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ERGODIC THEOREMS FOR THE ASYMMETRIC
SIMPLE EXCLUSION PROCESS II!

By THoMAs M. LIGGETT
University of California, Los Angeles

Ergodic theorems are proved for the one dimensional translation in-
variant simple exclusion process, in cases in which the initial distribution
is highly nontranslation invariant.

1. Introduction. Let p(x, y) = p(0, y — x) be the transition probabilities for
an irreducible random walk on Z*, and let 7, be the corresponding simple exclu-
sion process. This is the Feller process on X = {0, 1}** which describes the
evolution of configurations of indistinguishable particles on Z! with at most one
particle per site, in which particles move in the following way: a particle at x
waits an exponential time with parameter one, then it chooses a y according to
the probabilities p(x, y), and finally it moves to y if y is vacant at that time,
while it remains at x if y is occupied. The generator of the process is the closure
in C(X) of the operator Q which is defined for functions f which depend on only
finitely many coordinates by

Qf(’]) = Zr}(x)=l;7](y)=0p(x’ y)[f(’]m/) —f1,

where 7,, is the configuration obtained from » by moving the particle at x to y.
The simple exclusion process was introduced by Spitzer in [8], and the proof
that the closure of the above defined operator Q is a semigroup generator was
given in [3]. In the one-dimensional finite mean case, this result was first proved
by Holley in [1]. A survey of results relating to this process, as well as a discus-
sion of conjectures and open problems, cantbe found in part II of [7]. Basically
the current situation is that the behavior of the process is well understood in
case p(x, y) is symmetric, but that many open problems remain in the asymmetric
case.

In this paper, we extend and simplify the main results of [5]. In [5], it was
assumed that p(x, y) = O for |y — x| > 1, and our primary extension is the elimi-
nation of this requirement. The main simplification comes from the fact that
we avoid using the results and techniques of Section 3 of [5], which is the most
difficult and least natural part of that paper, and that part in which the nearest
neighbor assumption enters in a crucial way. We will, however, use the results
of Section 2 of [5].

In order to state the main result, let S(f) be the semigroup on C(X) which
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corresponds to the process 5,. As usual, the dual semigroup acting on probability
measures on X gives the distribution of the process at time ¢ for the given initial
distribution. For 0 < p < 1, let v, be the product measure on X with v, {7:
p(x) = 1} = p for all x.

THEOREM 1.1. Assume that 3, |x|p(0,.x) < oo and y = 33, xp(0, x) > 0, and
suppose that p is a product probability measure on X for which the following limits
exist:

(1.2)  A=lim, i p(x) =1},  p=1lim,_ . p{n: 5(x) = 1}.

(@) If 2= 3 and p < §, then lim,_,, pS(?) = v,.
(b) Ifp=%and 2 + p > 1, then lim,_, pS(f) = v,
(c) If 2<% and2 + p < 1, then lim,_,, pS(f) = v,.

Of course, a similar statement holds in the negative mean case. The case
0 <2< 4%, 2+ p = lisomitted from the statement of the theorem for the same
reasons as in the nearest neighbor situation, so the reader is referred to [5] for
a discussion of that case.

Different techniques apply in the symmetric case, and the result is that
lim,_,, 8(f) = v 34, for all 2 and p, provided that 4 satisfies the assumptions
of Theorem 1.1 ([4], [9]). Therefore, for example, if 4 is the pointmass on the
configuration 5 for which y(x) =1 if x <0 and 5(x) =0 for x > 0, then
lim,_,, #8(f) = v, whenever p is symmetric or has positive mean. A natural
conjecture is that this is also the case when p has mean zero. As can be seen
from [5], however, this result fails if p has negative mean.

Our techniques lead to results for the translation invariant simple exclusion
process on Z¢ for d > 1 as well. We do not give the proofs in the higher di-
mensional case, since the class of initial diskributions covered seems less inter-
esting in this context than in one dimension. A typical result which can be
proved, for example, is that the conclusions of Theorem 1.1 hold if p(0, x) has
a finite mean with positive first coordinate, and if x is a product measure which
satisfies pfn: n(x) = 1} = 2if x» < 0 and p{y: p(x) = 1} = p if x® > 0.

The initial distributions dealt with in Theorem 1.1 are very special, and it
would of course be of great interest to prove ergodic theorems for this process
with more general initial distributions. A first step in this direction, and an
important problem in its own right, is to determine completely the class of in-
variant measures for the process under the assumptions of the theorem. The
natural conjecture is that (a) the Markov chain obtained by restricting 7, to the
countable set {npe X |3, 7(X) = Y20 [1 — 9(x)] < oo} is positive recurrent;
and (b) the extremal invariants are given by {1,,0 < p < 1} U{y,, —co < n < oo},
where {v,} are the translates of the stationary distribution of the Markov chain
in (a). This conjecture has been proved in [6] in case p(x, y) = 0 for |x —y| > 1.
In the general case, it is only known [6] that the extremal translation invariant,
invariant measures are given by {v,, 0 < p < 1}. When 7 = 0, it was proved
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in [6] that {v,, 0 < p < 1} are the only extremal invariants. Another related
problem of interest is to prove that lim,_,, #S(f) = v, when p is translation in-
variant and ergodic, where p = p{n(x) = 1}. This has been proved in the sym-
metric case [4, 9], but in general it is only known [7] that all weak limits of
1S() are exchangeable and have density p.

As in [5], the method of proof of Theorem 1.1 involves making comparisons
with related finite systems. The analysis of these finite systems will be carried
out in Section 2, and the proof of the theorem will be completed in Section 3.
We will assume throughout that p has a finite positive mean.

2. The finite systems. For 2, pe[0, 1] and integers m < n, consider the
Markov chain on X,, , = {0, 1}’» with generator

QLo f() = Zr)(a:)=1,7}(u)=0;msa:,1/§nP(x’ I (.y) — f(0)]
+ Zom=umseza () — FODN — 2) Xycm p(x5 y)
+ (1 = 0) Zysa p(x 1)}
+ 2w=tmsysn [f(y) — fODUA Zocm P(X5Y) + 0 Dasu P(X5 1)}

where D, , = {m, --., n} and 7, is defined by 5,(¥) = 1 — »(x) and 5,(v) = 7(v)
for v = u. This is a simple exclusion process on D,, , with spontaneous creation
and destruction of particles at rates which are obtained by imagining that at all
times, {(y), y ¢ D,,,} are independent of {»(y), y € D,, ,}, and 5(y) has mean 2
for y < m and mean p for y > n. We will denote the corresponding semigroup
by S,.,.(¢), since the values of 2 and p will always be clear from the context.
This chain has a unique invariant measure y,, (4, p), since the chain is irreducible
unless A = p = 0 or 2 = p = 1, in which case the chain is evéntually absorbed
by » = 0 or » = 1 respectively. -

Define a partial order on the set of probability measures on X by px < v if
there exists a probability measure a on X X X with marginals ¢ and v respec-
tively such that a{(», {): » < {} = 1. In comparing the invariant measures for
different values of m and n, it is convenient to have them defined on the same
space. Therefore we regard p,, (4, p) as a probability measure on X by letting
it be the product measure on X = X,, , X [I.¢p,, , {0, 1} with

Pual O 9(x) =1} =2 if x<m
=p if x>n.

Theorems 2.4 and 2.13 of [5] give the following monotonicity results in the
present context.

ProrosiTION 2.1. (a) p, (4, 2) = v,.

(b) If 24 < Ay then gty (hs 0) =t u(Re» 0)-

() If o1 = ps; then iy, (4, 01) = ftm, (25 05)-

(d) If 2 < p, then prp_y (3 0) Z ttnu(s 0) 2t wia(As ).
©) If 2 = p, then pr_y /(3 0) < i3 0) <t wis(ho 0)-
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As a consequence of (d) and (e), the iterated weak limits
lur('z’ p) = limm—v—oo 1imn—-+oo num,'n('z’ p) ’ and
nul('z’ p) = Iim'n—>+eo limm—>—oo lum,'n('z’ lo)
both exist and satisfy x,(4, p) < #,(4, p) if 2 < pand (4, p) < p,(4, p) iIf 2 = p.
The main objective of this section is to evaluate these two measures explicitly
for the values of 2 and p covered in Theorem 1.1, and in fact to prove that for
such 2 and p, 1,(2, p) = (4, p)- ‘

PROPOSITION 2.2. For any 2, p€[0, 1], p.(4, p) and (4, p) are exchangeable
measures.

Proor. Observe that lim,_,, #,, (4, p) and lim,_, #,,., .(4, p) are translates of
one another, so that x,(2, p) is translation invariant. Since lim,,__., .., Q4% f=
Qf for all functions which depend on only finitely many coordinates, z,.(2, p) is
invariant for S(¢). Therefore p.(4, p) is exchangeable by Theorem 1.1 of [6].
The proof for 4,(2, p) is similar.

Since p,, (4, p) is invariant for S, .(¢), § Q%e fdu,, (4, p) = 0 for f(n) = n(x),
m < x < n. Writing this out yields the fact that

cm,n(z’ 10) = '2 Zx<m;u<y§np(x’ y)#m,ﬂ(z, P){W()’) = 0}

+ Zméxgu;uq;énp(x’ y)‘um,n('z’ p){)?(X) = 1’ 77(}’) = 0}
(2'3) + (1 - P) Zméxéu;y>np(x’ y)ym,n(l, p){r;(x) = 1}

= 0 Zia>mmsyzu PXs Y)tn,a(A, ){7(y) = 0}

— Du<zsmmsysu P(X> y)lam,n('z’ e){n(x) =1, 7(y) = 0}

— (1 = ) Zucoznivem P Y)tm (25 0){0(x) = 1}
is independent of u for m — 1 < u < n. Since ¢, (4, p) depends on m and n
only through the sum n — m, and since p(0, x) has a finite first moment, the
joint limit ¢(2, p) = liM,,_,_..n s e Cm.o(4, p) eXists and

(4, 0) = Zagucy P(5 Mt(4; 0){0(x) = 1, 7(y) = 0}
(2-4) — Zysuca P(% Y)1(2, 0){7(x) = 1, 9(y) = 0}
= 714, p){n(x) = 1, 7(y) = 0}

for x # y, which is independent of x and y by Proposition 2.2. Similarly,

(2.5) (4, p) = (4, p){n(x) = 1, 9(y) = 0}.
PROPOSITION 2.6. '

(2.7) ¢4, 0) < ymin[A(1 — 2), o(1 — p)] if 2=<p, and

(2.8) e, p) = ymax[A(1 — 2),p(1 — p)] if 2Zp.

Proor. Writing (2.3) for u = m — 1 and u = n respectively yields
Con,n(A5 0) = 2 Dlocmgysn P(Xs Y)tm,u(45 0){1(y) = 0}
— (1 = 2) Zy<msosn P(X> P)ttm,al2s o){n(x) = 1}, and
Cnn(4s 0) = (1 — 0) Dmgasncy P P)ttm, (A 0){0(x) = 1}
— 0 Lmsysn<s P(Xs V) ttm, (4 0){0(y) = O} .
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Using (a), (b), and (c) of Proposition 2.1 then gives

Cunl(Z 0) S AL = 2) Tacmsyzn [P, 9) —p(p, ¥)] I 20

cm,n('z’ P) = 2(1 - 2) Zz<m§u§n [p(x’ )’) - 1’()” x)] if 2 = o

e 0) Z p(1 = 0) Dnsesncy [P )) — p(r 9] i 2= 0

Cmalds 0) Z (1 = 0) Dimsesney [PO6Y) — p(y, )] i 220,
and the result follows by taking limits.

THEOREM 2.9. (a) If 2 = % and p < &, then py(, p) = p, (4, p) = ;-

(b) Ifp=4and 2+ p > 1, then (2, p) = 11,(4, p) = v,

(¢) If 2 < }and 2+ p < 1, then 11(2, p) = 1,4, p) = v;.

Proor. We will prove this for p,(4, p) only, since the proof for p (2, p) is
identical. By Proposition 2.2 and de Finetti’s theorem, z,(2, p) = {j v, B(dr) for
some probability measure g(dr) on [0, 1], which of course depends on 2 and p.
By (2.4), ¢(4, 0) = 7 §i7(1 — 7)B(dr) < r/4. By (2.8), onthe other hand, ¢(1,%)=
r/4and c¢(3,0) = y/4,sothatif A=1andp=3}or2i=4%and p =0, {3} =1
and (1, ) = p,(3, 0) = v,. Now suppose 4 = % and p < 4, and take limits
in (b) and (c) of Proposition 2.1 to obtain

v = (3 0) < 12 0) < (1, 3) = vy
which gives part (a) of the theorem. If 2 > p > 3, then f(dr) concentrates on
[0, 4] by (a), (b), and (c) of Proposition 2.1, and {? z(1 — 7)B(dr) = p(1 — p) by
(2.8). Therefore {p} = 1, and hence p,(4, p) = v,. A similar argument shows
that p.(4, p) = v, if $ = 2 = p. Finally, if 2 < p and 1 4 p > 1, B(dr) con-
centrates on [, p]and {47(1 — 7)B(dz) < p(1 — p),so B{p} = 1and (2, p) = v,,
with a similar argument showing that x.(2, p) = v;if A< pand 1 4 p < 1.

Note that in case 0 < 2 < 4 and 2 + g = 1, these techniques give only that
(2, p) and (4, p) are convex combinations of v, and v,. In fact, it can be
shown that in this case, #,(4, p) = v; and (2, p) = v,, so that the comparisons
used in the next section would not yield results.

3. Proofs of the main results. The following provides the key link between
Theorems 2.9 and 1.1.

THEOREM 3.1. Suppose p is the product measure on X with
(3-2) pria)=1)=2 if x=0
=p if x>0.
If v is any weak limit point of nS(f) as t — co, then
t0) Sv <) if 2zp, and
td0) Sv=pmp) if A<p.

Proor. We will carry out the proof that v < ¢,(4, p) if 2 = p, since the proofs
are similar in the other cases. Fix k < 0, and note that

3.3) pS(t) = lim,,_,_ lim,_,_ pS, (1) <lim, oS, (),
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where the equality is a consequence of the Trotter-Kurtz convergence theorem
for semigroups [2], and the inequality follows from (e) of Proposition 2.1. Since
pandy, on {0, 1}{#-#+1} are two product measures whose marginal probabilities
differ at only finitely many points, a simple coupling argument applied to the
process with semigroup lim,,_,, S, ,(¢) yields the conclusion that

(3.4) lim,_, lim, ., [¢£S; .(f) — v, S;..()] = 0.
Next, since v,S, ,(?) is increasing in both n and ¢ by Theorems 2.4 and 2.13 of
[51,
(3.5) lim,_, lim,_,v,S; .(?) = lim,_ lim,  v,S, (7).
Putting (3.3), (3.4) and (3.5) together yields
v < lim,_ lim,_, v,S; (¢) = lim,__, ¢, .(Z, o) .
Since this is true for all k < 0, it follows that v < u,(2, p).

ProoF oF THEOREM 1.1. Theorems 2.9 and 3.1 together give the required
result in case yx is the product measure with marginals given by (3.2). Since the
limit is translation invariant in each case, the result holds for translates of this
¢ as well. Given a product measure ¢ for which

(3.6) wpx)y =1} =2 for x<m and
un(x) =1}=p for x >n and
(3.7) t{n(x) = 1} lies between 2 and p for m<x <n,

there are product measures p, and g, which are translates of the one with mar-
ginals (3.2) and which satisfy p, < ¢ < p,. Therefore the required result holds
for such y by Theorem 2.3 of [5]. Let N = 2*~™+ and let »,, ---, 5, be the
points in X, .. For 1 <i < N, let p, be the product measure with marginals
given by (3.6) and s,{y(x) = 1} = »,(x) f8r m < x < n, and let p be the follow-
ing convex combination on the p,’s:

= Lo Lm0 [T — ()] 7=, .

This is a product measure whose marginals satisfy (3.6) and (3.7), provided that
d(x) lies between 2 and p for all xe D,, ,. Therefore the required result holds
for each p; if 2 # p, and thus by continuity and Theorem 2.3 of [5], even if
4 = p. Hence we conclude that the required result holds for all product measures
satisfying (3.6) alone. To extend the result to product measures satisfying (1.2),
we then use again Theorem 2.3 of [5] and the continuity of the limits in (a), (b),
and (c) of Theorem 1.1 in 2 and p for 2 and p other than 2 < 4, 2 + p = 1.
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