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ERGODICITY CONDITIONS FOR A DISSONANT
VOTING MODEL

By NORMAN S. MATLOFF

University of California at Davis

Call a Markov process ‘‘ergodic’ if the following conditions hold: (a)
The process has a unique invariant measure v. (b) If g is any initial distri-
bution for the process, then the resulting distribution y; at time ¢ will con-
verge weakly to v as ¢ — co. In this paper, necessary and sufficient condi-
tions are obained for the ergodicity of a certain infinite particle process.
This process models a dissonant voting system, and is similar to one treated
in Holley and Liggett (1975).

1. Introduction. Let S be a countable set, and let p(x, y) be a stochastic
matrix defined on § x S. Think of the elements of S as “‘voters,” each of which
is either in favor of or against a certain issue. Each voter x € § will at random
times reevaluate his position on the issue, according to the following procedure:
x chooses a vector y € S at random according to the probabilities p(x, ), and then
takes on the position opposite to that of y. The process continues indefinitely in
this manner. This model is similar to one considered in Holley and Liggett
(1975), except that in the reevaluation procedure in the latter model, x takes on
the same position as y.

In this paper we find necessary and sufficient conditions for our process to be
ergodic, i.e., to be such that the distribution of the process at time ¢ is guaranteed
to converge weakly to a unique invariant measure », which does not depend on
the initial distribution of the process. The organization of the paper is as follows:

In Section 2 we give a precise definition of the process, and then derive the
structure of a certain Markov chain which will be the basis for our analysis.
This Markov chain is of independent interest, and involves particles which
“change color” when they move, and “die” when they collide. Section 2 also
contains a theorem which for a certain class of transition functions p(x, y),
relates our process to the consonant voting model of Holley and Liggett which
was mentioned above.

Section 3 then contains the ergodicity results. For example, we find that the
process will be ergodic if p(x, y) corresponds to an aperiodic random walk on
the integer lattice Z¢. We also investigate several properties of the unique in-
variant measure g, such as asymptotic independence between voters.

2. Interrelations between three Markov processes. As above, let S be a
countable set, and let p(x, y) be the transition matrix for an irreducible discrete
time Markov chain on S. We will always assume that p(x, x) = 0, since it will
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372 NORMAN S. MATLOFF

simplify notation, and since the intuitive description of our process makes it
unreasonable to have p(x, x) > 0 for any x (however, most of our results would
still hold without this restriction on p). We will also assume that p(x, y) has odd
period; see Proposition 2.2. The state space for our process will be K = {0, 1}5.
Let C(K) be the usual Banach space of continuous, real-valued functions on K;
this space is well defined, since K is compact in the product topology. By the
Stone-Weierstrass theorem, the class & of functions on K Wthh depend on only
finitely many coordinates is dense in C(K).
For any fe . and any 7 € K, define (Qf)(y) to be

Zzes Zyes,ry(x)=77(1/) P(x’ }’)[f(%) - f(rl)] ’
where 7,(z) = 7(2), Z#x
=1—-9kx), z=x.

Q describes the behavior of the process during short (“infinitesimal”) periods of
time, and its definition reflects our intuitive notions of the process. An appli-
cation of Theorem 4.2 of Liggett (1972) shows that an extension of { generates
a strongly continuous semigroup S(¢) (¢t = 0) of positive contractions on C(K),
so that there exists a strong Markov process 7, on K such that [S(1)f 1(7) = E"f(n,).

We will now motivate the definition of the Markov chain mentioned in Sec-
tion 1. This Markov chain will be the basic tool for our analysis of our original
process 7,, and is in a sense ‘“reciprocal” to »,. This idea of finding a Markov
chain which is reciprocal to a given infinite particle system is due to Spitzer
(1970), and has been used in several studies of infinite particle systems; see for
instance Holley and Liggett (1975).

Let _# denote the set of all probability measures on K, and fix ¢ € _# as the
initial distribution of the process ,. Let (a; X), = p,(n(x)) = ay, - - -, 9(x,) = a,),
where p, is the distribution of the process 7, at time ¢, a = (a,, - - -, a,) € {0, 1},
and x = (x,, - - -, x,) is a vector of distinct sites in S. Let f(y) be the indicator
function of the set {5(x,) = a,, - - -, 7(x,) = a,} (note that the class of all such
functions spans .%"). Now

@; %), = § S()fde,  so .‘%(a; X),

exists and is equal to § QS(f)f dy, from standard semigroup theory. Let 4 =
{x;, -+, x,}. We then have

d .
E(a; X) = Xyea i PXo I —apay, -+ 1 —ay, -0, 0,

Vs Xps c 00y Xy .;.,xn)t
_(ai,al, ey @y s @y Yy Xys ey X ...,x”)t]
-+ Zi,j:ai*ujp(xi’ x;)(a, N PR N ...,‘an;
Xiy vvey Xgy 000y Xy ...,x”)t

- Zi,j:ai=a,jp(xi’ xj)(a; x)t .
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By appropriate additions and subtractions this expression can be rewritten as
Zivea 22 PXo (L — @y @5 05 pyy @uyys -0 05 G5
Vs Xy v ooy X1 Xgp1s =0 % xn)t — (a; x)t]
+ Zi,j:ui$ajp(xi’ X))@y« v s @iy @iys 005 Gy
Xy v o Xy Xpgppy 00y X)) — (@5 X),] — Zi,j:ai=ajp(xi’ x;)(a; x), ,
so that
(2.1) 57 (@ X), = Xyes D P —a,ap oo, 850, G4 -0 05 A3

Vs Xyy oty Xyqs Xigps * ¢ s x”)t
t Digiagea; PXes X))@y 005 Quoys Gigyy v 005 Gy
Xy ooty Xogs Xogps 0 0y X,)e — (5 X), .
Equation (2.1) will be the motivation for the construction of two Markov
chains:

(a) The chain a(t). Let S, = S x {0, 1}, and define the stochastic matrix Q
on S, X S, by
Q(a',.B)=P(X,y), if a+b=1’
=0 , if not ,
where @ = (x, @) and 8 = (y, b). Intuitively, Q describes the motion of a particle
which has a “position” (in S) and a “color” (either 0 or 1). The particle moves
on S according to p(x, y), and it changes color each time it moves. Now let
a(t) be a continuous time Markov chain on S, whose paths are governed by
Q and whose holding times at each state have mean one. Finally, extend a(?)
to Uz, Sy’ by letting @(f) = [a,(?), - - -, a,(¢)] consist of i independent copies of
a(t) (here S,* denotes that i-fold cartesian product of S, with itself).
(b) The chain o,. Define L, to be
{8} U Uz ST,
where A is a “death point” which will be explained below, and let D, =
{[(x1, @), -+ 5(x;, @)]: x, = x, for some r = s and some i < n}. Now let g, be
the continuous time Markov chain on L,\D, whose infinitesimal parameters are
as follows: A is absorbing, and for ¢ = [(x;; @), - -+, (x;, @)] € L,\D,, let
qar::-—l', if T =0,
= p(x,, ), if ye{x,---,x} and
T = [(xl, a), -y (X a,y), (9, 1 — a,),
(xr+l, ar+1), DAY (xi, ai)] )
= Zr,s:a,.:asp(xr’ xs) ’ if - A ’
= p(x,, x,) + p(x,, x,) , if a,+a,, r>s and
T = [(xl, al)? Y (xr—-l’ ar—l)’
(X415 Ai1)s * 0y (x5 a)],

=0, otherwise.
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To describe o, intuitively, let ¢, = @(0) be in S,\D,,, and let T, be the hitting
time of D, for a(r); T, is allowed to be infinite, and of course it definitely will
be infinite if 7 is equal to one. Now let ¢, = a(f) for 0 < 1 < TDn. At time T
there is a “collision” (in S) between two of the particles a,(?), - - -, a,(¢), which
allows the following interpretation of I1p, " If the two particles in the collision
are of opposite color when they hit, then “all of the particles in ¢, die, and thus
we set g, = = A. If the two colliding particles are of the same color, then the
particle of higher index dies, and the other particles continue as before, until
the time of the next collision. The process continues in this manner.

The matrix (4,.), e z,\0, is nonnegative off the diagonal, nonpositive on the
diagonal, and has its row sums equal to zero. Also, g is a bounded linear opera-
tor on I (L,/D,), since the absolute values of the elements in any row sum to
at most 2n. Thus we know that the Markov chain ¢, does exist, and that for
any f e l,(L\D,) we have E°f(s,) = (e?"f)(¢). We will be interested in the class
C of all bounded functions L,\D, which vanish at A. This class is invariant
under ¢ and thus also under e, since C is a closed subspace of [ (L,\D,).

Now let p# be in _#Z and define f on L,\D, by f([(x), @), - -, (xi» @)]) =
w(n(x) = ap, -+, 9(x;) = a;) and f(A) = 0. Also, define f, in the same manner
as f, only with g replaced by g,. From semigroup theory we know that e?’f
is the unique solution in C of
(2.2) % = qu,, u=f.

But equations (2.1) imply that f, is also a solution of (2.2), so f, must equal e?'f
(t = 0). Thus we have established the following result, which will be essential
in our analysis:

ProposSITION 2.1. Fix pe _#, and let f correspond to p as in the last paragraph.
Then for all t > O we have

(#)(n(x) = ay, -+ -, 9(x,) = @) = E*f(a,)
for all Oy = [(xh al)’ ¥ (xk’ ak)] € Ln\Dn'

Thus we can study the mathematically difficult », process indirectly, by study-
ing the Markov chain ¢,. As we mentioned before, the span of the functions
of the form

1(-)

{q(zl)=al e p(zp)=ag}
is dense in C(K); thus the use of Proposition 2.1 leads to results Wthh concern
the weak-* convergence of u, e C(K)*.
We conclude this section with a result which explains why we assume that
p(x, y) has odd period (this of course includes the case in which p(x, y) is aperi-
odic). In the rest of this section, denote our process and its associated operators
by 7°_, Q_and S_(t), and define 277,, Q, and S, (7) similarly for the Holly—nggett
model mentioned in Section 1.
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PROPOSITION 2.2. Suppose that p(x, y) has even period and is irreducible. Then
the 27°_ and 27", processes are equivalent in the sense that there exists a bijective
map T on K, such that

E'f(n.) = E"f(Tn.*)
for all t > 0 and for all f in C(K), where ,~ and 7,* are realizations of the 77"_ and
2, processes, respectively.

ProoF. Fixx,eS. LetT, = {ye S: p®(x, y) > 0 forsomek = O}and T, =
{yeS: p®*+I(x, y) > 0 for some k = 0}. The irreducibility of p(x, y) implies
that S = T, U T,, and furthermore we claim that T, n T, = @. To see this,
suppose y € T, N T,, and let n and m be such that p™(y, x;) > 0and p™(x,, y) >
0. Then p**™(y,y) > 0, and since y € T, n T,, we may choose m so thatn + m
is odd, thus contradicting the even periodicity of y. .

Now define T': K — K by

Tnp(x) = n(x) , xeTy,
=1—19kx), xeT,
for any x € S. An argument similar to that in the last paragraph shows that if

xe T, and p(x, y) > 0, thenye T, , (i = 1, 2). Thus for any f in the domain of
Q_ we have

(23) Q_f(ﬂ) = Zx Zy:q(w)mﬂmp(x’ y)[f(’?x) —f(’7)]
= Dle Zy:T(w)*Tvy(y)P(x’ () — f(n)] -

For any ke C(K), let Wh(y) = k(T7); then Wh e C(K), since T is continuous.
Noting that T(y,) = (T7),, we have from (2.3) that

(2.4 Q_f(n) = Za Dyry@eryn PO NIVA(TN).) — WATY))
= Q, Wf(Ty) = WQ, Wf(z) .

As a linear operator on C(K), W is positive, has norm equal to one, and is
its own inverse. WS, ()W (t = 0) is a positive semigroup of contractions on
C(K), which by (2.4) has generator 2_. However, S_(7) is the unique semi-
group having these properties, so we have S_(r) = WS, (f)W. Thns, for any f
in C(K) we have

Erf(n7) = S_()f(7) = WS.()Wf(n) = S()W[f(Tn) = E{Wf(n.")]
= E"f(Tn.*)
as desired.

As an example of the last result, consider the simple random walk on Z de-
fined by

px,y)y =%, if [x—yl=1,
=0, otherwisie.

From Holley and Ligget (1975), we know that the extremal invariant measures
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for the 277, process are the point masses on the configurations (---,0,0,0,0, -..)
and (---, 1, 1,1, 1, --.). Thus since p(x, y) has period two, we know that the
extremal invariant measures for the 27”_ process are the point masses on the con-
figurations (--.,0,1,0,1, -.-)and (---, 1,0, 1,0, ...).

3. Conditions for ergodicity of the process. Let .27 be the transition matrix
for a discrete time Markov chain on a countable set ., and let {c,},.. be a
bounded sequence of positive numbers. Define the matrix R on . x & by
letting R,, = ¢,7°(x, y) for x # y and R,, = —¢,[1 — F(x, x)]. Then R is the
infinitesimal generator of the gemigroup .°(f) = e®* of transition operators for
a continuous time Markov chain Z(7) on .. We say that a function f: & —
[0, 1] is harmonic for &7 (respectively (1)) if Ff = f(F(t)f = f) forallt = 0.
These two notions of harmonicity are actually equivalent: If Rf = 0, then since
F0)f = f and d/dt [FA(1)f] = FL()Rf, we have F(1)f = f for all t > 0. On
the other hand, if F(¢)f = f for all t = 0, then 0 = d/dt [F#(1)f] = F(t)Rf, so
that 0 = F2(0)Rf. Thus F(t)f = f for all + = 0 if and only if Rf = 0, that
is, if and only if

Liyse €706 () — e[l = P(x, )] f(x) = 0
for all x in &. But this last assertion is equivalent to Y A(x, y)/(y) = f(x),
that is, Ff = f.
LeEMMA 3.1. Let f: & — [0, 1], and suppose that for some t, — co we have that
k(x) = lim,_,, %lf(x)
exists for each x € . Then k is harmonic.

ProOF. See Appendix.

This lemma will now be used to prove a related result for the 7, process. It
will be clear from the proof that the same result is true for other processes for
which some suitable version of Proposition 2.1 holds.

CoRrOLLARY 3.2. Suppose p is an initial distribution for the , process and p, — v
for some t, — co. Then v e 7, the set of invariant measures for the process.

Proor. Both here and in the future, we used the notation f «» y to mean that
the function f corresponds to the measure z in the following way: For any
[(xy, @), - -+, (x> @,)] € L, we have

f((xv al)’ Tt (xk’ alc)) = #(V(xl) i L) 77(xk) = ak) ’ and f(A) =0.

If we let U, = e’ denote the semigroup for the process g,, then by Proposition
2.1 we have U, f«— ¢, Vt = 0. Thus our hypothesis implies that U, f converges
to some f as i — oo, and that f < v. By Lemma 3.1 we have for all + > 0,
U,f = fon each L,\D,, so that v, = v from Proposition 2.1 again.

REMARK 3.3. As is well known, /,(S) is separable, so that the weak-* closed
unit ball of [..(S) is metrizable and thus sequentially compact, by Alaoglu’s theo-
rem; a similar statement can be made regarding C(K) and C(K)*. These facts
will often be used in conjunction with Lemma 3.1 and Corollary 3.2.

In our case, we will be interested in three classes of harmonic functions. First,
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let 57 be the set of all functions which are harmonic for p(x, y), and define
& similarly for Q(a, f) (see Section 2). Note that 57 is naturally embedded
in &7, in the sense that if k ¢ 527, then the function K defined by K(x, a) = k(x)
is in ZZ. If any function in 57 can be represented in this way, we will say that
' = . :

We also define the set 527 = {f € 27 f(x, 0) + f(x, 1) = 1}; our main interest
will be in this set (a theorem which gives a more intuitive characterization of
&%, may be found in Matloff (1975)).

In order the state the next lemma, we now define U, and V¥, to the semigroups
corresponding to the Markov chains ¢, and a(r) in Section 2 (thus, for instance,
U, f(¢) = E’f(s,) for any bounded function f on L,\D,). Also, if a() consists
only of one component a(f), we write a(f) = (X(¢), a(?)).

LeMMA 3.4. The following conditions are equivalent:

(a) &7, consists only of the constant function %.

(by o7’ = 7.

(c¢) lim,, >, [P**(a(t) = (y, a))—P**(a(t) = (y, 1 —a))| = 0 foreachx e S.

d) If pe # and f — p, then

lim,_, V, flay, -+, @) = (3)"
on S,", for each n = 1.

REMARK 3.5. If the absolute value signs are removed from the expression in

(c), the resulting sum becomes :

PY(a(t) = a) — P*(a(t) = 1 — a),
which converges to 0 as t — oo (to see this, note that a(f) can be considered to
be a continuous time Markov chain on {0, 1} with a stationary distribution
which is uniform on that set). However, the absolute value signs make condition
(c) less trivial. Roughly, (c) says that our particle X(¢) is about equally likely to
reach y after an even number of jumps as it is after an odd number of jumps.

Proor oF LEMMA 3.4. Condition (b) says that for each f € 27" we have f(x, 0) =
f(x, 1), and thus (b) immediately implies (a).
~ Next we show that (a) implies (c). The latter assertion may be rewritten as

2y [PO(a(t) = (p, 0)) — P=P(a(t) = (3, 0)) -0

as t — oo, for each xe S. It suffices to show that for any sequence of times
tending to oo, there exists a subsequence along which the desired limit occurs.
To avoid cumbersome notation, we will work with a single sequence {t,}, and
will not relabel when we extract subsequences.

Take any f: S, — [0, 1] such that f(x, 0) 4 f(x, 1) = 1. By Remerk 3.3 there
is a subsequence of {r} and an fe 5% (see Lemma 3.1) such that U, f— f.
Furthermore,

U, f(x; 0)+ Uy, fix, 1) = E=Of(a(t:)) + E®f(a(1))
= E®O[fla(n) + fla(@))] =1,

where (z,¢)* means (z,1 —c).
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Thus fe 5#, so that f = . This says that

} = lim; 3, (P“[a(t) = (y, OIA(y, 0) + P=[a(t) = (» DIfy, 1}, and
} = lim; 3, {P=[a(t) = (y, O1f(y, 0) + P [a(t) = (y, DIf(y, 1} -

Thus after equating the right-hand sides of the last two equations and extracting
a further subsequence we get

lim; 33, {P=O[a(t) = (y, 0)] — P [a(r;) = (y, O} Ay, 0)
(3.1 = lim, 33, {P*"[a(t) = (y, D] = P*a(r) = (» DR, 1)
= lim, 37, {P=[a(t) = (y, 0)] — P"[a(t) = (y, OISy, 1) -

By equating the first and last terms of (3.1), and recalling that f(y, 1) =1 —
f(y,0), we have

2lim, 33, {P0[a(t;) = (p, 0)] — P=V[a(t) = (y, OB Sy, 0)
= lim; 33, {P*[a(t;) = (y, 0)] — P*V[a(r) = (y, O)]}
=4-4=0.
Thus if we fix x, the sequence of functions
{P=Ola(t)) = (, 0)] — PV[a(ty) = (3, O)]}

converges weakly in /,(S) and thus also strongly, since weak and strong con-
vergence of sequences are equivalent in that space. Thus

lim, 33, [P*"[a(t) = (y, 0)] — P*"[a(t) = (5, 0)]l = 0,

as desired. ]
To show that (c) = (d), let f — p and write V, f(a,, - - -, a,) as
ZzeS” Zce(o,u” P“(a(t)
= [z ¢ o5 (Zns )DL €2)s -+ o5 (20 €4)]

(3.2) = 2. Doz, (PH@() = [(2 €2), -+ o5 (Zas €)])
— Pa(t) = [(z 1), -+ -5 (2o DD (205 €2)s - -+ (20 €0)]
+ X Pa@) =[(z 1), -5 (2 D)D),

since

f((z 1)y oo G 1) = 1= Forqen [Tz €)s - (Zn )] -

Now

TP @) =[(z 1), -+ (20 D) = P@() = 1, -+ -5 a() = 1)
= [t Pria(r) = 1),
where a,(f) = (X,(¢), a,(t)). Thus by Remark 3.5, the last term in (3.2) con-

verges to (4)* as t — co.
Now rewrite the first term on the right-hand side of (3.2) as

2o Dew [1(25 €) — 1z, D] (215 €2), -+ o5 (Zas €0)) -
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Since the range of values of c is finite, we will be done if we show that
lim,_, >, |[(7(z,¢) — n(z,1)] = 0.
However, by adding and subtracting at most 2" — 2 terms within the absolute
value signs in the last expression, we see that we only need to show that
> |z, dV) — r(z,d?)] — 0,
where d® and d® differ in only one coordinate, say the first. But then
> |z, dP) — r(z, dP))
= 2. [P(a(t) = [(2: 0), (2 d)s - - -5 (205 d,)])
— P(a(t) = [(z, 1), (25 o), -+ -5 (205 4)])
= 2. [P ay(t) = (21, 0)) — Pi(ay(t) = (21, 1))]
X Plezran([ay(t), o5 ()] = [(Z2 da)s =+ +5 (Zns di)])
= (2, [P(ay(t) = (21, 0)) — P (ay(r) = (2, 1))))
X Peraw([ayt), -+, a,()] = (dy,---,d,))—>0
as t — oo, by (c).
Finally, suppose (d) holds. Take any f, € 57, and let x be the product meas-
ure such that f < u for an extension of f, to U S,".
Then f, = V,f, — }, by (d), so that 24, = {4}. To show that this implies
27" = S, take any fe 5. Define fon S, by

fx, @) = H[1+ f(x, 0) — fix, )], a=0,
= {1+ f06 1) = f(x,0)], a=1.
Then 0 < f< 1, and

(QF)(x, 0) = X, p(x, f(ys 1) = § Ty pCe I+ f(3: 1) — A3, 0)]

= 3[1 4+ (Qf)(x, 0) — (Qf)(x, 1)]

=3[l +f(x, 0) — fix, )] = f(x, 0),
and similarly (Qf)(x, 1) = f(x, 1). From this and the fact that f(x,0) +
f(x, 1) =1, we have fe 27, and thus f=}. Hence f(x,0) = f(x, 1) and
H = I

In order to state our main ergodicity theorem, we introduce the following

notation: Consider the noninteracting particle system a(r) = [(X,(¢), a,(¢)), - - -,
(X.(9), a,(?))] in Section 2 and Lemma 3.4. For each acS,", let g(a) =
P(X;(r) = X,(#) for some i + j and some ¢ > 0). g(a) may in a sense be thought
of as a measure of distances between voters in S, and is similar to functions
used in Liggett (1973 and 1974a), Spitzer (1974), and Holley and Liggett (1975).

THEOREM 3.6. The 5, process has a unique invariant measure v if and only if 5, =
{£}, and in this case each of the following holds:

(a) g, — v ast— co for every initial distribution p.

(b) »(7(x) = a) = 4.
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) V(x) = ay, -+ -5 9(x,) = a,) — (B)" < 9(@, -+ -5 @,) forall [ay, - -+, a] =
[(x @), - -+, (x,. a,)] € S\D,.

Proor. We first show that _# = {v} implies (a) and (b). To establish (a), let
¢ be any initial distribution for the process, and recall that it suffices to show
that if 7, — co and lim, g, exists, then the limit must be v (see Remark 3.3). But
this is immediate from the fact that .# = {v} and Corollary 3.2.

(b) is also an easy consequence of . = {v}, since the measure 5 defined by
o(p(x) = ay, -+, 9(x,) =a,) =v(p(x) =1 —a, ---,59(x,) =1 — a,) must be
invariant (from symmetry considerations). Then & = v, so that y(p(x) = 1 —
a) = y(n(x) = a). The last two quantities sum to one, and thus they each must
be 1.

Now continue to assume . = {v}, and take any f, € 5. Let u be the product
measure which corresponds to an extension f of f;, as in the proof of Lemma
3.4. Let f — v, and note that by (a) and Proposition 2.1, we have lim,_, U, f = f
on L,\D, (n = 1). By (b), f =} on S|, and since f, € 52 we also have U, f = f
on S,. Thus we have proved that if .~ = {1}, then 577 = {4}. Now by applying
parts (a) and (d) of Lemma 3.4, along with the fact that |U,f — V,f| < g on
L,\D,, we have (c).

Finally, we will show that if 27, = {}}, then . = {v}. Suppose that v, and
v, are invariant measures for the process, and let f; — v, (i = 1, 2). Then both
f1 and f, are fixed by U,, and thus their restrictions to S, are in 5#;. Hence, since
we are assuming 57, = {4}, we see that f; and f, agree on S,. Now suppose that
fi=fion Sk, forallk < n(n=2),andfixa = (a, -, a,)eS™D,. Then

f@) — f(@) = U.f(@) — U.f@) = E|f(0) — [fo,)]
= Eq[fi(0)) — folon), t < 7],
by the induction hypothesis; here 7 is the hitting time of {A} U §,~" for ¢,. Thus
fu@) — fu@) = E*fi(o)) — fio.), t < 7 < o] + Efi(0r) — fi0n); T = oo] .

The first term vanishes as  — oo, and the second term is equal to E«[ fi(a(t)) —

fA@(?)), © = oo], where a(f) moves according to V,. Now rewrite the last expres-
sion as

Vofi@) — V. fi@) — ELfi(@() — f(@(0), T < oo]
= V. fi(@) — V.f{@) — Efi(@() — fi(@(), t = 7]
— E[fy(@()) — fi(@(), 1 < = < oo] .

Again the last term converges to zero as ¢t — oo, and from Lemma 3.4(d) we
have lim,__, V, f(@) = (3)* (i = 1, 2). Thus we will be done if we show that

lim,_., E<{fy(@(r)) — fAa(?)), 1 = 7] = 0.
Effu(a(n) — fAa(), 1 = 7]
= Digesyn S0 Pt €ds, a(r) = B) [V f(B) — Vs fAB] s

which converges to zero by bounded convergence and Lemma 3.4 (d).

But
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Tho following lemma will be used in the proof Proposition 3.8, and is true
without the assumption that 52 = {}}.

LemMA 3.7. Q is irreducible.

Proor. Take any @ = (x, a) and 8 = (y, b) in S,. By the irreducibility and
odd periodicity of p, there exist nonnegative integers k and m such that both
p¥(x, y) and p®m+b(x, x) are positive. Thus p®m+i(x, y) and p*(x, y) are posi-
tive for some n, and n, so that « leads to 8 in ;.

PRrOPOSITION 3.8. 57, = {3} under any of the following conditions:

(a) S is an Abelian group, and p(x, y) = p(0, y — x).
(b) p(x, ) is recurrent.

(c) The space-time process for p(x,y) has no nonconstant bounded harmonic
functions.

PrOOF. (a) S; =S X Z, is an Abelian group and it is easily verified that
O(a, ) = Q(0, 8 — ). Since Q is irreducible, a well-known result of Choquet
and Deny (1960) implies that %7 consists only of constants, and thus 527 = {}},
by Lemma 3.4 (b).

(b) Another well-known condition which implies that S#” consists only of
constants is that Q is recurrent. To see why the recurrence suffices, take f e 57
and let @, = (X, a,) move on S, according to Q. The harmonicity of f implies
that f{a) = E*f(a,) identically in « and n. Now fix @ and 8 in S, and let T, be
the hitting time of « for «,. We then have

f(B) = Eif(e,) = 2nar B[ flen) | To = m}PAT, = m) + @
term bounded by P¥T, > n) .

Now the strong Markov property implies that E’[ f(a,) | T, = m] = E*f(a,,_,) =
f(a) for m < n. Thus the recurrence of Q would imply that the right-hand side
of the above equation for f(8) converges to f(«a) as n — oo, so that f is constant.

Now to establish the recurrence of Q, note that we need to show that Po(X,, =
x for some kK > 0) = 1. Let X, startat x, andlet T, T, + T,, - - - be the succes-
sive return times to x (they are finite a.s., by hypothesis). Then T}, T, - - - are
i.i.d., and since P(T, is even) < 1 (p is of odd period) we have P(T, odd, T, even
for all n = 2) = 0. Thus with probability one, at least one sum 7', + ... + T,
is even, which is the desired result.

(c) Take any fe#. Define k:{0,1,2, ..} x §—[0,1] by k(m, x) =
f(x, a(m)) where a(m) e {0, 1} and a(m) = m (mod 2). Then since fe 57, k is
harmonic for the space-time process for p(x, y). Thus k is constant, so that 57
consists only of constants and 577 = {}}.

THEOREM 3.9. Suppose S = Z* and p(x, y) = p(o, y — x). Then the 7, process
has a unique invariant measure v. Moreover, v is translation invariant, and it has the
following asymptotic independence property:
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Let

A= {n(x) = ap, -5 9(x,) = a3}, Ay = {n(y1) = by, -+, 9(y) = b}
and
Ay + nz = {n(y, + nz) = by, -, 9(y, + nz) = b},

where the sites x,, - -+, X, yy, - - -, y, are distinct, and where z is nonzero. Then
lim, ., v(4, N (4, + nz)) = v(4,)w(4,) .

Proor. The unicity of v is an immediate consequence of Theorem 3.6 and
Proposition 3.8. To see that v is translation invariant, let _# be the set of
all translation invariant measure in _#, and take any ze 2. The translation
invariance of p implies that p, e # forall t > 0, and since _~ is weak-* closed,
part (a) of Theorem 3.6 tells us that v = lim,__, ¢, must also be in _Z.

Now in order to prove the ergodicity of v, first note that because of the ir-
reducibility of p, either g is identically less than one on S, D, or it is identically
equal to one. The ergodicity proof in the former case uses part (c) of Theorem
3.6, is identical to the proof of Theorem 5.8(c) of Holley and Liggett (1975).
We omit this proof and-instead concentrate on the case in which g(«a, 8) = 1.

First suppose k = [ = 1. Let a(f), B(f), 7(¢) and ¢, move independently, each
according to U,, with initial values (x,, a,), (x;, 1 — @), (y; + nz, b)) and [(x,, a)),
(y1 + nz, b))], respectively. Let 7, and r, be the hitting times of D, for [a(?),
7(9)] and [B(2), r(¢r)]- Noting that «(#) and 5(¢) initially have the same “position”
in S, but are initially of the opposite “color,” we let r, be the first time that
these two particles have a same-color collision; that is, we let z, be the hitting
time of the diagonal of S;* for the process [a(?), (f)]. 7, and 7, have the same
distribution, and by assumption they are finite a.s. 7, is also finite a.s., by an
argument similar to the proof of Proposition 3.8(b). Also, note that
lim,_, P(r; < 7;) = 0.

Let f < v, and recall that f(A) = 0 and f(«) = } on S,. Thus since g(a, g) =1,
lim,_, f(o,) exists and is equal to either zero or 4. Thus

v(d4, N (A, + n2)) = f(o,) = U, f(e,) = lim,_, U, f(a,)
= Elim,_,, f(o,) = 1P(a(r)) = 7(7)) »
so that we need to show that lim, _,, P(a(z,) = 7(z,)) = 4. But the strong Markov
property implies that
Pla(t)) = 7(t1), 73 = 1) = P(B(7y) = 7(7a)s T3 = 7)
so that
(3.3) |Pa(z,) = 1(z)) — P(8(zs) = 1(@)| < P(e; < 75) -
Now by symmetry considerations and the fact that 3(0)* = «(0), we have
P(B(zy) = 1(ra) = 1 — P(B(7y)! = 1()) = 1 — Pla(er) = 1(7) -

Thus since the right-hand side of (3.3) converges to zero as n — oo, we see that
lim, ., P(a(z,) = r(r,)) = %, as desired.
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Now to consider the general case, let o,, ¢, and ¢, each move according to
U,, starting at
(X5 @)s =« o5 (X @), (1 + 12, By), - oo, (y + 12, )], [(Xg @y -+ 5 (X5 )]

and [(y, + nz, - -+, y, 4 nz)], respectively. We can construct our probability
space so that ¢, and ¢, are independent, and such that o, = (¢, ¢,) until
time z,, the time of the first collision between a particle in ¢, and one in ¢,®.
Now using the notation |¢| = i to mean ¢ € S,\D, (with |¢| = 0if ¢ = A) define
the following events:

E, ={3c suchthat |¢| =1 forall ¢+ = ¢},

E,= (o <1 and |o| < 1},

E,={lo| =1 and [o| = 1},

E ={,<1},

E; = {no particle in ¢{) is within M units of a particle in o}, and

E;={3t =z 0 such that [¢,"| = |0,”| = 1},
where ¢, and M will be determined below; the distance function which we are
using in E; is the Euclidean metric on § = Z¢.

Fix any ¢>0. Since g(a, ) =1, we have lim,_,P(E,) =1. Also
lim, _, P(E;) = (E,); thus we may choose ¢, such that

PE)z1—— and  |KE)— PE) < 5

independently of n. Let 8(f) = [,(), 6,(r)] move on S,* according to V,, and let
7, be the hitting time of D, for 8(¢). Then by the translation invariance of p(x, y)
and the results in the first part of this proof, there exists a number M such that
if the projections of 9,(0) and 3,(0) on S are at least M units apart, then P(d,(z;) =
0y(75)) is in [ — ¢/3, § + ¢/3]. Now choose N such that for all n > N we have
P(E)=1—¢3and P(E;) = 1 —¢/3. LetE; .., denote E; n ... n E;,. Then

WA, N (A, + nz)) = P(E) = H{P(E,,.,) + el

where e, < 3(¢/3) =e. Now since o, = (¢,', ¢,) until time z,, we have
P(E,,;.5) = P(E,35,5) = EW, where W = E(lg . .11g, ). On the complement
of E; , 5, W is zero almost surely, while on E, , , we have We [} — ¢/3, § + ¢/3]
a.s. Thus P(E,,,,) is within (¢/3)P(E, , ;) of $P(E,,;). From all of these facts
we get .
[v(Ay N (4; + n2)) — v(A)y(4,)]

= [3P(E) — 1P(E,)|

= HIP(E) — P(Eypu0)| + [P(Eyss) — $P(Esus)l + [3P(Esa) — $P(E)]

= %'|:€ + %P(Es,m) + %<3 ' —§—>j| <¢

for all n = N, which completes the proof.
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4. Appendix.

Proor oF LEMMA 3.1. We first prove the result for the case in which ¢, = 1.
By bounded convergence we have

Fh() = k(x) = T, Fx, ) lim, F)(y) — lim, F1) )
@.1) = lim, 3, P, NEF) — F)]
= lim, 3, Fx,3) | T2 1E 5. S0 90)

— i B P z)f(z)]'

Since the terms involved are nonnegative, we can write the last expression as

lim, T {15 B, [F0(x, 2) — P, D))
(4.2) = lim, 2%, W(n, x, i)
= lim, [ 715" W(n, x, i)+ 2325, W(n, x, i)+ 20y, W(ns X, Hl,

where N, and N, will be determined below. |
Fix ¢ > 0 and x € &, and let N(r) be a Poisson process with intensity one.
Since N(7)/t — 1 as., we also have convergence in probability. Also,

(4.3) lim,__ " —o,
uniformly in n. To see this, write
e—ttk+1 e-—ttk
— as — 1
(k+ 1) & (k—|-1)'[ ¢k + DI

and conclude that the maximum value e~‘s*/n! for fixed r occursat n = [¢] — 1;
then use Stirling’s approximation to show that this maximum value goes to zero
as t — oo. In view of these facts we can find 7 such that for all i > I we have

e_ttt n

4.4) o <e
for all n, and
N(t) )
4.5 P2 .
“s (M2~ ]>) <

Take any i = I and let N, and N, be the extreme elements of the set of all
integers n such that |(n/t;) — 1| < ¢ (we may choose I large enough so that this
set is nonempty). Then (4.5) implies that

—tig,
(4'6) Z nelNy, N2] i

<e,

so that the sum of the first and last terms in (4.2) is less than ¢ in absolute value;
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here we have used the fact that a sum like 3, Z%“(x, 2)f(z), being a weighted
average of numbers in [0, 1], is itself in [0, 1]. We also must estimate the second
term in (4.2), which we may rewrite as

SO S A ) PR G

i

IR R e (x, a)f(z) — S

T W?r)v

2. F(x, () -
The definitions of N, and N, imply that the absolute value of the first term in
(4.7) is < ¢, and the uniformity statement (4.3) implies that each of the second
and third terms is in [0, ¢]. Thus we see that the limit in (4.2) is less than 3¢
in absolute value, and since ¢ was an arbitrary positive number, the limit must
actually be 0. This gives us F%k(x) — k(x) = 0 for all xe.%, so that k is
harmonic.

We now must treat the general case, in which the numbers ¢, are not neces-
sarily 1. Let sup, ¢, = c (finite by hypothesis), and define the stochastic matrix
S by

Ax,x)=1—52[1 — Fx,x)], and
4
Ax, y) = 2 Ax,y) for x#y.
4

Now let (1) be the transition function for a continuous time Markov chain on
< whose states each have holding parameter ¢, and whose paths are governed
by g’(x, ). Since (1) and (1) have the same infinitesimal parameters, we
have A1) = A(1). We know from the first part of the proof that F%k = k (we
proved the result under the assumption ¢, = 1, but it is clear that that same
proof would work if ¢, = ¢). Thus ZA1)k = k for all 1 > 0, by the discussion
preceding the statement of the lemma. This implies that A1)k = k for all
t = 0and &k = k.
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