k:’1, Tooﬂ<—,;—>§—’1;, Tooo(k+1>>zm}

n
o (x5 ).
X PX((k+1)/”+t'"f){T° > Tl}
=1imE°ZI{T1>k':1, T000<%>§_’1l_, T000<k+ 1) >zm}

oo (e ). )
{T 0<k-’|:1-|—t )>T100<k+
= Eo(Y)H,_, (Y(1.), f)}.

This shows that {Y,, r > 0} is a Markov process. We have to identify the tran-
sition function H,(0, f) = E'f(Y,).

In order to show that {Y,} is a strong Markov process with respect to the o-
fields {#,}, we have to prove that for each ¢+ > 0 and each bounded continuous
function f, the map s — H,(Y,, f) is right continuous a.s. The map x — H(x, f)
is clearly continuous everywhere except possibly at 0. We therefore only have
to show that

_|_
/\

SN——

lim,_, H(Y,, f).= E(Y,).

If |8] = 1, then Y, has the same sign as 8 for all sufficiently small s. (See
Lemma 4.6 of [7].) In the following analysis of H,(x, f) for small x we will
therefore assume that x has the same sign as g if [§| = 1.

PHT, < To} ~ (1 4 B sign (x))|x|*
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as x — 0. (See formula (3.1) in [7].) Similarly, for r~|x|* — 0
Pt < T} ~ Ct/*=Y(1 4 Bsign (x))|x|**, where
C' = =2p,(0)I'(a)['(1/a)['(1 — 1/a) cos (wa/2)[1 + p*tan’ (za/2)] .
(See the proof of Lemma 4.3 of [7].) Consequently, for fixed r > 0

lims_.g,x-»o Pz{s < To}/}):'v{T1 < To} — 2CtVe-1
For x £ 0

R e ]
It therefore follows from Lemma 4.5 of [7] that
lim,_, ., H(x, ) = 2Ct/*7'Q(fh) .
By dominated convergence and the Markov property
Ef(Y)) = lim,_, E{H,_(Y,, /)} = lim,_, H,_(Y,, f) = 2Ct"*7'Q,(fh) .

This completes the proof of Theorem 2.1.
CoroLLARY (Millar). For Ae &, we either have P(A) = 0 or P'(A) = 1.

REMARK. The process {Z,} is obtained by killing the process {Y,} the first
time it hits 1.

3. Probability estimates. Let {P,*} denote the usual family of measures
associated with the transition functions {H,}.

We shall need the following asymptotic formulas for stable densities. (See
Skorokhod [8].)

If B=+1, then p(y)~ Ay~“*" as y—oo.
If B=1, then pJ(y)~ Ay~"*"?exp(—By’) as y— oo,
where 2 =af(a —1).

In the following estimates the letters ¢ and C will denote positive constants
whose values are unimportant. Their values may even change from line to line.

Lemma 3.1. If B + 1, then for N > 1
N < (3 q(y)dy < CN~*.
If B =1, then for N > 0
cexp(—(B + V') < 15 4:() dy < Cexp(—(B — 9N,
where ¢ and C depend only on ¢ > 0.

Proor. The lower bounds follow from the fact that

f2p()dy < S a(y)dy .
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For g + 1 we get

§% (7)) = pros(0)) dy = 3027 pu(y) dy
<C qu—srl/a yleh dy = £ N-ag .
o

The result now follows from Fubini’s theorem. The case § = 1 is handled the
same way, thus completing the proof of Lemma 3.1.

LeEMMA 3.2, Ifeither || < 1, 0or B =1and 0 < x < 1, then

clx*PAT S PT, < T} S Clx|* ' A L.

Proor. See Lemma 3.1 of [7].

Combining Theorem 2.1 and Lemma 3.2 we get

LEMMA 3.3. Assume that B + —1. Then

PAY, > Ntv*} < C (5 y*~'qu(y) dy
for all N > 0. And, if in addition Mt"'* < 1, then
PN Y, < M1V} > e § y*~lqu(y) dy -

LEMMA 3.4. Assume that 3 = —1. Then we can choose k > 1 such that for all
sufficiently small t

P <Y, < ktV*} = C > 0.
Fix this k. Then for t/* < x < ktV* and 0 < N < (log (1))
c§S3 Py dy < PA{Y, > N+ x} < C iy Tpu(y) dy -
Proor. The first assertion follows from Lemma 3.3. Consider the identity

EHX, > M, t < TJP T, < Tp}]
PAHT, < T}

PA{Y, > M} =
According to Lemma 3.2,
ef'-Ve < PAT, < Ty} < Cr-ve.,
By the scaling property
PT, <t} = P{T, < tx*} < P{T, < 1}.
And by the first passage relation and the scaling property
P{X, > 3, Ty S 1} < PHT, < 4PY(X, > y) < P{T, < P, > )
for y > 0. We therefore conclude that if we put ¢ = PYT, > 1}, then
PX, >y, 1t < Tf = P(X, > 3} — PUX, > p, Ty < 1) 2 ePA{X, > y)
for y > 0. Hence for 0 < M .
e Sy P X e dy} < (5 y P X e dy, 1 < Ty} < 5 y*'PA{X, e dy)
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It now follows from Lemma 3.2 that for 0 < M < §
c {5y P X,edy} < (5 PYT, < T}P{X,edy, t < Ty}
< CiHyPXedy) .

The constants ¢ and C do not depend on ¢, x or M. To finish the proof we
note that

eSSy (y) dy S SFavass y TP X, e dy)
SR (O + k) ey dy
This completes the proof of Lemma 3.4.
Put Y, * =sup{Y,:0 < s < 1}.
LeEMMA 3.5. Assume that 8 + —1. Then
P MY, * > Nt} < CP Y, > Nt'/*}
for 1 < N.

Proor. Let rV/* < x. Arguing as in the proof of Lemma 3.4, we see that
there exists a constant C such that P,*{Y, = x} = C > 0 for all s < ¢. This
implies that

PO(Y,* > Nr/=} < C-'P,o{Y, > Nis)
by the first passage relation.
4. The case |[8| < 1. Combining Lemmas 3.1, 3.3 and 3.5 we get
LeMMA 4.1. For all t sufficiently small and for 1 < N < (log (1))
¢NT' < P MY, > Ntve} < P o{Y,* > Ni'/*} < CN*.
Using these estimates we can determine the rate of escape from zero of the last exit
process {Y,, t = 0}
THEOREM 4.1. Let f(1), 0 < t < 1, be a nonnegative decreasing function.
If §5(tf(r)'dt < oo, then lim, ,Y,[t"*f(f) =0 a.s.
If §5(tf(1))~'dt = oo, then limsup,_,Y,/t"*f(f) = co a.s.
Proor. Assume that the integral is finite. Then }; f(27")~' < co. Put
A, = (Y*27) > of (22
By Lemma 4.1 we have }; P’(4,) < co. By Borel-Cantelli, this implies
lim sup,_, Y, */fV/*f(1) < 2¢ a.s.

This proves the first part of the theorem. Next, assume that the integral is in-
finite. Then }; f(27")~' = oo. It follows that > * f(2-")~! = oo, where > *
denotes summation over those indices n for which f(2-*) < n*. We shall only
consider such indices.

To simplify notation we will assume that f(2-*) < n* for all n. Let k > 1 be
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chosen as in Lemma 3.4, let K be a fixed large constant and put
Bn — {2—(n+1)/a < Y(2—(n+1)) < k2—(n+l)/a, Kz—n/af(z—n) < Y(Z—n)} .

By Lemma 3.4 and the estimates for stable densities given in the beginning of
Section 3,

PYB,) > cf(27")7,
where the constant ¢ does not depend on n. Hence ) P(B,) = co. The events
B, are not independent. But for m = n we have

P(B,, n B,) < CPYB,)P'(B,)

in virtue of Lemma 3.4. By a generalization of the Borel-Cantelli lemma for
dependent events (see page 317 of [9]),

P'(limsup B,) > 0.
By the zero-one law of Section 2 this implies that
’ P'(limsup B,) = 1.
Thus lim sup,_, Y,/t/%f(f) = K a.s. This completes the proof.
REMARK. If §} (¢f(f))"'dt = oo, then liminf Y,/r/*f(f) = — oo a.s.

5. The case |8| = 1. If 8 = —1, then according to Lemma 4.6 of [7] the
process {Y,, t > 0} is negative for all sufficiently small 7. In fact, if 8 = —1,
then by the zero-one law the initial behaviour of the process {—Y,, t > 0} is
identical to the initial behaviour of the last exit process with 8 = 1 (and the
same value of a). We shall therefore only consider the case g = 1. If 8 =1,
then (as noted in Section 2 of [7]) 0 < Y, < 1 for 0 < ¢.

Combining Lemmas 3.1, 3.3, and 3.5 we get

LemMA S5.1. For all t sufficiently small and for 1 < N < (log (¢))*
Po{Y,* > N/} < Cexp(—B(l — e)N?)
PAY* > Nt} > cexp(—B(1 + )N?).
The constants ¢ and C depend only on ¢ > 0.
THEOREM 5.1. lim sup,_, Y,/t/*(B~"'log |log (f)|)'¥* = 1 a.s.
ProoF. Let {1 < b < 1 and let ¢ > 0. Put for large n
A, = (Y*(b) > bv/s((1 + £)B~" log [log (b))} .
By Lemma 5.1, P(4,) < Cexp(—(1 + ¢/2)log(n)). So Y] P(4,) < co. By
Borel-Cantelli, this implies
lim sup,_, Y,/t/*(B~' log [log (1)|)*"/* < 1 + ¢ a.s.

provided we have chosen & close enough to 1.
The second part of the assertion is proved the same way the second part of
Theorem 4.1 was proved.
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